Bihar Board Class 12 Mathematics Syllabus 2025-26

Bihar School Examination Board (BSEB)

Chapter-wise Syllabus and Weightage

Academic Year 2025-26 (Aligned with NCF 2005)

Prepared for Students and Educators

Last Updated: September 1, 2025

Contents

1	Mathematics Syllabus Overview	2
2	Exam Pattern	2
3	Unit-wise Syllabus and Weightage	2
4	How to Download the Official Syllabus	6
5	Preparation Tips	6

1 Mathematics Syllabus Overview

The Bihar Board Class 12 Mathematics Syllabus for 2025-26, designed in accordance with the National Curriculum Framework 2005, covers six units: Relations and Functions, Algebra, Calculus, Vectors and Three-Dimensional Geometry, Linear Programming, and Probability. The total marks are 100 (theory only, no practical component), with Calculus carrying the highest weightage. This document provides a detailed breakdown of chapters, key topics, and mark distribution to aid students in preparing for the board exams scheduled for February 2026. For the official syllabus PDF, visit https://biharboardonline.bihar.gov.in.

2 Exam Pattern

The BSEB Class 12 Mathematics exam follows this structure:

- Total Marks: 100 (Theory).
- Question Types: 50% objective (Multiple Choice Questions, MCQs) and 50% subjective (short/long-answer questions).
- MCQs: 60 questions (1 mark each), attempt any 50.
- Subjective Questions: Short-answer (2 marks, attempt 15/18), Long-answer (5 marks, attempt 5/8).
- **Passing Marks**: 33% (33 marks).
- Duration: 3 hours and 15 minutes.

3 Unit-wise Syllabus and Weightage

S.No.	Unit		Chapter	Key Topics	Marks
Ι	Relations	and	Relations and Functions	Types of rela-	2*10
	Functions			tions (reflexive,	
				symmetric,	
				transitive,	
				equivalence),	
				One-to-one and	
				onto functions	
			Inverse Trigonometric Functions	Definition,	
				range, domain,	
				principal value	
				branch, graphs	

II Algebra Matrices Concept,	no- 2*13
	der,
	pes
	_
of matrices,	
and identity	
trix, transp	
	and
skew-symmet	
matrices, op	era-
tions (addit	ion,
multiplicatio	n,
scalar mult	
	non-
commutativi	
invertible ma	
ces, unique	
of inverse	IICSS
Determinants Determinant	a of
square matr	
(up to 3x3),	
nors, co-fact	
area of a	
angle, adjo	
inverse, sol	-
systems of lin	
equations (2)	or
3 variables)	
III Calculus Continuity and Differentiability Continuity,	4*40
differentiabil	-
ity, chain i	rule,
derivatives	of
inverse trigo	ono-
metric funct	
	sźx,
tanźx),	im-
plicit functi	
exponential	0110,
and logar	ith
	0115,
logarithmic	
differentiatio	n,
parametric	
	ond-
order derivat	ives

Applications of Derivatives	Rate of
	change, increas-
	ing/decreasing
	functions, max-
	ima and minima
	(first and second
	derivative tests),
	simple real-life
	problems
Integrals	Integration as
	inverse of dif-
	ferentiation,
	substitution,
	partial fractions,
	by parts, sim-
	ple integrals,
	Fundamental
	Theorem of
	Calculus, prop-
	erties of definite
	integrals
Applications of Integrals	Area under
inpplications of integrals	curves (lines,
	circles, parabo-
	las, ellipses in
	standard form)
Differential Equations	Definition, or-
Differential Equations	der, degree,
	, , ,
	general and par-
	ticular solutions,
	separation of
	variables, ho-
	mogeneous and
	linear differen-
	tial equations

IV	Vectors	Vectors	Vectors and	2*18
1	and Three-	VCC0015	scalars, mag-	2 10
	Dimensional		nitude, direc-	
	Geometry		tion, direction	
			cosines/ratios,	
			types of vectors	
			(equal, unit,	
			zero, parallel,	
			collinear), po-	
			sition vector,	
			vector addition,	
			scalar multipli-	
			cation, dot and	
			cross products	
		Three-Dimensional Geometry	Direction	
			cosines/ratios,	
			Cartesian and	
			vector equations	
			of a line, skew	
			lines, shortest	
			distance, angle	
**	T. D	L. D	between lines	
V	Linear Program-	Linear Programming	Introduction,	09
	ming		constraints,	
			objective func-	
			tion, optimiza-	
			tion, graphical	
			method, feasi-	
			ble/infeasible	
			regions, optimal	
			solutions (up to	
			three non-trivial	
			constraints)	
VI	Probability	Probability	Conditional	10
			probability,	
			multiplication	
			theorem, inde-	
			pendent events,	
			total proba-	
			bility, Bayes	
			theorem, ran-	
			dom variables,	
			probability	
			distribution,	
			mean	
			Total (Theory)	100

4 How to Download the Official Syllabus

To access the official BSEB Class 12 Mathematics syllabus PDF:

- 1. Visit https://biharboardonline.bihar.gov.in.
- 2. Navigate to the 'Syllabus' section.
- 3. Select 'Class 12' and choose 'Mathematics'.
- 4. Download the PDF by clicking the provided link.

5 Preparation Tips

- Prioritize Calculus (40 marks) by mastering differentiation, integration, and their applications (maxima/minima, area under curves).
- Practice Vectors and Three-Dimensional Geometry (18 marks) for 3D concepts and vector operations.
- Focus on **Algebra** (13 marks), particularly matrix operations and determinants for solving linear equations.
- Regularly practice MCQs to excel in the objective section (50 marks).
- Use NCERT textbooks and BSEB model papers for comprehensive preparation.
- Solve previous years question papers (available on the BSEB website).
- Create a study schedule to cover all units by January 2026.