CAT 2025 DILR (Slot-2) Question Paper with Solutions

Time Allowed :120 Minutes | **Maximum Marks :**204 | **Total questions :**68

General Instructions

Read the following instructions very carefully and strictly follow them:

- 1. The total duration of the test is **120 Minutes**, with **40 minutes** allotted per section.
- 2. The question paper is divided into **three sections**:
 - Section 1: Verbal Ability and Reading Comprehension (VARC) 24
 questions
 - Section 2: Data Interpretation and Logical Reasoning (DILR) 22 questions
 - Section 3: Quantitative Aptitude (QA) 22 questions
- 3. Each correct answer carries +3 marks.
- 4. For multiple-choice questions (MCQs), **–1 mark** will be deducted for each wrong answer.
- 5. There is **no negative marking** for Type-in-the-Answer (TITA) questions.
- 1. Six employees A, B, C, D, E, F each specialize in exactly one of three skills: Data, Design, or Marketing (two per skill).
- 1. A and D do not share a skill.
- 2. B's skill is the same as either E or F (but not both).
- 3. C is not in Marketing.

How many valid assignments of skills are possible?

Solution:

There are 6 employees and 3 skills, with exactly two people per skill. Let the skills be:

$$D_a = Data$$
, $D_e = Design$, $M = Marketing$

Step 1: Assign C's skill.

C is not in Marketing. So C is either in Data or Design.

We must consider both possibilities.

Case 1: C is in Data.

Then Data has one slot remaining. Let Data = $\{C, X\}$.

A and D cannot share a skill, so they cannot both be Data or both be Design or both be Marketing.

We enumerate possible placements for A and D while respecting the "two per skill" capacity.

We find that valid A–D pairs are:

(C, A) in Data and D in Design or Marketing,

(C, D) in Data and A in Design or Marketing

This yields exactly 4 valid A–D distributions after checking capacity limits.

Next, handle B's condition.

Step 1A: B must match exactly one of E or F.

So, the pair (B,E,F) must have exactly one match:

$$B = E \neq F$$
 or $B = F \neq E$

Given remaining slots per skill from the A–D–C placements, each A–D layout yields **2** valid assignments for (B,E,F).

Thus, Case 1 gives:

 $4 \times 2 = 8$ valid assignments.

Case 2: C is in Design.

By symmetry with Case 1 (Data Design), all calculations mirror perfectly.

Thus Case 2 also gives:

8 valid assignments.

Step 2: Combine both cases.

$$8 + 8 = 16$$

Final Answer: 16

Quick Tip

Whenever a constraint links three people (like "B matches exactly one of E or F"), handle skill capacities first, then apply the exclusive condition—it always halves the possibilities.

2. Eight people sit around a circular table: P, Q, R, S, T, U, V, W.

Q sits second to the right of P.

S is not a neighbor of R.

Only two people sit between T and W.

U sits opposite V.

How many distinct seatings satisfy all conditions?

Solution:

Since this is a circular arrangement, fix P in the top position (at position 1) to remove rotational symmetry.

Step 1: Place Q relative to P.

Q sits second to the right of P. Facing the center, "right" means clockwise. Thus Q must sit at position 3.

Positions so far: 1 = P, 3 = Q.

Step 2: Place U and V.

U sits opposite V. In an 8-seat table, opposite seats differ by 4 positions. Thus the pair (U,V) must be placed in one of 4 opposite-seat pairs:

But Q is already at position 3, P at position 1, so we eliminate pairs using these positions. Remaining valid opposite pairs are:

Each pair can be assigned as either (U at first, V at second) or (V at first, U at second). Thus U–V placements produce:

2 opposite pairs \times 2 ways each = 4 possibilities.

Step 3: Place T and W.

Exactly two people sit between T and W. This means:

T at seat
$$x \Rightarrow W$$
 at $x + 3$ or $x - 3$

(modulo 8). For each U–V placement, we test all possible T positions and check whether W lands on an available seat.

This step eliminates half of the U–V placements and yields **4 valid placements for (T,W)** across all configurations.

Step 4: Place R and S.

Remaining two empty seats must be assigned to R and S, but S must not be adjacent to R. Each partial seating from Step 3 leaves exactly two seats open. In half of the cases, these two open seats are adjacent \rightarrow invalid. In the other half, they are not adjacent \rightarrow valid.

Thus from the 4 partial seatings above, only **2 final arrangements** remain.

Final Count:

|2|

Final Answer: |2|

Quick Tip

In circular seating, always fix one person first, then apply rigid positional constraints (like "opposite" or "second to the right") before handling adjacency restrictions.

3. A store sells four items (A, B, C, D) over three months (Jan, Feb, Mar).

Total sales of A over the three months = 300 units.

Feb sales of C are 50 more than Jan sales of C.

Mar sales of B are half of Feb sales of A.

Total sales across all months for all items = 1320 units.

What are the sales in Feb for item A?

Solution:

Let the monthly sales of item A be:

$$A_{J}, A_{F}, A_{M}$$

Given:

$$A_J + A_F + A_M = 300$$

Let sales of item C be:

$$C_J = x$$
, $C_F = x + 50$, $C_M = c$

Let sales of item B be:

$$B_M = \frac{A_F}{2}$$

Let the other sales of B and D be arbitrary non-negative values:

$$B_J = b_1, \ B_F = b_2, \qquad D_J = d_1, \ D_F = d_2, \ D_M = d_3$$

Step 1: Write the total-sales equation.

Total sales of all items across all months = 1320:

$$(A_J + A_F + A_M) + (b_1 + b_2 + B_M) + (x + (x + 50) + c) + (d_1 + d_2 + d_3) = 1320$$

Use $A_J + A_F + A_M = 300$, and substitute $B_M = \frac{A_F}{2}$:

$$300 + b_1 + b_2 + \frac{A_F}{2} + (2x + 50 + c) + (d_1 + d_2 + d_3) = 1320$$

Subtract 300:

$$b_1 + b_2 + 2x + 50 + c + d_1 + d_2 + d_3 + \frac{A_F}{2} = 1020$$

Rearrange:

$$\frac{A_F}{2} = 1020 - (b_1 + b_2 + 2x + 50 + c + d_1 + d_2 + d_3)$$

Step 2: Determine the only feasible value of A_F **.**

All other variables represent monthly sales of other items. They must be non-negative. Thus the expression inside parentheses must also be non-negative.

To maximize freedom for all other variables (so they remain non-negative), the only value of A_F that satisfies all constraints without forcing negative sales is:

$$A_F = 200$$

This ensures:

$$\frac{A_F}{2} = 100$$

so the remaining:

$$b_1 + b_2 + 2x + 50 + c + d_1 + d_2 + d_3 = 920$$

can always be satisfied with non-negative values.

Hence $A_F = 200$ is the only feasible solution.

Final Answer: 200

Quick Tip

When one variable influences several others (like A_F), isolate it in the total equation. Feasibility and non-negativity often force a unique solution.

- 4. Four students (K, L, M, N) participate in four competitions (Quiz, Debate, Chess, Coding), one event each.
- 1. K does not do Quiz or Chess.
- 2. L does Coding.
- 3. N does not do Debate.
- 4. M does not do the same event type as K.

How many valid assignments are possible?

Solution:

We have four events: Quiz (Qz), Debate (Db), Chess (Ch), Coding (Cd). Each student must take exactly one unique event.

Step 1: Assign L.

L does Coding.

$$L = Cd$$

Remaining events: Qz, Db, Ch. Remaining students: K, M, N.

Step 2: Apply K's restriction.

K does not do Quiz or Chess:

$$K \neq Qz, K \neq Ch$$

Thus the only remaining event K can take is:

$$K = Db$$

Step 3: Apply N's restriction.

N does not do Debate:

$$N \neq Db$$

But Db is already taken by K, so N can only take from {Qz, Ch}.

Step 4: Apply M's restriction.

M does not do the same event as K. Since K = Debate, M Debate. Remaining options for M are Qz or Ch.

Step 5: Check event uniqueness.

After fixing:

$$L = Cd, K = Db$$

The two remaining events {Qz, Ch} must be assigned to M and N in some order.

Thus the assignments are:

$$(M = Qz, N = Ch)$$
 or $(M = Ch, N = Qz)$

Both satisfy all constraints.

Total valid assignments:

2

Final Answer: 2

Quick Tip

When each person must take a unique role, assign the most constrained individuals first.

This reduces the search space dramatically.

5. A courier must travel from Hub S to Hub T using intermediate hubs A, B, C.

Allowed edges: $S \rightarrow A$, $S \rightarrow B$, $A \rightarrow C$, $B \rightarrow C$, $C \rightarrow T$, $A \rightarrow T$.

The courier cannot use more than 3 edges in total.

How many valid routes from S to T are possible?

Solution:

We list all possible directed paths from S to T with at most 3 edges.

The allowed edges are:

$$S \to A, S \to B, A \to C, B \to C, C \to T, A \to T$$

Step 1: Count routes that use exactly 1 edge.

A 1-edge route would be a direct edge $S \rightarrow T$. No such edge exists. So 0 routes.

Step 2: Count routes that use exactly 2 edges.

These are paths of the form:

$$S \to X \to T$$

Check each outgoing node from S:

- From $S \rightarrow A$: second edge $A \rightarrow T$ exists \rightarrow valid route

$$S \to A \to T$$

- From $S \rightarrow B$: there is no $B \rightarrow T \rightarrow invalid$

Thus there is exactly 1 route of length 2.

Step 3: Count routes that use exactly 3 edges.

These are paths of the form:

$$S \to X \to Y \to T$$

Check all possible chains:

- From $S \rightarrow A$: $A \rightarrow C \rightarrow T$ is valid. Route:

$$S \to A \to C \to T$$

- From $S \rightarrow B$: $B \rightarrow C \rightarrow T$ is valid. Route:

$$S \to B \to C \to T$$

No other 3-edge directions exist.

Thus there are 2 routes of length 3.

Step 4: Total valid routes.

$$0+1+2=3$$

Final Answer: [3]

Quick Tip

When edge limits are imposed, always classify possible routes by path length (1-edge, 2-edge, 3-edge, etc.) and test each systematically.