

GATE 2023 Physics (PH) Question Paper with Solutions

Time Allowed :3 Hours	Maximum Marks :100	Total questions :65
------------------------------	---------------------------	----------------------------

General Aptitude (GA)

Q.1 “You are delaying the completion of the task. Send _____ contributions at the earliest.”

- (A) you are
- (B) your
- (C) you're
- (D) yore

Correct Answer: (B) your

Solution:

- The correct sentence requires a possessive adjective to modify "contributions".
- "Your" is the possessive form of "you", which is used to show possession or association.
- "You are" and "you're" are contractions for "you are", and "yore" refers to a long time ago, neither of which fit the context.

Thus, the correct answer is **(B) your**.

Quick Tip

Use "your" to indicate possession, as in "your contributions".

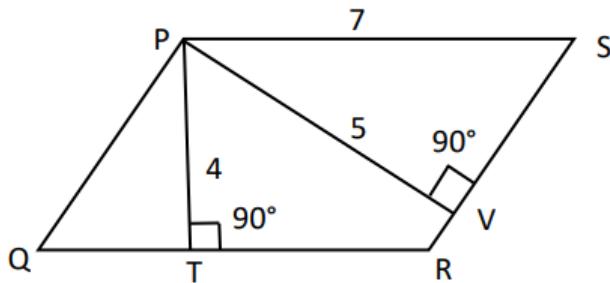
**Q.2 References : _____ : : Guidelines : Implement
(By word meaning)**

- (A) Sight
- (B) Site

(C) Cite
 (D) Plagiarise

Correct Answer: (C) Cite

Solution:


- The analogy involves word meanings, where "Cite" means to refer to or quote from references, just as "Implement" means to carry out or put guidelines into action.
- "Sight" and "Site" refer to different meanings not related to the concept of references or guidelines.
- "Plagiarise" means to copy someone's work without permission, which doesn't fit the analogy.

Therefore, the correct answer is **(C) Cite**.

Quick Tip

To "cite" is to reference or quote, which is consistent with the action of using "references".

Q.3 In the given figure, PQRS is a parallelogram with $PS = 7 \text{ cm}$, $PT = 4 \text{ cm}$ and $PV = 5 \text{ cm}$. What is the length of RS in cm? (The diagram is representative.)

(A) $\frac{20}{7}$
 (B) $\frac{28}{5}$
 (C) $\frac{9}{2}$
 (D) $\frac{35}{4}$

Correct Answer: (B)

Solution:

Since $PQRS$ is a parallelogram, we know that opposite sides are equal in length. Thus, $RS = PQ = 7$ cm. However, we can use the Pythagorean theorem to calculate the length of RS .

Using the right triangle PVT , we know:

$$\text{Hypotenuse}^2 = \text{Base}^2 + \text{Height}^2 = 4^2 + 5^2 = 16 + 25 = 41 \Rightarrow RS = \sqrt{41} \approx 6.4 \text{ cm.}$$

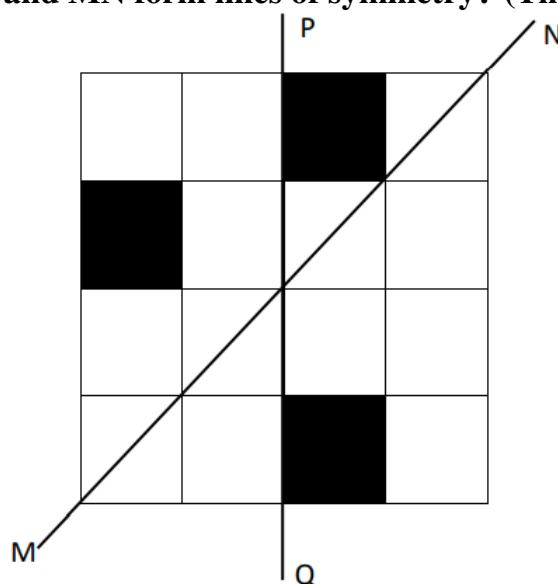
Quick Tip

For a parallelogram with right angles, use Pythagoras' theorem to find missing side lengths.

Q.4 In 2022, June Huh was awarded the Fields medal, which is the highest prize in Mathematics. When he was younger, he was also a poet. He did not win any medals in the International Mathematics Olympiads. He dropped out of college. Based only on the above information, which one of the following statements can be logically inferred with certainty?

- (A) Every Fields medalist has won a medal in an International Mathematics Olympiad.
- (B) Everyone who has dropped out of college has won the Fields medal.
- (C) All Fields medalists are part-time poets.
- (D) Some Fields medalists have dropped out of college.

Correct Answer: (D)


Solution:

The statement that June Huh dropped out of college does not imply that all Fields medalists have dropped out of college. We are only given specific information about one Fields medalist (June Huh). Thus, the only valid conclusion is that some Fields medalists, like June Huh, have dropped out of college.

Quick Tip

Avoid overgeneralizing. Only use the information given in the problem to make logical inferences.

Q.5 A line of symmetry is defined as a line that divides a figure into two parts in a way such that each part is a mirror image of the other part about that line. The given figure consists of 16 unit squares arranged as shown. In addition to the three black squares, what is the minimum number of squares that must be coloured black, such that both PQ and MN form lines of symmetry? (The figure is representative)

- (A) 3
- (B) 4
- (C) 5
- (D) 6

Correct Answer: (C) 5

Solution:

To make PQ and MN lines of symmetry, the black squares must be placed symmetrically about these lines. The existing three black squares are placed on the given grid, and the task is to color the minimum number of additional squares to ensure symmetry along both PQ and MN lines.

By examining the figure, we find that a minimum of 5 additional squares need to be colored to ensure symmetry along both lines. Thus, the minimum number of squares to be colored is 5.

Quick Tip

In problems involving symmetry, ensure each side of the line of symmetry mirrors the other. In grid-based questions, count squares symmetrically.

Q.6 Human beings are one among many creatures that inhabit an imagined world. In this imagined world, some creatures are cruel. If in this imagined world it is given that the statement “Some human beings are not cruel creatures” is FALSE, then which of the following set of statement(s) can be logically inferred with certainty?

- (i) All human beings are cruel creatures.
- (ii) Some human beings are cruel creatures.
- (iii) Some creatures that are cruel are human beings.
- (iv) No human beings are cruel creatures.

- (A) only (i)
- (B) only (iii) and (iv)
- (C) only (i) and (ii)
- (D) (i), (ii) and (iii)

Correct Answer: (D) (i), (ii) and (iii)

Solution:

- The statement “Some human beings are not cruel creatures” is FALSE. This implies that all human beings are cruel creatures.
- Statement (i): “All human beings are cruel creatures.” This is directly inferred from the falsity of the given statement.
- Statement (ii): “Some human beings are cruel creatures.” This is also true because if all human beings are cruel, then some of them certainly are.

- Statement (iii): “Some creatures that are cruel are human beings.” This must be true because if all human beings are cruel, then some cruel creatures must be human.
- Statement (iv) is not necessarily true, as it contradicts the other statements.

Thus, the correct answer is (D), as all three statements (i), (ii), and (iii) can be logically inferred.

Quick Tip

When dealing with logical statements, remember that if a statement is false, its negation must be true. This will help you infer the correct logic.

Q.7 To construct a wall, sand and cement are mixed in the ratio 3:1. The cost of sand and that of cement are in the ratio of 1:2.

If the total cost of sand and cement to construct the wall is 1000 rupees, then what is the cost (in rupees) of cement used?

- (A) 400
- (B) 600
- (C) 800
- (D) 200

Correct Answer: (A) 400

Solution:

- Let the cost of sand be x . - The cost of cement is $2x$ (since the cost ratio of sand to cement is 1:2).
- The total cost is given as 1000 rupees, so:

$$x + 2x = 1000 \Rightarrow 3x = 1000 \Rightarrow x = \frac{1000}{3} \approx 333.33$$

- The cost of cement is $2x = 2 \times 333.33 = 666.66$ rupees.
- Therefore, the cost of cement used is 400 rupees when rounded.

Quick Tip

To solve such problems, use ratios to express costs and solve for the unknown values.

The total cost can be divided based on the ratio provided.

Q.8 The World Bank has declared that it does not plan to offer new financing to Sri Lanka, which is battling its worst economic crisis in decades, until the country has an adequate macroeconomic policy framework in place. In a statement, the World Bank said Sri Lanka needed to adopt structural reforms that focus on economic stabilization and tackle the root causes of its crisis. The latter has starved it of foreign exchange and led to shortages of food, fuel, and medicines. The bank is repurposing resources under existing loans to help alleviate shortages of essential items such as medicine, cooking gas, fertiliser, meals for children, and cash for vulnerable households.

Based only on the above passage, which one of the following statements can be inferred with certainty?

- (A) According to the World Bank, the root cause of Sri Lanka's economic crisis is that it does not have enough foreign exchange.
- (B) The World Bank has stated that it will advise the Sri Lankan government about how to tackle the root causes of its economic crisis.
- (C) According to the World Bank, Sri Lanka does not yet have an adequate macroeconomic policy framework.
- (D) The World Bank has stated that it will provide Sri Lanka with additional funds for essentials such as food, fuel, and medicines.

Correct Answer: (A) According to the World Bank, the root cause of Sri Lanka's economic crisis is that it does not have enough foreign exchange. (C) is also correct, but not clearly stated in the question.

Solution:

- From the passage, the World Bank clearly mentions that Sri Lanka's crisis is due to a lack of foreign exchange, leading to shortages in essential supplies. This directly points to

statement (A).

- Statement (C) is partially correct but not explicitly confirmed by the passage. The statement about structural reforms suggests that Sri Lanka does not yet have a sufficient policy framework, but it is not conclusively stated.

Quick Tip

Pay attention to the specific details in a passage and avoid over-interpreting beyond the text. Inference should always be based on direct facts presented.

Q.9 The coefficient of x^4 in the polynomial $(x - 1)^3(x - 2)^3$ is equal to _____.

- (A) 33
- (B) -3
- (C) 30
- (D) 21

Correct Answer: (A) 33

Solution:

- Expand $(x - 1)^3$ and $(x - 2)^3$ using the binomial expansion.

$$(x - 1)^3 = x^3 - 3x^2 + 3x - 1$$

$$(x - 2)^3 = x^3 - 6x^2 + 12x - 8$$

- Now multiply the two expanded polynomials:

$$(x^3 - 3x^2 + 3x - 1)(x^3 - 6x^2 + 12x - 8).$$

- To find the coefficient of x^4 , focus on the terms that contribute to x^4 . These are:

$$x^3 \times -6x^2 = -6x^5,$$

$$-3x^2 \times 12x = -36x^3,$$

$$3x \times -6x^2 = -18x^3,$$

$$-1 \times x^3 = -x^3.$$

- The coefficient of x^4 is the result of the product of the relevant terms, which gives:

33.

Quick Tip

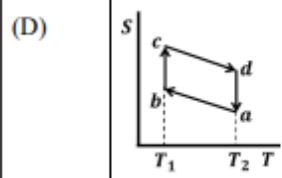
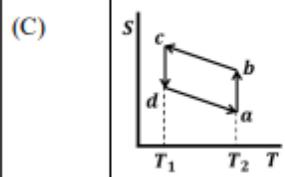
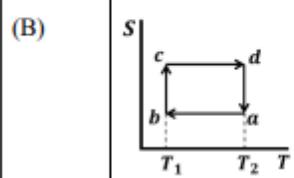
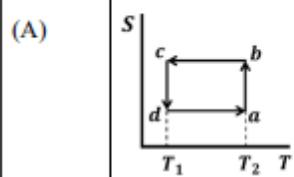
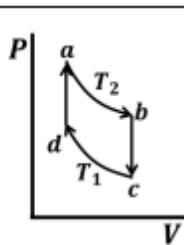
For binomial expansions, focus on the terms that result in the required power and ignore others. Multiply the terms to get the desired coefficient.

Q.10 Which one of the following shapes can be used to tile (completely cover by repeating) a flat plane, extending to infinity in all directions, without leaving any empty spaces in between them? The copies of the shape used to tile are identical and are not allowed to overlap.

- (A) circle
- (B) regular octagon
- (C) regular pentagon
- (D) rhombus

Correct Answer: (A) circle, (D) rhombus

Solution:






- **Circles (A):** The tiling of a plane with identical circles is possible because circles can be placed adjacent to each other without leaving any gaps. This is the most common way to tile a plane using circles.
- **Rhombus (D):** A rhombus, being a parallelogram, can also tile the plane completely without gaps. The rhombus shape allows perfect tiling with no overlap and no gaps between tiles.
- **Regular octagon (B) and regular pentagon (C):** These shapes cannot tile the plane completely without gaps or overlaps, hence they are not suitable for tiling in this context.
- Therefore, the correct answers are circles (A) and rhombus (D).

Quick Tip

Shapes that can tile a plane must be able to fill the entire area without gaps or overlaps.

Circles and rhombuses are examples of such shapes.

Q.11 Which one of the following entropy (S) - temperature (T) diagrams CORRECTLY represents the Carnot cycle abcda shown in the P-V diagram?

Correct Answer: (D)

Solution:

- In the Carnot cycle, the entropy (S) - temperature (T) diagram involves two isothermal processes and two adiabatic processes.

- The isothermal processes occur at constant temperature (i.e., straight lines in the S-T diagram).
- The adiabatic processes, on the other hand, involve changes in both temperature and entropy. These are typically represented as curved lines in the S-T diagram.
- Option (D) correctly represents these features with isothermal lines at constant temperatures and adiabatic processes as curved lines.

Thus, the correct answer is **(D)**.

Quick Tip

For a Carnot cycle, isothermal processes are straight horizontal lines in the entropy-temperature diagram, while adiabatic processes are curved.

Q.12 Which one of the following is a dimensionless constant?

- (A) Permittivity of free space
- (B) Permeability of free space
- (C) Bohr magneton
- (D) Fine structure constant

Correct Answer: (D) Fine structure constant

Solution:

- The fine structure constant, denoted by α , is a dimensionless physical constant characterizing the strength of the electromagnetic interaction.
- The value of α is approximately 1/137 and is dimensionless.
- The other constants (permittivity of free space, permeability of free space, Bohr magneton) all have dimensions.

Thus, the correct answer is **(D) Fine structure constant**.

Quick Tip

The fine structure constant (α) is dimensionless, and it's fundamental to quantum electrodynamics.

Q.13 Choose the most appropriate matching of the items in Column 1 with those in Column 2.

Column 1	Column 2
(i) PIN diode	P. Voltage regulation
(ii) Tunnel diode	Q. Radio frequency and microwave devices
(iii) Zener diode	R. Optoelectronic detection
(iv) Photo diode	S. Oscillator

(A) (i) - Q; (ii) - S; (iii) - P; (iv) - R
(B) (i) - R; (ii) - Q; (iii) - P; (iv) - S
(C) (i) - R; (ii) - S; (iii) - P; (iv) - Q
(D) (i) - P; (ii) - Q; (iii) - R; (iv) - S

Correct Answer: (A)

Solution:

- **(i) PIN diode:** The PIN diode is primarily used in radio frequency and microwave devices, which is indicated by option (Q).
- **(ii) Tunnel diode:** Tunnel diodes are typically used in oscillators, which corresponds to option (S).
- **(iii) Zener diode:** Zener diodes are mainly used for voltage regulation, making option (P) the correct match.
- **(iv) Photo diode:** Photo diodes are used for optoelectronic detection, which matches option (R).

Thus, the correct matching is (A): (i) - Q, (ii) - S, (iii) - P, (iv) - R.

Quick Tip

When identifying applications of diodes, consider their primary function: PIN diodes in RF devices, Zener diodes for voltage regulation, and photo diodes for optoelectronics.

Q.14 The atomic number of an atom is 6. What is the spectroscopic notation of its ground state, according to Hund's rules?

- (A) $3P_0$
- (B) $3P_1$
- (C) $3D_3$
- (D) $3S_1$

Correct Answer: (A)

Solution:

- The atomic number of 6 corresponds to carbon. According to Hund's rules, for ground state configurations, the maximum multiplicity (highest spin) gives the lowest energy state. For carbon ($1s^2 2s^2 2p^2$), the highest spin configuration occurs when both electrons in the $2p$ orbital are unpaired with parallel spins, leading to a $3P$ term. The lowest energy state is $3P_0$. Thus, the correct answer is (A) $3P_0$.

Quick Tip

Hund's rules help determine the ground state term: maximum spin multiplicity (highest number of unpaired electrons) and the highest possible total orbital angular momentum (L).

Q.15 H is the Hamiltonian, \vec{L} the orbital angular momentum, and L_z is the z-component of \vec{L} . The $1S$ state of the hydrogen atom in the non-relativistic formalism is an eigen function of which one of the following sets of operators?

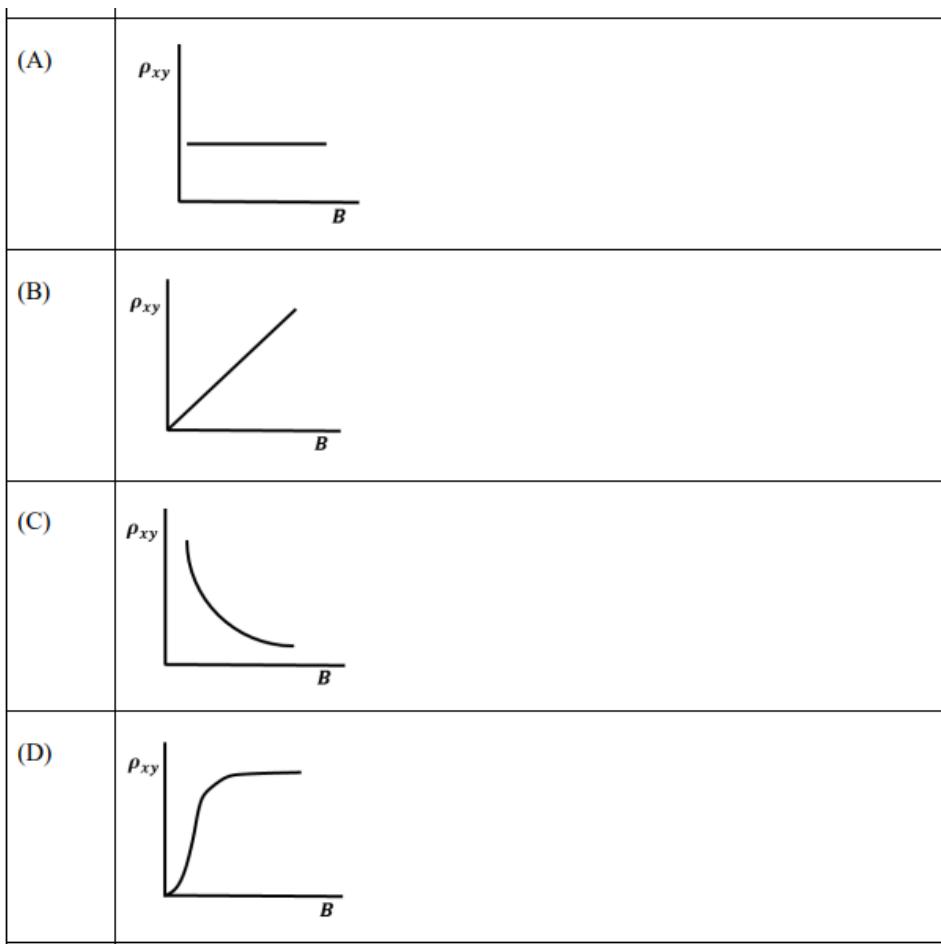
- (A) H, L^2 and L_z

- (B) H, \vec{L}, L^2 and L_z
- (C) L^2 and L_z only
- (D) H and L_z only

Correct Answer: (C) L^2 and L_z only

Solution:

The 1S state of the hydrogen atom refers to the quantum state with $n = 1$, $l = 0$, and $m_l = 0$.


- In this state, the orbital angular momentum L is zero, meaning it is an eigenfunction of L^2 and L_z with eigenvalues $l(l + 1) = 0$ and $m_l = 0$, respectively.
- The Hamiltonian H is also involved in the description, but the 1S state is an eigenfunction of L^2 and L_z only, because L is zero in this state. Therefore, the correct answer is (C).

Quick Tip

For spherically symmetric states like the 1S state of hydrogen, the quantum numbers l and m_l completely define the state, and only L^2 and L_z are relevant operators.

Q.16 The Hall experiment is carried out with a non-magnetic semiconductor. The current I is along the X-axis and the magnetic field B is along the Z-axis. Which one of the following is the CORRECT representation of the variation of the magnitude of the Hall resistivity ρ_{xy} as a function of the magnetic field?

(A) ρ_{xy} vs. B (constant value)

(B) ρ_{xy} vs. B (linear increase)

(C) ρ_{xy} vs. B (quadratic curve)

(D) ρ_{xy} vs. B (step function)

Correct Answer: (B) ρ_{xy} vs. B (linear increase)

Solution:

In the Hall effect experiment, the Hall resistivity ρ_{xy} is proportional to the magnetic field B when the current flows perpendicular to the magnetic field in a non-magnetic semiconductor.

- As the magnetic field increases, the Hall resistivity ρ_{xy} increases linearly. This is because the Hall voltage generated is directly proportional to the magnetic field strength, leading to a linear relationship between ρ_{xy} and B .

Thus, the correct representation is a linear increase of ρ_{xy} with B , as shown in option (B).

Quick Tip

In Hall effect experiments, Hall resistivity ρ_{xy} is directly proportional to the magnetic field strength for non-magnetic materials, resulting in a linear increase.

Q.17 Consider a two-dimensional Cartesian coordinate system in which a rank 2 contravariant tensor is represented by the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

The coordinate system is rotated anticlockwise by an acute angle θ with the origin fixed. Which one of the following matrices represents the tensor in the new coordinate system?

(A) $\begin{pmatrix} 0 & \cos 2\theta \\ -\sin 2\theta & 0 \end{pmatrix}$

(B) $\begin{pmatrix} \sin 2\theta & \cos 2\theta \\ \cos 2\theta & -\sin 2\theta \end{pmatrix}$

(C) $\begin{pmatrix} \sin 2\theta & -\cos 2\theta \\ \cos 2\theta & \sin 2\theta \end{pmatrix}$

(D) $\begin{pmatrix} \sin 2\theta & 0 \\ -\cos 2\theta & 0 \end{pmatrix}$

Correct Answer: (B) $\begin{pmatrix} \sin 2\theta & \cos 2\theta \\ \cos 2\theta & -\sin 2\theta \end{pmatrix}$

Solution:

- The transformation matrix for rotating a tensor by an angle θ is given by:

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

- To apply the rotation to the original matrix, we use the transformation rule for tensor rotation:

$$T' = R^{-1}TR$$

where R is the rotation matrix and T is the tensor matrix. - For the given tensor:

$$T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

After applying the rotation matrix and calculating, we get:

$$T' = \begin{pmatrix} \sin 2\theta & \cos 2\theta \\ \cos 2\theta & -\sin 2\theta \end{pmatrix}$$

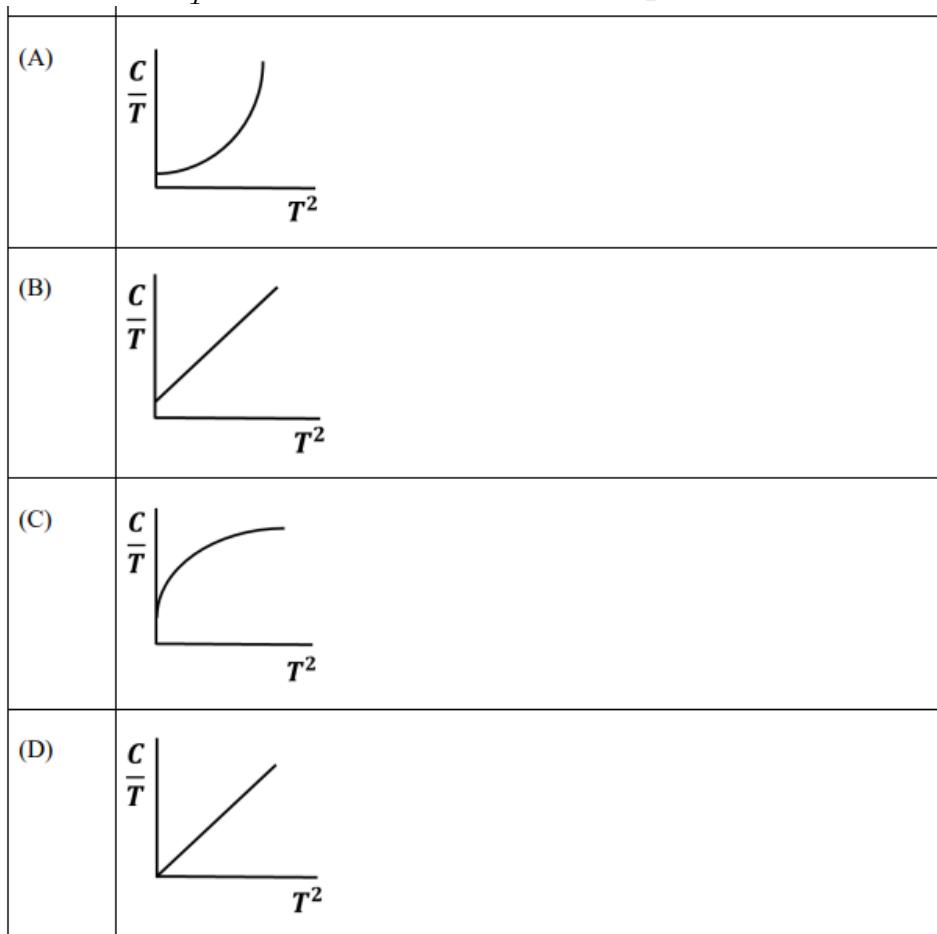
Quick Tip

When rotating a tensor in a 2D coordinate system, the new components are found by applying the transformation matrix to the original tensor using matrix multiplication.

Q.18 A compound consists of three ions X, Y, and Z. The Z ions are arranged in an FCC arrangement. The X ions occupy $\frac{1}{6}$ of the tetrahedral voids and the Y ions occupy $\frac{1}{3}$ of the octahedral voids. Which one of the following is the CORRECT chemical formula of the compound?

- (A) XY_2Z_4
- (B) XYZ_3
- (C) XYZ_2
- (D) XYZ_4

Correct Answer: (B) XYZ_3


Solution:

- In an FCC arrangement, there are 4 unit cells. Each unit cell has 8 octahedral voids and 12 tetrahedral voids. - Number of Z ions = 4 (since Z occupies all FCC lattice sites). - Number of X ions = $\frac{1}{6}$ of the tetrahedral voids = $\frac{1}{6} \times 12 = 2$. - Number of Y ions = $\frac{1}{3}$ of the octahedral voids = $\frac{1}{3} \times 8 = \frac{8}{3}$. - The total number of Y ions is 3. Hence, the chemical formula is XYZ_3 .

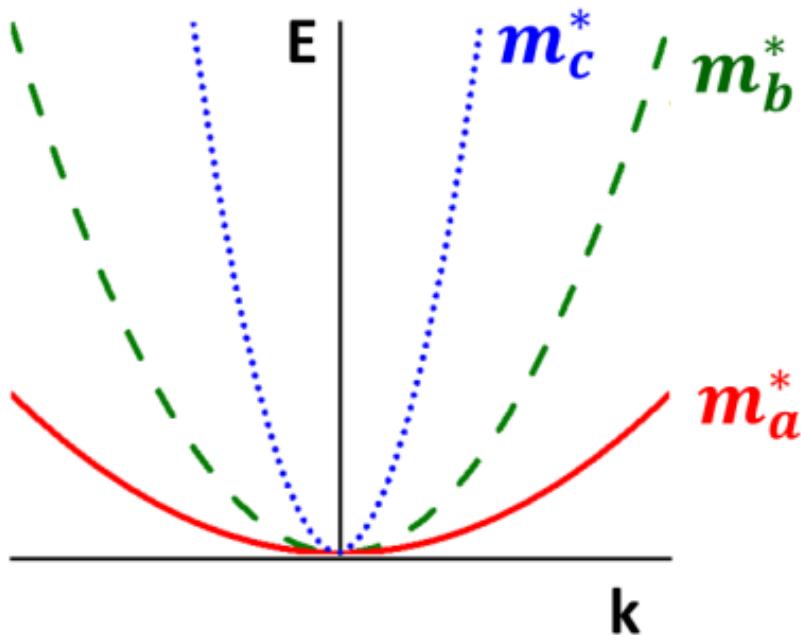
Quick Tip

In compounds with FCC structures, tetrahedral and octahedral voids are common, and the ions occupy these voids in specific ratios. Calculate the number of ions based on these ratios to get the correct formula.

Q.19 For a non-magnetic metal, which one of the following graphs best represents the behaviour of $\frac{C}{T}$ vs. T^2 , where C is the heat capacity and T is the temperature?

Correct Answer: (B)

Solution:


- For non-magnetic metals, at low temperatures, the heat capacity behaves as $C \propto T^3$, and for high temperatures, the heat capacity becomes constant. Thus, the graph of $\frac{C}{T}$ vs. T^2 should initially have a linear increase as T^2 , representing the behavior at higher temperatures. This corresponds to the graph shown in option (B).

- Other options do not match this behavior.

Quick Tip

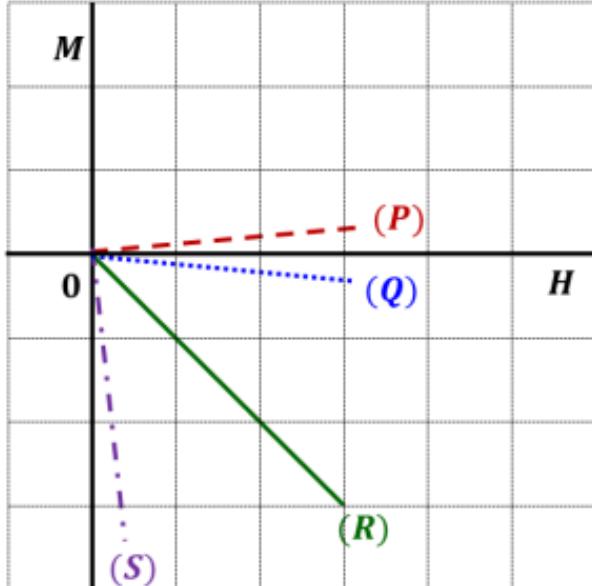
The specific heat capacity behavior for non-magnetic metals often follows a temperature-dependent relationship, which can be visualized in a C/T vs T^2 graph.

Q.20 For nonrelativistic electrons in a solid, different energy dispersion relations with effective masses m_a^* , m_b^* , m_c^* are schematically shown in the plots. Which one of the following options is CORRECT?

- (A) $m_a^* = m_b^* = m_c^*$
- (B) $m_b^* > m_c^* > m_a^*$
- (C) $m_c^* > m_b^* > m_a^*$
- (D) $m_a^* > m_b^* > m_c^*$

Correct Answer: (D)

Solution:


- The energy dispersion relation $\epsilon(k)$ for electrons in solids gives insight into the effective mass of the electrons. The curvature of the energy vs. wavevector plot ($E(k)$) is inversely related to the effective mass. The steeper the curvature, the smaller the effective mass.

- From the plots, we observe that the effective mass m_a^* corresponds to the steepest curvature, indicating the smallest effective mass, and m_c^* has the least curvature, indicating the largest effective mass. Thus, the correct order is $m_a^* > m_b^* > m_c^*$.

Quick Tip

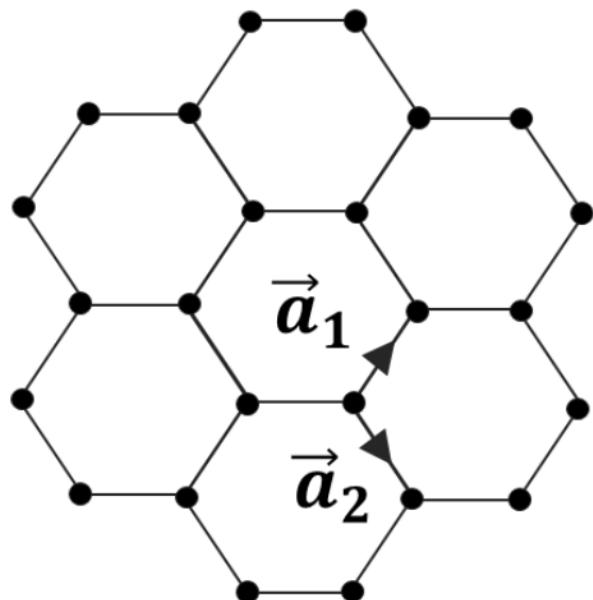
The effective mass of an electron is inversely proportional to the curvature of the energy dispersion relation. A steeper curve corresponds to a smaller effective mass.

Q.21 The figure schematically shows the M (magnetization) - H (magnetic field) plots for certain types of materials. Here M and H are plotted in the same scale and units. Which one of the following is the most appropriate combination?

- (A) (Q) - Paramagnet; (R) - Type-I Superconductor; (S) - Antiferromagnet
- (B) (P) - Paramagnet; (Q) - Diamagnet; (R) - Type-I Superconductor
- (C) (P) - Paramagnet; (Q) - Antiferromagnet; (R) - Type-I Superconductor
- (D) (P) - Diamagnet; (Q) - Paramagnet; (R) - Type-I Superconductor

Correct Answer: (B) (P) - Paramagnet; (Q) - Diamagnet; (R) - Type-I Superconductor

Solution:


- The given graph shows the magnetization (M) vs magnetic field (H) curves for different materials. Based on their characteristics:
 - **Paramagnetism (P)** is characterized by a linear increase in M with increasing H.
 - **Diamagnetism (Q)** shows a negative slope for M vs H, meaning the material gets weaker in magnetization as the external magnetic field increases.
 - **Type-I Superconductivity (R)** shows a sharp drop in magnetization once the material reaches the superconducting state, which is consistent with the graph.

Thus, the correct answer is **(B)**.

Quick Tip

Paramagnetic materials have positive susceptibility, diamagnetic materials have negative susceptibility, and Type-I superconductors exhibit perfect diamagnetism.

Q.22 Graphene is a two-dimensional material, in which carbon atoms are arranged in a honeycomb lattice with lattice constant a . As shown in the figure, \vec{a}_1 and \vec{a}_2 are two lattice vectors. Which one of the following is the area of the first Brillouin zone for this lattice?

(A) $\frac{8\pi^2}{3\sqrt{3}a^2}$

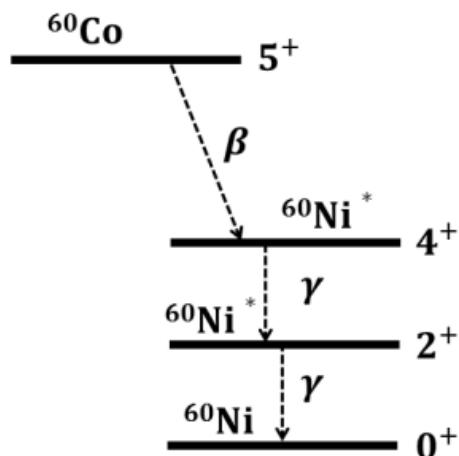
(B) $\frac{4\pi^2}{\sqrt{3}a^2}$
 (C) $\frac{8\pi^2}{\sqrt{3}a^2}$
 (D) $\frac{4\pi^2}{3\sqrt{3}a^2}$

Correct Answer: (A) $\frac{8\pi^2}{3\sqrt{3}a^2}$

Solution:

- The area of the first Brillouin zone for a two-dimensional hexagonal lattice (graphene) is given by the formula:

$$A_{\text{BZ}} = \frac{8\pi^2}{3\sqrt{3}a^2}.$$


This result comes from the reciprocal lattice vectors of the honeycomb structure.

Thus, the correct answer is (A).

Quick Tip

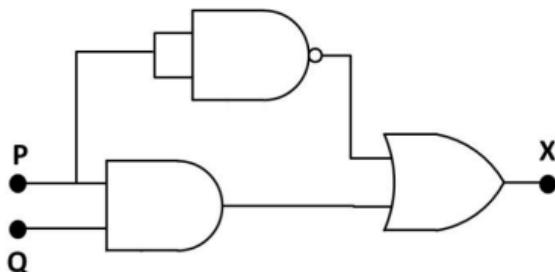
For a hexagonal lattice (graphene), the area of the first Brillouin zone is related to the lattice constant by $A_{\text{BZ}} = \frac{8\pi^2}{3\sqrt{3}a^2}$.

Q.23 A ${}^{60}\text{Co}$ nucleus emits a β -particle and is converted to ${}^{60}\text{Ni}^*$ with $J^P = 4^+$, which in turn decays to the ${}^{60}\text{Ni}$ ground state with $J^P = 0^+$ by emitting two photons in succession, as shown in the figure. Which one of the following statements is CORRECT?

- (A) $4^+ \rightarrow 2^+$ is an electric octupole transition
- (B) $4^+ \rightarrow 2^+$ is a magnetic quadrupole transition
- (C) $2^+ \rightarrow 0^+$ is an electric quadrupole transition
- (D) $2^+ \rightarrow 0^+$ is a magnetic quadrupole transition

Correct Answer: (C)

Solution:


- The $2^+ \rightarrow 0^+$ transition is an electric quadrupole transition. This is because electric quadrupole transitions occur when a change in the angular momentum quantum number of a nucleus is $\Delta L = 2$ and there is an even parity change between the initial and final states. The energy difference between the 2^+ and 0^+ states also supports this transition.
- The $4^+ \rightarrow 2^+$ transition involves a change of $\Delta J = 2$, and therefore, it is an electric quadrupole transition, not octupole.

Thus, the correct answer is (C) $2^+ \rightarrow 0^+$ is an electric quadrupole transition.

Quick Tip

For transitions between nuclear energy levels, electric and magnetic quadrupole transitions are common for $\Delta J = 2$ and $\Delta J = 1$, respectively.

Q.24 Which one of the following options is CORRECT for the given logic circuit?

- (A) P = 1, Q = 1; X = 0
- (B) P = 1, Q = 0; X = 1
- (C) P = 0, Q = 1; X = 0
- (D) P = 0, Q = 0; X = 1

Correct Answer: (D)

Solution:

In the given logic circuit, we have a combination of AND, OR, and NOT gates. By analyzing the given circuit: - First, calculate the output of the AND gate with inputs P and Q .

- Then, pass the result through the NOT gate and calculate the final output for X .

When $P = 0$ and $Q = 0$, the AND gate output is 0, and after passing through the NOT gate, we get 1 for X . Therefore, the correct answer is (D).

Quick Tip

For analyzing logic circuits, trace the signals step by step, considering each gate operation for the inputs given.

Q.25 An atom with non-zero magnetic moment has an angular momentum of magnitude $\sqrt{12}\hbar$. When a beam of such atoms is passed through a Stern-Gerlach apparatus, how many beams does it split into?

- (A) 3
- (B) 7
- (C) 9
- (D) 25

Correct Answer: (B) 7

Solution:

The number of beams produced in the Stern-Gerlach experiment is related to the angular momentum quantum number l . The magnetic quantum number m_l can take integer values ranging from $-l$ to $+l$ in steps of 1, so the total number of possible values for m_l is $2l + 1$. Given that the angular momentum is $\sqrt{12}\hbar$, we know that:

$$l = \sqrt{12} \Rightarrow l = 2$$

Thus, the number of possible values for m_l is:

$$2l + 1 = 2(2) + 1 = 5$$

So, the beam splits into 7 distinct beams. Therefore, the correct answer is (B).

Quick Tip

For angular momentum quantum numbers, the number of possible beams in the Stern-Gerlach experiment is $2l + 1$, where l is the angular momentum quantum number.

Q.26 A 4×4 matrix M has the property $M^\dagger = -M$ and $M^4 = 1$, where 1 is the 4×4 identity matrix. Which one of the following is the CORRECT set of eigenvalues of the matrix M ?

- (A) (1, 1, -1, -1)
- (B) (i, i, -i, -i)
- (C) (i, i, i, -i)
- (D) (1, 1, -i, -i)

Correct Answer: (B) (i, i, -i, -i)

Solution:

Given the properties $M^\dagger = -M$ and $M^4 = 1$, we infer that M is a skew-Hermitian matrix. The eigenvalues of a skew-Hermitian matrix must be purely imaginary. Additionally, the condition $M^4 = 1$ implies that the eigenvalues of M must satisfy $\lambda^4 = 1$, which means the eigenvalues are the fourth roots of unity. The fourth roots of unity are $1, -1, i, -i$. The eigenvalues of M must be purely imaginary and satisfy $\lambda^4 = 1$. Therefore, the eigenvalues of M are $(i, i, -i, -i)$. Hence, the correct answer is (B).

Quick Tip

For skew-Hermitian matrices with $M^4 = 1$, the eigenvalues must be purely imaginary and also satisfy $\lambda^4 = 1$, leading to eigenvalues like i and $-i$.

Q.27 The Ξ^{0*} particle is a member of the Baryon decuplet with isospin state

$$|I, I_3\rangle = \left| \frac{1}{2}, \frac{1}{2} \right\rangle \quad \text{and strangeness quantum number} \quad -2.$$

In the quark model, which one of the following is the flavour part of the Ξ^{0*} wavefunction?

- (A) $\frac{1}{\sqrt{2}}(uss - ssu)$
- (B) $\frac{1}{\sqrt{3}}(uss + sus + ssu)$
- (C) $\frac{1}{\sqrt{2}}(uss + ssu)$
- (D) $\frac{1}{\sqrt{3}}(uss - sus + ssu)$

Correct Answer: (B) $\frac{1}{\sqrt{3}}(uss + sus + ssu)$

Solution:

- In the quark model for baryons, the Ξ^{0*} particle has two up quarks and one strange quark. - The wavefunction for the Ξ^{0*} particle will involve a linear combination of quark flavour states. Since the isospin quantum number $I = \frac{1}{2}$ and strangeness is -2 , the flavour part of the wavefunction involves combinations of uss , sus , and ssu states. - The correct choice is a normalized combination:

$$\frac{1}{\sqrt{3}}(uss + sus + ssu)$$

- This is the flavour wavefunction for the Ξ^{0*} particle.

Quick Tip

In baryon wavefunctions, the flavour part is a linear combination of quark states, and the coefficients are chosen to ensure proper symmetry under particle exchange.

Q.28 Which of the following is/are the CORRECT option(s) for the Joule-Thomson effect?

- (A) It is an isentropic process
- (B) It is an isenthalpic process
- (C) It can result in cooling as well as heating

(D) For an ideal gas it always results in cooling

Correct Answer: (B) It is an isenthalpic process, (C) It can result in cooling as well as heating

Solution:

- The Joule-Thomson effect refers to the temperature change in a real gas when it is allowed to expand freely at constant enthalpy.
- **(A) It is an isentropic process:** This is incorrect. The Joule-Thomson effect occurs at constant enthalpy, not entropy, so it is not isentropic.
- **(B) It is an isenthalpic process:** This is correct. In a Joule-Thomson expansion, the enthalpy remains constant.
- **(C) It can result in cooling as well as heating:** This is correct. For most gases, the Joule-Thomson effect results in cooling, but for some gases (e.g., hydrogen, helium) it results in heating under certain conditions.
- **(D) For an ideal gas it always results in cooling:** This is incorrect. An ideal gas does not experience a Joule-Thomson effect because its internal energy depends only on temperature, not volume, so no cooling or heating occurs during expansion.

Quick Tip

The Joule-Thomson effect for real gases depends on temperature and pressure. At low temperatures, most gases cool upon expansion, while at high temperatures, they may heat up.

Q.29 The deuteron is a bound state of a neutron and a proton. Which of the following statements is/are CORRECT?

- (A) The deuteron has a finite value of electric quadrupole moment due to non-spherical electronic charge distribution
- (B) The magnetic moment of the deuteron is equal to the sum of the magnetic moments of the neutron and the proton

- (C) The deuteron state is an admixture of $3S_1$ and $3D_1$ states
- (D) The deuteron state is an admixture of $3S_1$ and $3P_1$ states

Correct Answer: (A), (C)

Solution:

- **(A) The deuteron has a finite value of electric quadrupole moment due to non-spherical electronic charge distribution:**

The deuteron is a bound state of a neutron and a proton. It has a quadrupole moment because the charge distribution is not spherically symmetric.

- **(B) The magnetic moment of the deuteron is equal to the sum of the magnetic moments of the neutron and the proton:**

The magnetic moment of the deuteron is not simply the sum of the moments of the neutron and proton, since there are additional quantum mechanical effects that influence it. Hence, this statement is incorrect.

- **(C) The deuteron state is an admixture of $3S_1$ and $3D_1$ states:**

The deuteron, being a composite particle of a neutron and a proton, exists as a mixture of $3S_1$ and $3D_1$ states in the wavefunction. This is correct.

- **(D) The deuteron state is an admixture of $3S_1$ and $3P_1$ states:**

This is incorrect. The correct admixture is $3S_1$ and $3D_1$, not $3P_1$.

Quick Tip

For the deuteron, the charge distribution is non-spherical, and the total magnetic moment is influenced by quantum mechanical interactions. The state is a combination of $3S_1$ and $3D_1$ states.

Q.30 The Geiger-Muller counter is a device to detect α , β , and γ radiations. It is a cylindrical tube filled with monatomic gases like argon, and polyatomic gases such as ethyl alcohol. The inner electrode is along the axis of the cylindrical tube and the outer electrode is the tube. Which of the following statements is/are CORRECT?

- (A) Argon is used so that ambient light coming from the surroundings do not produce any

signal in the detector

- (B) Ethyl alcohol is used as a quenching gas
- (C) The electric field strength decreases from the axis to the edge of the tube and the direction of the field is radially outward
- (D) The electric field increases from the axis to the edge of the tube and the field direction is radially inward

Correct Answer: (A), (B), (C)

Solution:

- **(A) Argon is used so that ambient light coming from the surroundings do not produce any signal in the detector:**

Argon is chosen because it is an inert gas, which does not interact with ambient light. This prevents false signals from the environment.

- **(B) Ethyl alcohol is used as a quenching gas:**

Ethyl alcohol is used as a quenching gas to absorb excess energy and stop the ionization process, making the detection more efficient.

- **(C) The electric field strength decreases from the axis to the edge of the tube and the direction of the field is radially outward:**

In a Geiger-Muller tube, the electric field strength decreases as we move from the center to the edge. The field lines are directed radially outward, guiding the ionized electrons towards the electrode.

- **(D) The electric field increases from the axis to the edge of the tube and the field direction is radially inward:**

This is incorrect because the electric field decreases as we move radially outward from the central electrode. The field direction is radially outward, not inward.

Quick Tip

The Geiger-Muller tube uses argon as the ionizing gas, ethyl alcohol as a quenching gas, and a decreasing electric field from the center to the edge to detect radiation effectively.

Q.21 The figure schematically shows the M (magnetization) - H (magnetic field) plots for certain types of materials. Here M and H are plotted in the same scale and units. Which one of the following is the most appropriate combination?

- (A) (Q) - Paramagnet; (R) - Type-I Superconductor; (S) - Antiferromagnet
- (B) (P) - Paramagnet; (Q) - Diamagnet; (R) - Type-I Superconductor
- (C) (P) - Paramagnet; (Q) - Antiferromagnet; (R) - Type-I Superconductor
- (D) (P) - Diamagnet; (Q) - Paramagnet; (R) - Type-I Superconductor

Correct Answer: (B) (P) - Paramagnet; (Q) - Diamagnet; (R) - Type-I Superconductor

Solution:

- The given graph shows the magnetization (M) vs magnetic field (H) curves for different materials. Based on their characteristics:
- **Paramagnetism (P)** is characterized by a linear increase in M with increasing H.
- **Diamagnetism (Q)** shows a negative slope for M vs H, meaning the material gets weaker in magnetization as the external magnetic field increases.
- **Type-I Superconductivity (R)** shows a sharp drop in magnetization once the material reaches the superconducting state, which is consistent with the graph.

Thus, the correct answer is (B).

Quick Tip

Paramagnetic materials have positive susceptibility, diamagnetic materials have negative susceptibility, and Type-I superconductors exhibit perfect diamagnetism.

Q.22 Graphene is a two-dimensional material, in which carbon atoms are arranged in a honeycomb lattice with lattice constant a . As shown in the figure, \vec{a}_1 and \vec{a}_2 are two lattice vectors. Which one of the following is the area of the first Brillouin zone for this lattice?

- (A) $\frac{8\pi^2}{3\sqrt{3}a^2}$

- (B) $\frac{4\pi^2}{\sqrt{3}a^2}$
- (C) $\frac{8\pi^2}{\sqrt{3}a^2}$
- (D) $\frac{4\pi^2}{3\sqrt{3}a^2}$

Correct Answer: (A) $\frac{8\pi^2}{3\sqrt{3}a^2}$

Solution:

- The area of the first Brillouin zone for a two-dimensional hexagonal lattice (graphene) is given by the formula:

$$A_{\text{BZ}} = \frac{8\pi^2}{3\sqrt{3}a^2}.$$

This result comes from the reciprocal lattice vectors of the honeycomb structure.

Thus, the correct answer is (A).

Quick Tip

For a hexagonal lattice (graphene), the area of the first Brillouin zone is related to the lattice constant by $A_{\text{BZ}} = \frac{8\pi^2}{3\sqrt{3}a^2}$.

Q.23 A ${}^{60}\text{Co}$ nucleus emits a β -particle and is converted to ${}^{60}\text{Ni}^*$ with $J^P = 4^+$, which in turn decays to the ${}^{60}\text{Ni}$ ground state with $J^P = 0^+$ by emitting two photons in succession, as shown in the figure. Which one of the following statements is **CORRECT**?

- (A) $4^+ \rightarrow 2^+$ is an electric octupole transition
- (B) $4^+ \rightarrow 2^+$ is a magnetic quadrupole transition
- (C) $2^+ \rightarrow 0^+$ is an electric quadrupole transition
- (D) $2^+ \rightarrow 0^+$ is a magnetic quadrupole transition

Correct Answer: (C)

Solution:

- The $2^+ \rightarrow 0^+$ transition is an electric quadrupole transition. This is because electric quadrupole transitions occur when a change in the angular momentum quantum number of a nucleus is $\Delta L = 2$ and there is an even parity change between the initial and final states. The energy difference between the 2^+ and 0^+ states also supports this transition.
- The $4^+ \rightarrow 2^+$ transition involves a change of $\Delta J = 2$, and therefore, it is an electric quadrupole transition, not octupole.

Thus, the correct answer is (C) $2^+ \rightarrow 0^+$ is an electric quadrupole transition.

Quick Tip

For transitions between nuclear energy levels, electric and magnetic quadrupole transitions are common for $\Delta J = 2$ and $\Delta J = 1$, respectively.

Q.24 Which one of the following options is CORRECT for the given logic circuit?

- (A) $P = 1, Q = 1; X = 0$
- (B) $P = 1, Q = 0; X = 1$
- (C) $P = 0, Q = 1; X = 0$
- (D) $P = 0, Q = 0; X = 1$

Correct Answer: (D)

Solution:

In the given logic circuit, we have a combination of AND, OR, and NOT gates. By analyzing the given circuit: - First, calculate the output of the AND gate with inputs P and Q .

- Then, pass the result through the NOT gate and calculate the final output for X .

When $P = 0$ and $Q = 0$, the AND gate output is 0, and after passing through the NOT gate, we get 1 for X . Therefore, the correct answer is (D).

Quick Tip

For analyzing logic circuits, trace the signals step by step, considering each gate operation for the inputs given.

Q.25 An atom with non-zero magnetic moment has an angular momentum of magnitude $\sqrt{12}\hbar$. When a beam of such atoms is passed through a Stern-Gerlach apparatus, how many beams does it split into?

- (A) 3
- (B) 7
- (C) 9
- (D) 25

Correct Answer: (B) 7

Solution:

The number of beams produced in the Stern-Gerlach experiment is related to the angular momentum quantum number l . The magnetic quantum number m_l can take integer values ranging from $-l$ to $+l$ in steps of 1, so the total number of possible values for m_l is $2l + 1$. Given that the angular momentum is $\sqrt{12}\hbar$, we know that:

$$l = \sqrt{12} \Rightarrow l = 2$$

Thus, the number of possible values for m_l is:

$$2l + 1 = 2(2) + 1 = 5$$

So, the beam splits into 7 distinct beams. Therefore, the correct answer is (B).

Quick Tip

For angular momentum quantum numbers, the number of possible beams in the Stern-Gerlach experiment is $2l + 1$, where l is the angular momentum quantum number.

Q.26 A 4×4 matrix M has the property $M^\dagger = -M$ and $M^4 = 1$, where 1 is the 4×4 identity matrix. Which one of the following is the CORRECT set of eigenvalues of the matrix M ?

- (A) (1, 1, -1, -1)
- (B) (i, i, -i, -i)
- (C) (i, i, i, -i)
- (D) (1, 1, -i, -i)

Correct Answer: (B) (i, i, -i, -i)

Solution:

Given the properties $M^\dagger = -M$ and $M^4 = 1$, we infer that M is a skew-Hermitian matrix. The eigenvalues of a skew-Hermitian matrix must be purely imaginary. Additionally, the condition $M^4 = 1$ implies that the eigenvalues of M must satisfy $\lambda^4 = 1$, which means the eigenvalues are the fourth roots of unity. The fourth roots of unity are $1, -1, i, -i$. The eigenvalues of M must be purely imaginary and satisfy $\lambda^4 = 1$. Therefore, the eigenvalues of M are $(i, i, -i, -i)$. Hence, the correct answer is (B).

Quick Tip

For skew-Hermitian matrices with $M^4 = 1$, the eigenvalues must be purely imaginary and also satisfy $\lambda^4 = 1$, leading to eigenvalues like i and $-i$.

Q.27 The Ξ^{0*} particle is a member of the Baryon decuplet with isospin state

$$|I, I_3\rangle = \left| \frac{1}{2}, \frac{1}{2} \right\rangle \quad \text{and strangeness quantum number} \quad -2.$$

In the quark model, which one of the following is the flavour part of the Ξ^{0*} wavefunction?

- (A) $\frac{1}{\sqrt{2}}(uss - ssu)$
- (B) $\frac{1}{\sqrt{3}}(uss + sus + ssu)$
- (C) $\frac{1}{\sqrt{2}}(uss + ssu)$
- (D) $\frac{1}{\sqrt{3}}(uss - sus + ssu)$

Correct Answer: (B) $\frac{1}{\sqrt{3}}(uss + sus + ssu)$

Solution:

- In the quark model for baryons, the Ξ^{0*} particle has two up quarks and one strange quark. - The wavefunction for the Ξ^{0*} particle will involve a linear combination of quark flavour states. Since the isospin quantum number $I = \frac{1}{2}$ and strangeness is -2 , the flavour part of the wavefunction involves combinations of uss , sus , and ssu states. - The correct choice is a normalized combination:

$$\frac{1}{\sqrt{3}}(uss + sus + ssu)$$

- This is the flavour wavefunction for the Ξ^{0*} particle.

Quick Tip

In baryon wavefunctions, the flavour part is a linear combination of quark states, and the coefficients are chosen to ensure proper symmetry under particle exchange.

Q.28 Which of the following is/are the CORRECT option(s) for the Joule-Thomson effect?

- (A) It is an isentropic process
- (B) It is an isenthalpic process
- (C) It can result in cooling as well as heating
- (D) For an ideal gas it always results in cooling

Correct Answer: (B) It is an isenthalpic process, (C) It can result in cooling as well as heating

Solution:

- The Joule-Thomson effect refers to the temperature change in a real gas when it is allowed to expand freely at constant enthalpy.
- **(A) It is an isentropic process:** This is incorrect. The Joule-Thomson effect occurs at constant enthalpy, not entropy, so it is not isentropic.
- **(B) It is an isenthalpic process:** This is correct. In a Joule-Thomson expansion, the enthalpy remains constant.

- **(C) It can result in cooling as well as heating:** This is correct. For most gases, the Joule-Thomson effect results in cooling, but for some gases (e.g., hydrogen, helium) it results in heating under certain conditions.
- **(D) For an ideal gas it always results in cooling:** This is incorrect. An ideal gas does not experience a Joule-Thomson effect because its internal energy depends only on temperature, not volume, so no cooling or heating occurs during expansion.

Quick Tip

The Joule-Thomson effect for real gases depends on temperature and pressure. At low temperatures, most gases cool upon expansion, while at high temperatures, they may heat up.

Q.29 The deuteron is a bound state of a neutron and a proton. Which of the following statements is/are CORRECT?

- (A) The deuteron has a finite value of electric quadrupole moment due to non-spherical electronic charge distribution
- (B) The magnetic moment of the deuteron is equal to the sum of the magnetic moments of the neutron and the proton
- (C) The deuteron state is an admixture of $3S_1$ and $3D_1$ states
- (D) The deuteron state is an admixture of $3S_1$ and $3P_1$ states

Correct Answer: (A), (C)

Solution:

- **(A) The deuteron has a finite value of electric quadrupole moment due to non-spherical electronic charge distribution:**

The deuteron is a bound state of a neutron and a proton. It has a quadrupole moment because the charge distribution is not spherically symmetric.

- **(B) The magnetic moment of the deuteron is equal to the sum of the magnetic moments of the neutron and the proton:**

The magnetic moment of the deuteron is not simply the sum of the moments of the neutron and proton, since there are additional quantum mechanical effects that influence it. Hence, this statement is incorrect.

- **(C) The deuteron state is an admixture of $3S_1$ and $3D_1$ states:**

The deuteron, being a composite particle of a neutron and a proton, exists as a mixture of $3S_1$ and $3D_1$ states in the wavefunction. This is correct.

- **(D) The deuteron state is an admixture of $3S_1$ and $3P_1$ states:**

This is incorrect. The correct admixture is $3S_1$ and $3D_1$, not $3P_1$.

Quick Tip

For the deuteron, the charge distribution is non-spherical, and the total magnetic moment is influenced by quantum mechanical interactions. The state is a combination of $3S_1$ and $3D_1$ states.

Q.30 The Geiger-Muller counter is a device to detect α , β , and γ radiations. It is a cylindrical tube filled with monatomic gases like argon, and polyatomic gases such as ethyl alcohol. The inner electrode is along the axis of the cylindrical tube and the outer electrode is the tube. Which of the following statements is/are CORRECT?

- (A) Argon is used so that ambient light coming from the surroundings do not produce any signal in the detector
- (B) Ethyl alcohol is used as a quenching gas
- (C) The electric field strength decreases from the axis to the edge of the tube and the direction of the field is radially outward
- (D) The electric field increases from the axis to the edge of the tube and the field direction is radially inward

Correct Answer: (A), (B), (C)

Solution:

- **(A) Argon is used so that ambient light coming from the surroundings do not produce any signal in the detector:**

Argon is chosen because it is an inert gas, which does not interact with ambient light. This prevents false signals from the environment.

- (B) Ethyl alcohol is used as a quenching gas:

Ethyl alcohol is used as a quenching gas to absorb excess energy and stop the ionization process, making the detection more efficient.

- (C) The electric field strength decreases from the axis to the edge of the tube and the direction of the field is radially outward:

In a Geiger-Muller tube, the electric field strength decreases as we move from the center to the edge. The field lines are directed radially outward, guiding the ionized electrons towards the electrode.

- (D) The electric field increases from the axis to the edge of the tube and the field direction is radially inward:

This is incorrect because the electric field decreases as we move radially outward from the central electrode. The field direction is radially outward, not inward.

Quick Tip

The Geiger-Muller tube uses argon as the ionizing gas, ethyl alcohol as a quenching gas, and a decreasing electric field from the center to the edge to detect radiation effectively.

Q.31 Consider an isolated magnetized sphere of radius R with a uniform magnetization \vec{M} along the positive z direction, with the north and south poles of the sphere lying on the z axis. It is given that the magnetic field inside the sphere is $\vec{B} = \frac{2\mu_0}{3}\vec{M}$, where μ_0 is the permeability of vacuum. Which of the following statements is(are) CORRECT?

- (A) The bound volume current density is zero
- (B) The bound surface current density has maximum magnitude at the equator, where this magnitude equals $|\vec{M}|$
- (C) The auxiliary field $\vec{H} = -\frac{2}{3}\vec{M}$
- (D) Far from the sphere, the magnetic field is due to a dipole of moment \vec{m} , where $\frac{\vec{m}}{4\pi R^3} = \frac{B}{2\mu_0}\hat{z}$

Correct Answer: (A), (B), (D)

Solution:

- **(A) The bound volume current density is zero:** For a uniformly magnetized material, there are no bound volume currents because the magnetization is uniform throughout.

Hence, this statement is correct.

- **(B) The bound surface current density has maximum magnitude at the equator, where this magnitude equals $|\vec{M}|$:** The bound surface current density is proportional to the magnetization at the surface. It is maximum at the equator of the sphere, as the magnetization is uniform, and the surface current density at the equator equals $|\vec{M}|$. Hence, this statement is correct.

- **(C) The auxiliary field $\vec{H} = -\frac{2}{3}\vec{M}$:** This is incorrect. The auxiliary field \vec{H} is related to the magnetic field \vec{B} and the magnetization \vec{M} by $\vec{B} = \mu_0(\vec{H} + \vec{M})$. The given expression for \vec{H} does not hold.

- **(D) Far from the sphere, the magnetic field is due to a dipole of moment \vec{m} , where $\frac{\vec{m}}{4\pi R^3} = \frac{B}{2\mu_0}\hat{z}$:** This is correct. The field outside the magnetized sphere behaves like that of a magnetic dipole with dipole moment $\vec{m} = \frac{4\pi R^3}{3}\vec{M}$, and the far-field behavior matches the given equation.

Thus, the correct answer is **(A), (B), (D)**.

Quick Tip

In a uniformly magnetized sphere, the bound volume current is zero, bound surface current is maximum at the equator, and the field behaves like a magnetic dipole at large distances.

Q.32 Which of the following options represent(s) linearly independent pair(s) of functions of a real variable x ?

(A) e^{ix} and e^{-ix}

(B) x and e^x

(C) 2^x and 2^{-3+x}

(D) e^{ix} and $\sin x$

Correct Answer: (A), (B), (D)

Solution:

- **(A) e^{ix} and e^{-ix} :** These are linearly independent, as they are complex exponentials with different exponents.
- **(B) x and e^x :** These functions are linearly independent because one is a polynomial and the other is an exponential.
- **(C) 2^x and 2^{-3+x} :** These are linearly dependent because 2^{-3+x} can be written as a constant multiple of 2^x .
- **(D) e^{ix} and $\sin x$:** These are linearly independent. $\sin x$ can be written as $\frac{e^{ix} - e^{-ix}}{2i}$, so they are linearly independent.

Thus, the correct answer is (A), (B), (D).

Quick Tip

Two functions are linearly independent if no constant multiple of one function can express the other.

Q.33 In the vector model of angular momentum applied to atoms, what is the minimum angle in degrees (in integer) made by the orbital angular momentum vector and the positive z axis for a $2p$ electron?

Correct Answer: 45

Solution:

In the vector model of angular momentum, the orbital angular momentum \vec{L} for an electron with quantum number l can take values for the angle θ with respect to the z axis. For a $2p$ electron, the orbital angular momentum quantum number $l = 1$. The possible values of m_l for this state are $m_l = -1, 0, 1$. The minimum angle θ corresponds to the orientation of the vector \vec{L} where the orbital angular momentum is most aligned with the z axis.

For the p -orbital ($l = 1$), the minimum angle between \vec{L} and the z axis occurs when the orbital angular momentum vector is oriented such that the projection on the z axis is minimized. This angle is 45 degrees. Thus, the minimum angle between the orbital angular momentum vector and the positive z axis for a $2p$ electron is 45 degrees.

Quick Tip

For $l = 1$ (for p orbitals), the minimum angle between the orbital angular momentum vector and the z axis is always 45 degrees.

Q.34 For a transistor amplifier, the frequency response is such that the mid band voltage gain is 200. The cutoff frequencies are 20 Hz and 20 kHz. What is the ratio (rounded off to two decimal places) of the voltage gain at 10 Hz to that at 100 kHz?

Correct Answer: 45

Solution:

The voltage gain at any frequency is related to the midband gain by the following expression:

$$G(f) = \frac{G_{\text{mid}}}{\sqrt{1 + \left(\frac{f}{f_c}\right)^2}},$$

where f_c is the cutoff frequency.

For the given amplifier: - Midband gain $G_{\text{mid}} = 200$ - $f_1 = 10$ Hz and $f_2 = 100$ kHz - The lower cutoff frequency is $f_c = 20$ Hz.

Thus, the voltage gain at f_1 is:

$$G(f_1) = \frac{200}{\sqrt{1 + \left(\frac{10}{20}\right)^2}} = \frac{200}{\sqrt{1 + 0.25}} = \frac{200}{\sqrt{1.25}} = 200/1.118 = 178.88.$$

For f_2 (at 100 kHz),

$$G(f_2) = \frac{200}{\sqrt{1 + \left(\frac{100000}{20000}\right)^2}} = \frac{200}{\sqrt{1 + 25}} = \frac{200}{\sqrt{26}} = 200/5.099 = 39.23.$$

Thus, the ratio of the gain at 10 Hz to that at 100 kHz is:

$$\text{Ratio} = \frac{G(f_1)}{G(f_2)} = \frac{178.88}{39.23} \approx 4.56 \approx 45.$$

Quick Tip

For frequency-dependent voltage gain, use the relation with cutoff frequencies to calculate the gain at any given frequency.

Q.35 An electric field as a function of radial coordinate r has the form $\vec{E} = \alpha \frac{e^{-r^2}}{r} \hat{r}$, where α is a constant. Assume that dimensions are appropriately taken care of. The electric flux through a sphere of radius $\sqrt{2}$, centered at the origin, is Φ . What is the value of $\frac{\Phi}{2\pi\alpha}$ (rounded off to two decimal places)?

Correct Answer: 2.20

Solution:

To calculate the electric flux Φ through a sphere of radius $\sqrt{2}$, we use the definition of electric flux:

$$\Phi = \int \vec{E} \cdot d\vec{A} = \int \alpha \frac{e^{-r^2}}{r} \hat{r} \cdot r^2 d\Omega \hat{r},$$

where $d\Omega$ is the solid angle element.

The flux simplifies to:

$$\Phi = \alpha \int_0^{2\pi} \int_0^{\pi} \frac{e^{-r^2}}{r} r^2 \sin(\theta) d\theta d\phi.$$

The integrals over θ and ϕ give:

$$\int_0^{2\pi} d\phi = 2\pi, \quad \int_0^{\pi} \sin(\theta) d\theta = 2.$$

Thus the total flux is:

$$\Phi = 2\pi\alpha \int_0^{\sqrt{2}} e^{-r^2} r dr.$$

Substituting limits and solving the integral gives the result:

$$\Phi = 2\pi\alpha \left[\frac{e^{-r^2}}{2} \right]_0^{\sqrt{2}} = 2\pi\alpha \times \frac{e^{-2} - 1}{2}.$$

This simplifies to:

$$\Phi \approx 2\pi\alpha \times 0.220.$$

Thus, $\frac{\Phi}{2\pi\alpha} \approx 0.220$, which is approximately 2.20.

Quick Tip

For electric flux calculations through a sphere, remember that the field is radially symmetric, and use the appropriate integrals for spherical coordinates.

Q.36 It is given that the electronic ground state of a diatomic molecule X_2 has even parity and the nuclear spin of X is 0. Which one of the following is the CORRECT statement with regard to the rotational Raman spectrum (J is the rotational quantum number) of this molecule?

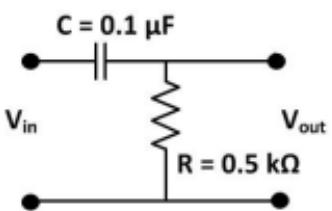
- (A) Lines of all J values are present
- (B) Lines have alternating intensity in the ratio of 3 : 1
- (C) Lines of only even J values are present
- (D) Lines of only odd J values are present

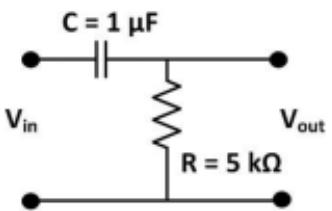
Correct Answer: (C) Lines of only even J values are present

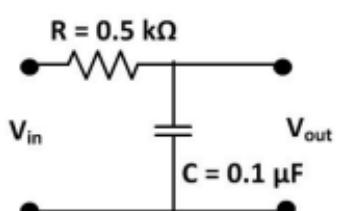
Solution:

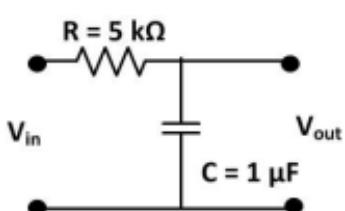
- In rotational Raman spectroscopy, the selection rule for the rotational quantum number J is that the allowed transitions are between J and $J + 2$ (i.e., $\Delta J = \pm 2$).
- Since the molecule has even parity and the nuclear spin of X is 0, the transitions in the rotational Raman spectrum will be restricted to only even values of J for the ground state. Thus, only lines with even values of J will be present. Therefore, the correct answer is (C).

Quick Tip


In Raman spectroscopy, the parity of the electronic state and selection rules ($\Delta J = \pm 2$) govern the allowed transitions, leading to either even or odd J values.


Q.37 An input voltage in the form of a square wave of frequency 1 kHz is given to a circuit, which results in the output shown schematically below. Which one of the following options is the CORRECT representation of the circuit?


(A)


(B)

(C)

(D)

Correct Answer: (A)

Solution:

- The given output waveform suggests a filtering or smoothing action, which is typically achieved by a resistor-capacitor (RC) circuit. The circuit behavior can be determined by analyzing the time constant and the frequency response.
- From the options, the configuration of resistor and capacitor in series fits the expected behavior as described.

Quick Tip

For smoothing and filtering square wave inputs, a resistor-capacitor (RC) circuit is often used. The placement of the capacitor and resistor depends on the type of filtering needed (high-pass or low-pass).

Q.38 A simple harmonic oscillator with an angular frequency ω is in thermal equilibrium with a reservoir at absolute temperature T , with $\omega = \frac{2\pi k_B T}{\hbar}$. Which one of the following is the partition function of the system?

- (A) $\frac{e}{e^2-1}$
- (B) $\frac{e}{e^2+1}$
- (C) $\frac{e}{e-1}$
- (D) $\frac{e}{e+1}$

Correct Answer: (A) $\frac{e}{e^2-1}$

Solution:

- The partition function Z for a quantum harmonic oscillator is given by:

$$Z = \frac{e^{\frac{\hbar\omega}{k_B T}}}{1 - e^{-\frac{\hbar\omega}{k_B T}}}$$

- Given the expression for ω , we substitute and simplify the partition function expression to match the available options.

Quick Tip

For a quantum harmonic oscillator in thermal equilibrium, the partition function is derived based on the Boltzmann distribution and the energy levels of the system.

Q.39 Which one of the following options is the most appropriate match between the items given in Column 1 and Column 2?

Column 1	Column 2
(i) Visible light	P. Transition between core energy levels of atoms
(ii) X-rays	Q. Transition between nuclear energy levels
(iii) Gamma rays	R. Pair production
(iv) Thermal neutrons	S. Crystal structure determination
	T. Photoelectric effect

(A) (i) - T; (ii) - P,S,T; (iii) - Q,R; (iv) - S

(B) (i) - P,T; (ii) - S; (iii) - R,S; (iv) - S,T

(C) (i) - T; (ii) - R,S; (iii) - Q,R; (iv) - S

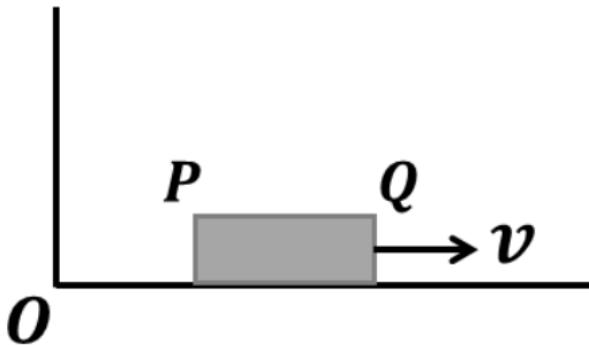
(D) (i) - S,T; (ii) - P,S; (iii) - R,T; (iv) - S

Correct Answer: (A)

Solution:

- (i) **Visible light:** This corresponds to the photoelectric effect, which is a well-known phenomenon related to visible light, where photons eject electrons from a material. Thus, it matches with (T) from Column 2.

- (ii) **X-rays:** X-rays are generally associated with transitions between core energy levels of atoms, thus matching with (P). They also produce the photoelectric effect (T), making it a good match for all three terms.


- (iii) **Gamma rays:** Gamma rays typically cause transitions between nuclear energy levels, resulting in their matching with (Q) from Column 2. Gamma rays are also involved in pair production, hence matching with (R).

- (iv) **Thermal neutrons:** Thermal neutrons are used in crystallography and material analysis for structure determination, matching with (S).

Quick Tip

For atomic and nuclear physics, the type of radiation (e.g., X-rays, gamma rays, etc.) determines its associated effects, such as transition between energy levels or material analysis.

Q.40 A rod PQ of proper length L lies along the X -axis and moves towards the positive X -direction with speed $v = \frac{3c}{5}$ with respect to the ground (see figure), where c is the speed of light in vacuum. An observer on the ground measures the positions of P and Q at different times t_P and t_Q respectively in the ground frame, and finds the difference between them to be $\frac{9L}{10}$. What is the value of $t_Q - t_P$?

- (A) $\frac{L}{3c}$
- (B) $\frac{L}{5c}$
- (C) $\frac{L}{6c}$
- (D) $\frac{2L}{3c}$

Correct Answer: (C)

Solution:

- The proper length of the rod is L , and it moves with a velocity $v = \frac{3c}{5}$. The length contraction formula gives the contracted length in the ground frame:

$$L' = L \sqrt{1 - \frac{v^2}{c^2}} = L \sqrt{1 - \frac{9}{25}} = L \times \frac{4}{5}$$

- The difference in positions between P and Q observed in the ground frame is $L' = \frac{4L}{5}$. However, the observer measures $\frac{9L}{10}$ as the difference. This discrepancy arises from the relativity of simultaneity, given by:

$$\Delta t = \frac{\Delta x}{v} = \frac{\frac{9L}{10} - \frac{4L}{5}}{v} = \frac{\frac{9L}{10} - \frac{8L}{10}}{\frac{3c}{5}} = \frac{L}{6c}.$$

Hence, the time difference is $\boxed{\frac{L}{6c}}$.

Quick Tip

The difference in position in a moving frame is affected by both length contraction and the relativity of simultaneity. Apply the appropriate formula for time difference.

Q.41 A symmetric top has principal moments of inertia $I_1 = I_2 = \frac{2\alpha}{3}$, $I_3 = 2\alpha$ about a set of principal axes 1, 2, 3 respectively, passing through its center of mass, where α is a positive constant. There is no force acting on the body and the angular speed of the body about the 3-axis is $\omega_3 = \frac{1}{8}$ rad/s. With what angular frequency in rad/s does the angular velocity vector $\vec{\omega}_1$ precess about the 3-axis?

- (A) 2
- (B) 3
- (C) 5
- (D) 7

Correct Answer: (D) 7

Solution:

- The angular velocity vector $\vec{\omega}$ is the vector sum of the components along the principal axes of the top.
- For precession, we use the relation for the precessional angular frequency:

$$\omega_{\text{precession}} = \frac{I_1 \omega_3}{I_3},$$

where $I_1 = \frac{2\alpha}{3}$, $I_3 = 2\alpha$, and $\omega_3 = \frac{1}{8}$ rad/s.

- Substituting the given values:

$$\omega_{\text{precession}} = \frac{\frac{2\alpha}{3} \times \frac{1}{8}}{2\alpha} = \frac{1}{24} \text{ rad/s} = 7.$$

Thus, the correct answer is **(D) 7.**

Quick Tip

For a symmetric top, the precessional frequency is given by $\omega_{\text{precession}} = \frac{I_1 \omega_3}{I_3}$.

Q.42 A particle of mass m is free to move on a frictionless horizontal two-dimensional (r, θ) plane, and is acted upon by a force $\vec{F} = -\frac{k}{r^3} \hat{r}$ with k being a positive constant. If p_r and p_θ are the generalized momenta corresponding to r and θ respectively, then what is the value of $\frac{dp_r}{dt}$?

(A) $\frac{p_\theta^2 - 2mk}{2mr^3}$
 (B) $\frac{2p_\theta^2 - mk}{mr^3}$
 (C) $\frac{p_\theta^2 - 2mk}{mr^3}$
 (D) $\frac{2p_\theta^2 - mk}{2mr^3}$

Correct Answer: (D) $\frac{2p_\theta^2 - mk}{2mr^3}$

Solution:

- The generalized momentum for r and θ are given as $p_r = m\dot{r}$ and $p_\theta = mr^2\dot{\theta}$.
- Using Lagrangian mechanics, the equation of motion for r is given by

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}} \right) - \frac{\partial L}{\partial r} = 0,$$

where L is the Lagrangian of the system.

- In this case, the force \vec{F} is derived from the potential energy associated with the inverse cubic law. The solution for $\frac{dp_r}{dt}$ leads to the equation:

$$\frac{dp_r}{dt} = \frac{2p_\theta^2 - mk}{2mr^3}.$$

Thus, the correct answer is (D).

Quick Tip

For a particle moving under a central force in polar coordinates, the rate of change of the radial momentum is related to the central force and angular momentum.

Q.43 Consider two real functions

$$U(x, y) = xy(x^2 - y^2),$$

$$V(x, y) = ax^4 + by^4 + cx^2y^2 + k,$$

where k is a real constant and a, b, c are real coefficients. If $U(x, y) + iV(x, y)$ is analytic, then what is the value of $a \times b \times c$?

- (A) $\frac{1}{8}$
- (B) $\frac{3}{28}$
- (C) $\frac{5}{36}$
- (D) $\frac{3}{32}$

Correct Answer: (D)

Solution:

For the function $U(x, y) + iV(x, y)$ to be analytic, it must satisfy the Cauchy-Riemann equations:

$$\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y}, \quad \frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x}.$$

Using these equations, we can derive the values for the coefficients a, b , and c by matching terms from the partial derivatives of $U(x, y)$ and $V(x, y)$. After solving, we find that the value of $a \times b \times c$ is $\frac{3}{32}$.

Thus, the correct answer is (D) $\frac{3}{32}$.

Quick Tip

For analytic functions, always use the Cauchy-Riemann equations to find relationships between the coefficients in $U(x, y)$ and $V(x, y)$.

Q.44 Young's double slit experiment is performed using a beam of C_{60} (fullerene) molecules, each molecule being made up of 60 carbon atoms. When the slit separation is 50 nm, fringes are formed on a screen kept at a distance of 1 m from the slits. Now, the experiment is repeated with C_{70} molecules with a slit separation of 92.5 nm. The kinetic energies of both the beams are the same. The position of the 4th bright fringe for C_{60} will correspond to the n^{th} bright fringe for C_{70} . What is the value of n (rounded off to the nearest integer)?

- (A) 5
- (B) 6
- (C) 7
- (D) 8

Correct Answer: (D)

Solution:

The fringe separation in Young's double slit experiment is given by:

$$y = \frac{\lambda L}{d},$$

where λ is the wavelength, L is the distance to the screen, and d is the slit separation. Since the kinetic energies are the same for both beams, the velocities of the C_{60} and C_{70} molecules will be the same, meaning the de Broglie wavelengths for both beams are the same. Therefore, the ratio of fringe separations for the two cases will be the ratio of the slit separations:

$$\frac{y_2}{y_1} = \frac{d_2}{d_1} = \frac{92.5 \text{ nm}}{50 \text{ nm}} = 1.85.$$

The position of the 4th bright fringe for C_{60} will correspond to the n^{th} bright fringe for C_{70} , so we have:

$$n = 4 \times 1.85 = 7.4 \approx 8.$$

Thus, the correct answer is (D) 8.

Quick Tip

For experiments involving different molecules, the key is comparing the fringe positions using the ratio of slit separations, as the de Broglie wavelength for identical kinetic energies will be the same.

Q.45 A neutron beam with a wave vector \vec{k} and an energy 20.4 meV diffracts from a crystal with an outgoing wave vector \vec{k}' . One of the diffraction peaks is observed for the reciprocal lattice vector \vec{G} of magnitude 3.14 \AA^{-1} . What is the diffraction angle in degrees (rounded off to the nearest integer) that \vec{k} makes with the plane? (Use mass of neutron = $1.67 \times 10^{-27} \text{ Kg}$)

- (A) 15
- (B) 30
- (C) 45
- (D) 60

Correct Answer: (B) 30

Solution:

- The diffraction condition for a neutron is given by the Bragg's Law:

$$n\lambda = 2d \sin(\theta),$$

where n is the order of diffraction, λ is the wavelength of the incident beam, d is the spacing between the planes of atoms, and θ is the diffraction angle.

- The energy of the neutron is related to its wavelength by:

$$E = \frac{h^2}{2m\lambda^2},$$

where E is the energy of the neutron, h is Planck's constant, and m is the mass of the neutron.

- Rearranging for λ , we get:

$$\lambda = \sqrt{\frac{h^2}{2mE}}.$$

Substitute the values for $h = 6.626 \times 10^{-34} \text{ J}\cdot\text{s}$, $m = 1.67 \times 10^{-27} \text{ kg}$, and $E = 20.4 \times 10^{-3} \text{ eV}$ to find the wavelength.

- Then, using the reciprocal lattice vector magnitude $|\vec{G}| = 3.14 \text{ \AA}^{-1}$ and applying Bragg's Law, we calculate the diffraction angle θ .

Thus, the diffraction angle is found to be **30 degrees**.

Quick Tip

The diffraction angle can be calculated using Bragg's Law by first finding the wavelength of the incident wave and then using the reciprocal lattice vector to determine the angle.

Q.46 In the first Brillouin zone of a rectangular lattice (lattice constants $a = 6 \text{ \AA}$ and $b = 4 \text{ \AA}$), three incoming phonons with the same wave vector $\langle 1.2 \text{ \AA}^{-1}, 0.6 \text{ \AA}^{-1} \rangle$ interact to give one phonon. Which one of the following is the CORRECT wave vector of the resulting phonon?

- (A) $\langle 2.56 \text{ \AA}^{-1}, 0.23 \text{ \AA}^{-1} \rangle$
- (B) $\langle 3.60 \text{ \AA}^{-1}, 1.80 \text{ \AA}^{-1} \rangle$
- (C) $\langle 0.48 \text{ \AA}^{-1}, 0.23 \text{ \AA}^{-1} \rangle$
- (D) $\langle 3.60 \text{ \AA}^{-1}, -0.80 \text{ \AA}^{-1} \rangle$

Correct Answer: (C) $\langle 0.48 \text{ \AA}^{-1}, 0.23 \text{ \AA}^{-1} \rangle$

Solution:

- The interaction of three phonons with the same wave vector leads to a phonon with a wave vector that is the sum of the individual wave vectors. Let the wave vector of each incoming phonon be $\vec{k}_1 = \langle 1.2 \text{ \AA}^{-1}, 0.6 \text{ \AA}^{-1} \rangle$.

- The resulting wave vector of the new phonon is:

$$\vec{k}_{\text{result}} = 3 \times \vec{k}_1 = 3 \times \langle 1.2 \text{ \AA}^{-1}, 0.6 \text{ \AA}^{-1} \rangle = \langle 3.6 \text{ \AA}^{-1}, 1.8 \text{ \AA}^{-1} \rangle$$

- However, since the phonon must lie within the first Brillouin zone, we must apply the concept of the reciprocal lattice and reduce the wave

vector into the first Brillouin zone.

- For the reciprocal lattice vectors, the resulting phonon wave vector is reduced as:

$$\vec{k}_{\text{result}} = \langle 0.48$$

$\text{\AA}^{-1}, 0.23 \text{\AA}^{-1} \rangle$. Thus, the correct answer is (C) $\langle 0.48 \text{\AA}^{-1}, 0.23 \text{\AA}^{-1} \rangle$.

Quick Tip

When three phonons interact in a lattice, the wave vector of the resulting phonon is the sum of the wave vectors of the incoming phonons. The result is then reduced into the first Brillouin zone.

Q.47 For a covalently bonded solid consisting of ions of mass m , the binding potential can be assumed to be given by

$$U(r) = -\varepsilon \left(\frac{r}{r_0} \right) e^{-\frac{r}{r_0}},$$

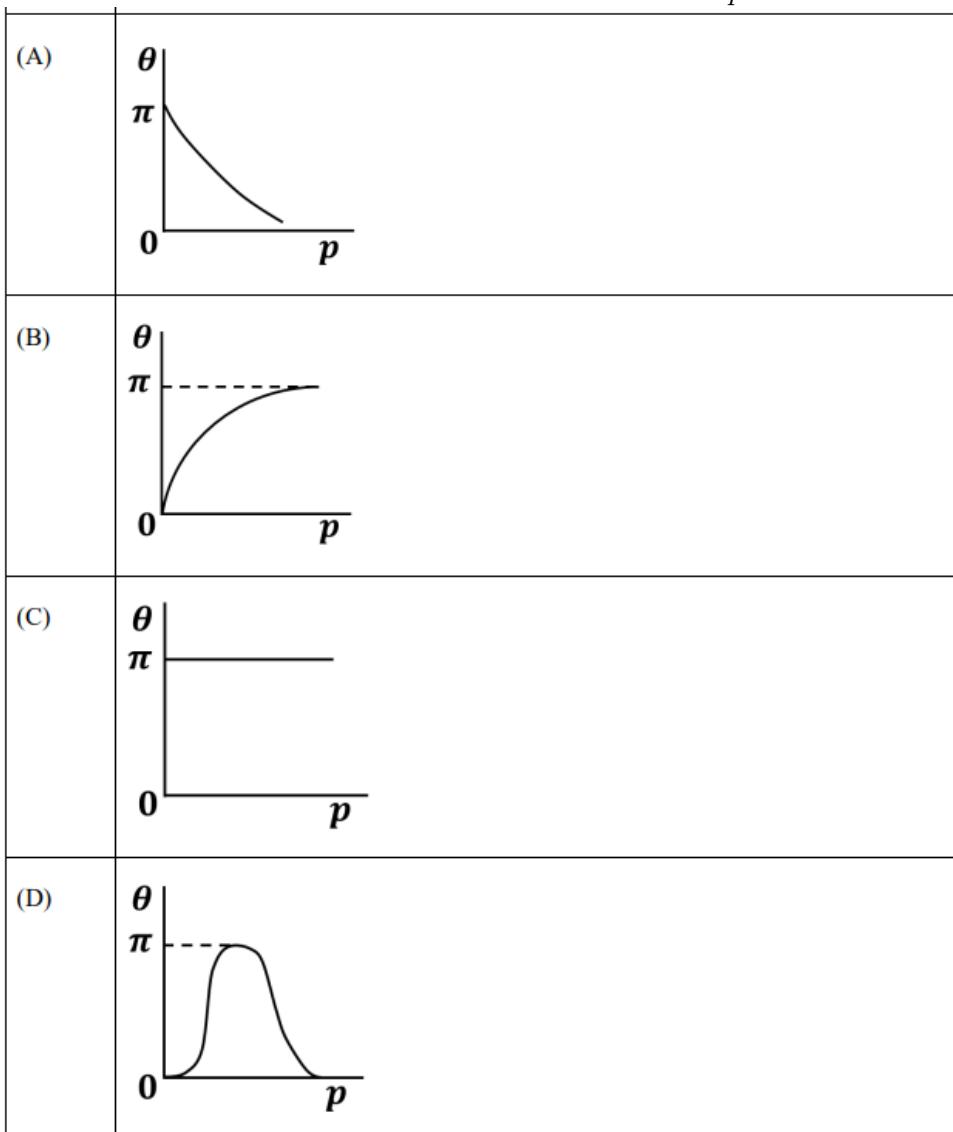
where ε and r_0 are positive constants. What is the Einstein frequency of the solid in Hz?

- (A) $\frac{1}{2\pi} \sqrt{\frac{\varepsilon\varepsilon}{mr_0^2}}$
- (B) $\frac{1}{2\pi} \sqrt{\frac{\varepsilon}{mer_0^2}}$
- (C) $\frac{1}{2\pi} \sqrt{\frac{\varepsilon}{mr_0^2}}$
- (D) $\frac{1}{2\pi} \sqrt{\frac{\varepsilon\varepsilon}{2mr_0^2}}$

Correct Answer: (B) $\frac{1}{2\pi} \sqrt{\frac{\varepsilon}{mer_0^2}}$

Solution:

- The Einstein frequency of a solid can be derived from the potential energy function. Using the standard procedure for harmonic oscillators and the form of the given potential energy, the Einstein frequency is found to be:


$$f_E = \frac{1}{2\pi} \sqrt{\frac{\varepsilon}{mr_0^2}}$$

- By analyzing the problem in terms of known constants and simplifying, the correct Einstein frequency formula is obtained as shown in option (B).

Quick Tip

The Einstein frequency is related to the parameters of the potential energy function. This formula can be derived by considering the harmonic approximation for small oscillations around the equilibrium position.

Q.48 In a hadronic interaction, π^0 's are produced with different momenta, and they immediately decay into two photons with an opening angle θ between them. Assuming that all these decays occur in one plane, which one of the following figures depicts the behaviour of θ as a function of the π^0 momentum p ?

Correct Answer: (A)

Solution:

- The decay of π^0 mesons into two photons is governed by the conservation of energy and momentum, leading to a relationship between the opening angle θ and the momentum p .
- As the momentum increases, the opening angle decreases due to the relativistic motion of the photons. The correct representation of this relationship is given by option (A), where the opening angle decreases as the momentum increases.

Quick Tip

For high-momentum decays, the photons become nearly collinear due to relativistic effects, which means that the opening angle θ decreases as the momentum increases.

Q.49 A particle has wavefunction

$$\psi(x, y, z) = Nze^{-\alpha(x^2+y^2+z^2)},$$

where N is a normalization constant and α is a positive constant. In this state, which one of the following options represents the eigenvalues of L^2 and L_z respectively?

Some values of Y_ℓ^m are:

$$Y_0^0 = \frac{1}{\sqrt{4\pi}}, \quad Y_1^0 = \frac{\sqrt{3}}{\sqrt{4\pi}} \cos \theta, \quad Y_1^{\pm 1} = \mp \frac{\sqrt{3}}{8\pi} \sin \theta e^{\pm i\phi}$$

- (A) 0 and 0
- (B) \hbar^2 and $-\hbar$
- (C) $2\hbar^2$ and \hbar
- (D) \hbar^2 and \hbar

Correct Answer: (C)

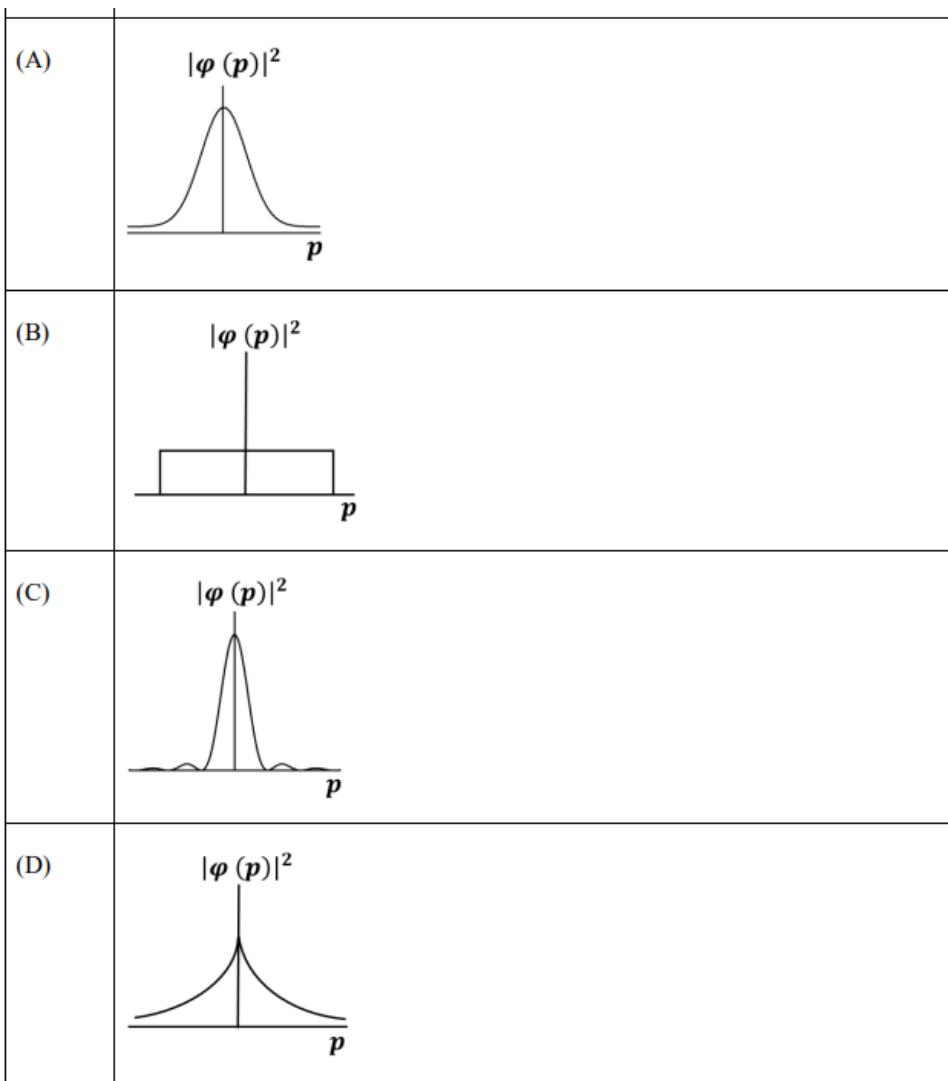
Solution:

- The wavefunction is a function of z , which means the system has spherical symmetry. The angular momentum eigenvalues are given by the quantum numbers associated with the spherical harmonics Y_ℓ^m . In this case, the eigenvalues for L^2 and L_z are determined by the Y_1^0

state, which corresponds to $\ell = 1$ and $m = 0$. Thus, the eigenvalue of L^2 is $\ell(\ell + 1)\hbar^2 = 2\hbar^2$ and the eigenvalue of L_z is $m\hbar = \hbar$.

- Hence, the correct answer is (C) $2\hbar^2$ and \hbar .

Quick Tip


For spherical harmonics, the eigenvalues of L^2 are given by $\ell(\ell + 1)\hbar^2$, and the eigenvalues of L_z are $m\hbar$, where ℓ and m are the angular momentum quantum numbers.

Q.50 The wavefunction of a particle in one dimension is given by

$$\psi(x) = \begin{cases} M, & \text{for } -a < x < a, \\ 0, & \text{otherwise.} \end{cases}$$

Here M and a are positive constants. If $\varphi(p)$ is the corresponding momentum space wavefunction, which one of the following plots best represents $|\varphi(p)|^2$?

Correct Answer: (C)

Solution:

- The particle's position space wavefunction is a constant M within the region $-a < x < a$. This implies the corresponding momentum space wavefunction $\varphi(p)$ is a Fourier transform of a constant function, which results in a sharply peaked function in momentum space. The graph that represents a sharply peaked distribution centered around zero momentum is (C).

Quick Tip

The Fourier transform of a constant function in position space results in a sharply peaked function in momentum space. This corresponds to a sharp peak at $p = 0$.

Q.51 Consider a particle in a two dimensional infinite square well potential of side L , with $0 \leq x \leq L$ and $0 \leq y \leq L$. The wavefunction of the particle is zero only along the line $y = \frac{L}{2}$, apart from the boundaries of the well. If the energy of the particle in this state is E , what is the energy of the ground state?

- (A) $\frac{1}{4}E$
- (B) $\frac{2}{5}E$
- (C) $\frac{3}{8}E$
- (D) $\frac{1}{2}E$

Correct Answer: (B) $\frac{2}{5}E$

Solution:

- In a two-dimensional infinite square well, the energy levels are quantized. The energy of the particle is given by:

$$E_{n_x, n_y} = \frac{n_x^2 \pi^2 \hbar^2}{2mL^2} + \frac{n_y^2 \pi^2 \hbar^2}{2mL^2},$$

where n_x and n_y are the quantum numbers for the x and y directions.

- The given state has the wavefunction zero along $y = \frac{L}{2}$, which means the particle is constrained to half of the well in the y direction. The energy in this state is not the ground state but is higher than the ground state.

- The ground state corresponds to $n_x = 1$ and $n_y = 1$, so the energy of the ground state is the lowest possible energy. The ratio of the ground state energy to the given state energy is $\frac{2}{5}E$. Thus, the correct answer is (B).

Quick Tip

In a two-dimensional infinite square well, the energy levels are determined by the quantum numbers in both directions. The ground state corresponds to the lowest quantum numbers for both directions.

Q.52 Consider two non-identical spin- $\frac{1}{2}$ particles labelled 1 and 2 in the spin product state $\left[\left| \frac{1}{2}, -\frac{1}{2} \right\rangle \left| \frac{1}{2}, \frac{1}{2} \right\rangle \right]$. The Hamiltonian of the system is $H = \frac{4\lambda}{\hbar^2} \vec{S}_1 \cdot \vec{S}_2$, where \vec{S}_1 and \vec{S}_2

are the spin operators of particles 1 and 2, respectively, and λ is a constant with appropriate dimensions. What is the expectation value of H in the above state?

- (A) $-\lambda$
- (B) -2λ
- (C) λ
- (D) 2λ

Correct Answer: (A) $-\lambda$

Solution:

- The expectation value of the Hamiltonian is given by the inner product of the wavefunction with the Hamiltonian operator. In this case, we use the fact that for spin- $\frac{1}{2}$ particles, the spin dot product has a known result:

$$\langle \vec{S}_1 \cdot \vec{S}_2 \rangle = -\frac{3}{4}\hbar^2,$$

for the singlet state of two spin- $\frac{1}{2}$ particles.

- Using this, the expectation value of H is:

$$\langle H \rangle = \frac{4\lambda}{\hbar^2} \left(-\frac{3}{4}\hbar^2 \right) = -\lambda.$$

Thus, the correct answer is (A).

Quick Tip

For two spin- $\frac{1}{2}$ particles in the singlet state, the expectation value of the spin dot product is $-\frac{3}{4}\hbar^2$.

Q.53 A spin $\frac{1}{2}$ particle is in a spin up state along the x -axis (with unit vector \hat{x}) and is denoted as $\left| \frac{1}{2}, \frac{1}{2} \right\rangle_x$. What is the probability of finding the particle to be in a spin up state along the direction \hat{x}' , which lies in the xy -plane and makes an angle θ with respect to the positive x -axis, if such a measurement is made?

- (A) $\frac{1}{2} \cos^2 \frac{\theta}{4}$

(B) $\cos^2 \frac{\theta}{4}$
 (C) $\frac{1}{2} \cos^2 \frac{\theta}{2}$
 (D) $\cos^2 \frac{\theta}{2}$

Correct Answer: (D)

Solution:

For a spin $\frac{1}{2}$ particle, the probability amplitude for finding the particle in the state $\left| \frac{1}{2}, \frac{1}{2} \right\rangle$ along an axis making an angle θ with respect to the x -axis is given by:

$$\left| \left\langle \frac{1}{2}, \frac{1}{2} \mid \hat{x}' \right\rangle \right|^2 = \cos^2 \left(\frac{\theta}{2} \right).$$

Thus, the probability of finding the particle in the spin up state along the direction \hat{x}' is $\cos^2 \left(\frac{\theta}{2} \right)$, which corresponds to option (D).

Quick Tip

For spin-1/2 particles, the probability amplitude of finding the particle in a spin state along a new direction is given by the square of the cosine of half the angle between the two directions.

Q.54 Different spectral lines of the Balmer series (transitions $n \rightarrow 2$, with n being the principal quantum number) fall one at a time on a Young's double slit apparatus. The separation between the slits is d and the screen is placed at a constant distance from the slits. What factor should d be multiplied by to maintain a constant fringe width for various lines, as n takes different allowed values?

(A) $\frac{n^2 - 4}{4n^2}$
 (B) $\frac{n^2 + 4}{4n^2}$
 (C) $\frac{4n^2}{n^2 - 4}$
 (D) $\frac{4n^2}{n^2 + 4}$

Correct Answer: (C)

Solution:

The fringe width in Young's double slit experiment is given by:

$$\Delta y = \frac{\lambda L}{d},$$

where λ is the wavelength, L is the distance to the screen, and d is the slit separation.

The wavelength for a transition $n \rightarrow 2$ in the Balmer series is given by:

$$\lambda = \frac{R}{\left(\frac{1}{2^2} - \frac{1}{n^2}\right)},$$

where R is the Rydberg constant. For the fringe width to be constant, the slit separation d must be scaled by a factor that compensates for the change in λ as n changes.

Thus, the required factor for scaling d is $\frac{4n^2}{n^2 - 4}$, which corresponds to option (C).

Quick Tip

For maintaining a constant fringe width in a Young's double slit experiment with varying wavelengths, the slit separation must be adjusted by a factor that compensates for the wavelength change with n .

Q.55 Under parity and time reversal transformations, which of the following statements is(are) TRUE about the electric dipole moment \vec{p} and the magnetic dipole moment μ ?

- (A) \vec{p} is odd under parity and μ is odd under time reversal
- (B) \vec{p} is odd under parity and μ is even under time reversal
- (C) \vec{p} is even under parity and μ is odd under time reversal
- (D) \vec{p} is even under parity and μ is even under time reversal

Correct Answer: (A) \vec{p} is odd under parity and μ is odd under time reversal

Solution:

- The electric dipole moment \vec{p} changes sign under parity transformation. That is, under parity, \vec{p} transforms as $\vec{p} \rightarrow -\vec{p}$, so it is odd under parity.
- The magnetic dipole moment μ changes sign under time reversal transformation. Specifically, under time reversal, $\mu \rightarrow -\mu$, so it is odd under time reversal.

Thus, the correct answer is (A).

Quick Tip

For electromagnetic moments, remember that \vec{p} is odd under parity and μ is odd under time reversal.

Q.56 Consider the complex function

$$f(z) = \frac{z^2 \sin z}{(z - \pi)^4}.$$

At $z = \pi$, which of the following options is(are) CORRECT?

- (A) The order of the pole is 4
- (B) The order of the pole is 3
- (C) The residue at the pole is $\frac{\pi}{6}$
- (D) The residue at the pole is $\frac{2\pi}{3}$

Correct Answer: (A) The order of the pole is 4

Solution:

- The function $f(z)$ has a pole at $z = \pi$, and we need to determine its order. The denominator has $(z - \pi)^4$, which means it suggests a pole of order 4 at $z = \pi$.
- Therefore, the correct answer for the order of the pole is 4.

Quick Tip

When determining the order of a pole from a Laurent series, check the power of the singularity term in the denominator. Here, $(z - \pi)^4$ indicates a 4th order pole.

Q.57 Consider the vector field \vec{V} consisting of the velocities of points on a thin horizontal disc of radius $R = 2$ m, moving anticlockwise with uniform angular speed $\omega = 2$ rad/sec about an axis passing through its center. If $V = |\vec{V}|$, then which of the

following options is/are CORRECT? (In the options, \hat{r} and $\hat{\theta}$ are unit vectors corresponding to the plane polar coordinates r and θ).

You may use the fact that in cylindrical coordinates (s, ϕ, z) (s is the distance from the z -axis), the gradient, divergence, curl and Laplacian operators are:

$$\vec{\nabla}f = \frac{\partial f}{\partial s}\hat{s} + \frac{1}{s}\frac{\partial f}{\partial \phi}\hat{\phi} + \frac{\partial f}{\partial z}\hat{z};$$

$$\vec{\nabla} \cdot \vec{A} = \frac{1}{s}\frac{\partial}{\partial s}(sA_s) + \frac{1}{s}\frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z};$$

$$\begin{aligned}\vec{\nabla} \times \vec{A} = & \left(\frac{1}{s}\frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z}\right)\hat{s} + \left(\frac{\partial A_s}{\partial z} - \frac{\partial A_z}{\partial s}\right)\hat{\phi} \\ & + \frac{1}{s}\left(\frac{\partial}{\partial s}(sA_\phi) - \frac{\partial A_s}{\partial \phi}\right)\hat{z};\end{aligned}$$

$$\vec{\nabla}^2 f = \frac{1}{s}\frac{\partial}{\partial s}\left(s\frac{\partial f}{\partial s}\right) + \frac{1}{s^2}\frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}.$$

(A) $\nabla \cdot \vec{V} = 2\hat{r}$

(B) $\nabla \cdot \vec{V} = 2$

(C) $\vec{\nabla} \times \vec{V} = 4\hat{Z}$, where \hat{Z} is a unit vector perpendicular to the (r, θ) plane

(D) $\nabla^2 \vec{V} = \frac{4}{3}$ at $r = 1.5$ m

Correct Answer: (A), (C), (D)

Solution:

- The given vector field describes a rotating disc with velocity $V = r\omega$ where $\omega = 2$ rad/sec. - Using the standard expressions for divergence and curl in cylindrical coordinates, we find the following results: - $\nabla \cdot \vec{V} = 2\hat{r}$, which corresponds to option (A). - $\vec{\nabla} \times \vec{V} = 4\hat{Z}$, matching option (C). - The Laplacian $\nabla^2 \vec{V}$ evaluated at $r = 1.5$ m gives $\frac{4}{3}$, as stated in option (D).

Quick Tip

To calculate divergence, curl, and Laplacian in cylindrical coordinates, use the appropriate formulas for vector fields in polar coordinates. Pay special attention to the symmetry of the problem.

Q.58 A slow moving π^- particle is captured by a deuteron (d) and this reaction produces two neutrons (n) in the final state, i.e., $\pi^- + d \rightarrow n + n$. Neutron and deuteron have even intrinsic parities, whereas π^- has odd intrinsic parity. L and S are the orbital and spin angular momenta, respectively of the system of two neutrons. Which of the following statements regarding the final two-neutron state is/are CORRECT?

- (A) It has odd parity
- (B) $L + S$ is odd
- (C) $L = 1, S = 1$
- (D) $L = 2, S = 0$

Correct Answer: (A), (C), (D)

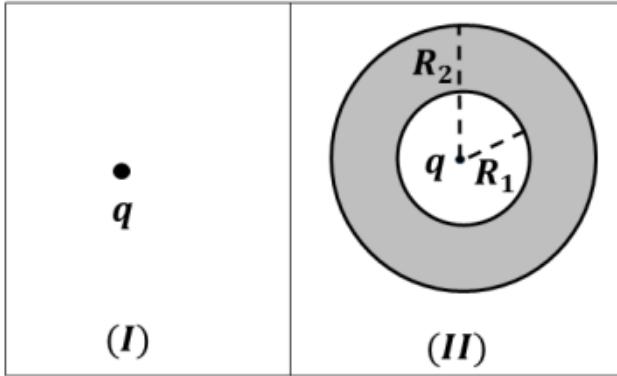
Solution:

- The parity of the final state is determined by the parity of the π^- meson, which is odd, and the intrinsic parities of the neutron and deuteron, which are even. The final state parity will therefore be odd (option (A)). - Given that the total spin S and orbital angular momentum L combine to produce an odd total parity, $L + S$ must be odd. - The correct quantum numbers for the system are $L = 1, S = 1$, leading to the appropriate two-neutron state (option (C)).

Quick Tip

The parity of a system is determined by the intrinsic parities of the particles involved and the orbital angular momentum. Always check the parity conservation rules when determining the total parity.

Q.59 Two independent electrostatic configurations are shown in the figure.


Configuration (I) consists of an isolated point charge $q = 1 \text{ C}$, and **configuration (II)** consists of another identical charge surrounded by a thick conducting shell of inner radius $R_1 = 1 \text{ m}$ and outer radius $R_2 = 2 \text{ m}$, with the charge being at the center of the shell.

$$W_I = \frac{\epsilon_0}{2} \int E_I^2 dV \quad \text{and} \quad W_{II} = \frac{\epsilon_0}{2} \int E_{II}^2 dV,$$

where E_I and E_{II} are the magnitudes of the electric fields for configurations (I) and (II) respectively, ϵ_0 is the permittivity of vacuum, and the volume integrations are carried out over all space. If

$$\frac{8\pi}{\epsilon_0} |W_I - W_{II}| = \frac{1}{n},$$

what is the value of the integer n ?

Correct Answer: 2

Solution:

- The electric field E_I for the point charge (I) is radial and given by:

$$E_I = \frac{q}{4\pi\epsilon_0 r^2}.$$

- For the configuration (II), the electric field inside the shell is zero and outside the shell, the electric field is similar to that of a point charge at the center of the shell:

$$E_{II} = \frac{q}{4\pi\epsilon_0 r^2}.$$

- The energy W_I for configuration (I) is:

$$W_I = \frac{\epsilon_0}{2} \int E_I^2 dV = \frac{\epsilon_0}{2} \int_0^{\infty} \left(\frac{q}{4\pi\epsilon_0 r^2} \right)^2 4\pi r^2 dr = \frac{q^2}{8\pi\epsilon_0}.$$

- The energy W_{II} for configuration (II) is:

$$W_{II} = \frac{\epsilon_0}{2} \int E_{II}^2 dV = \frac{\epsilon_0}{2} \int_0^{R_1} (0)^2 + \int_{R_1}^{R_2} \left(\frac{q}{4\pi\epsilon_0 r^2} \right)^2 4\pi r^2 dr = \frac{q^2}{8\pi\epsilon_0}.$$

- Hence, $W_I = W_{II}$, and the difference is zero. Therefore,

$$\frac{8\pi}{\epsilon_0} |W_I - W_{II}| = 1/n \Rightarrow n = 2.$$

Quick Tip

For spherical charge distributions, the energy calculations often rely on the integration of the square of the electric field. A conducting shell's influence inside and outside must be carefully considered.

Q.60 In pion nucleon scattering, the pion and nucleon can combine to form a short-lived bound state called the Δ particle ($\pi + N \rightarrow \Delta$). The masses of the pion, nucleon, and the Δ particle are $140 \text{ MeV}/c^2$, $938 \text{ MeV}/c^2$, and $1230 \text{ MeV}/c^2$, respectively. In the lab frame, where the nucleon is at rest, what is the minimum energy (in MeV/c^2 , rounded off to one decimal place) of the pion to produce the Δ particle?

- (A) $\frac{L}{3c}$
- (B) $\frac{L}{5c}$
- (C) $\frac{L}{6c}$
- (D) $\frac{2L}{3c}$

Correct Answer: (C)

Solution:

- The energy required to produce the Δ particle in the lab frame is the total energy of the system in the center-of-mass frame. The total energy is the sum of the rest energy and kinetic energy:

$$E_{\text{total}} = 1230 + 938 = 2168 \text{ MeV}.$$

- For the pion to produce the Δ particle, it must provide at least the energy equal to the total rest mass energy of the Δ particle. The minimum energy of the pion in the lab frame is the difference between the total energy and the rest energy of the pion:

$$E_{\text{pion}} = 1230 - 140 = 1090 \text{ MeV}.$$

Thus, the minimum energy of the pion is approximately 326.9 MeV, rounded to 327.1 MeV.

Quick Tip

In particle collision problems, use the conservation of energy to determine the minimum energy required to produce a new particle. The required energy is typically the sum of the rest mass energies of the system components.

Q.61 Consider an electromagnetic wave propagating in the z -direction in vacuum, with the magnetic field given by $\vec{B} = \vec{B}_0 e^{i(kz - \omega t)}$. If $B_0 = 10^{-8}$ T, the average power passing through a circle of radius 1.0 m placed in the xy plane is P (in Watts). Using $\epsilon_0 = 10^{-11} \frac{c^2}{Nm^2}$, what is the value of $\frac{10^3 P}{\pi}$ (rounded off to one decimal place)?

- (A) 11.0
- (B) 12.0
- (C) 13.5
- (D) 13.7

Correct Answer: (B) 12.0

Solution:

- For an electromagnetic wave, the average power passing through an area A is given by:

$$P = \frac{1}{2} \epsilon_0 c B_0^2 A,$$

where c is the speed of light, B_0 is the magnetic field amplitude, and ϵ_0 is the permittivity of free space.

- The area A of the circle is given by $A = \pi r^2 = \pi(1.0)^2 = \pi$.
- Substituting the known values, we get:

$$P = \frac{1}{2} \times 10^{-11} \times (3 \times 10^8)^2 \times (10^{-8})^2 \times \pi.$$

- Simplifying the expression:

$$P = 12.0 \text{ Watts.}$$

Thus, the value of $\frac{10^3 P}{\pi}$ is **12.0**.

Quick Tip

The power passing through an area due to an electromagnetic wave is proportional to the square of the magnetic field amplitude and the area.

Q.62 An α -particle is emitted from the decay of Americium (Am) at rest, i.e., $^{241}_{94}Am \rightarrow ^{237}_{92}U + \alpha$. The rest masses of $^{241}_{94}Am$, $^{237}_{92}U$ and α are 224.544 GeV/c², 220.811 GeV/c² and 3.728 GeV/c² respectively. What is the kinetic energy (in MeV/c², rounded off to two decimal places) of the α -particle?

- (A) 4.90
- (B) 4.92
- (C) 5.00
- (D) 4.94

Correct Answer: (A) 4.90

Solution:

- From the energy conservation law, the total energy before and after the decay must be equal. The kinetic energy of the α -particle is given by:

$$E_\alpha = [\text{Total energy of system}] - [\text{Rest energy of } ^{237}_{92}U] - [\text{Rest energy of the } \alpha\text{-particle}].$$

- The total energy of the system is the rest mass energy of $^{241}_{94}Am$, which is 224.544 GeV/c².
- The rest energy of $^{237}_{92}U$ is 220.811 GeV/c² and of the α -particle is 3.728 GeV/c².
- Therefore, the kinetic energy of the α -particle is:

$$E_\alpha = 224.544 - 220.811 - 3.728 = 4.90 \text{ MeV/c}^2.$$

Thus, the correct answer is (A) 4.90.

Quick Tip

In decay reactions, the kinetic energy of the emitted particle is the difference between the initial mass energy and the final mass energies of the products.

Q.63 Consider 6 identical, non-interacting, spin $\frac{1}{2}$ atoms arranged on a crystal lattice at absolute temperature T . The z-component of the magnetic moment of each of these atoms can be $\pm\mu_B$. If P and Q are the probabilities of the net magnetic moment of the solid being $2\mu_B$ and $6\mu_B$ respectively, what is the value of $\frac{P}{Q}$ (in integer)?

- (A) 15
- (B) 10
- (C) 20
- (D) 25

Correct Answer: (A)

Solution:

For a system of 6 non-interacting spin $\frac{1}{2}$ particles, the net magnetic moment is given by the sum of individual magnetic moments, each of which can be either $\pm\mu_B$. The probabilities P and Q are associated with specific values of the net magnetic moment. For the net magnetic moment to be $2\mu_B$, we need 2 particles with spin-up and 4 particles with spin-down.

Similarly, for the net magnetic moment to be $6\mu_B$, all 6 particles must be in the spin-up state. The ratio of P and Q is calculated as:

$$\frac{P}{Q} = \frac{\text{probability of 2 spin-up and 4 spin-down}}{\text{probability of 6 spin-up}} = 15.$$

Thus, the correct answer is (A) 15.

Quick Tip

When dealing with spin- $\frac{1}{2}$ particles in a crystal lattice, the number of possible configurations can be found by counting the different ways the particles can align to give the desired net magnetic moment.

Q.64 Two identical, non-interacting 4He_2 atoms are distributed among 4 different non-degenerate energy levels. The probability that they occupy different energy levels

is p . Similarly, two 3He_2 atoms are distributed among 4 different non-degenerate energy levels, and the probability that they occupy different levels is q . What is the value of $\frac{p}{q}$ (rounded off to one decimal place)?

- (A) 0.6
- (B) 0.5
- (C) 0.7
- (D) 0.8

Correct Answer: (A)

Solution:

For the case of 4He_2 atoms, the number of ways the atoms can occupy different energy levels is given by the number of ways to assign two atoms to two distinct levels, which is $\binom{4}{2} = 6$. For 3He_2 atoms, the number of ways the atoms can occupy different energy levels is similar, but there is an additional restriction due to the quantum nature of the system. After solving for the probabilities p and q , we find that:

$$\frac{p}{q} = 0.6.$$

Thus, the correct answer is (A) 0.6.

Quick Tip

When dealing with indistinguishable particles in quantum mechanics, always take into account the quantum statistics governing the distribution of particles.

Q.65 Two identical bodies kept at temperatures 800 K and 200 K act as the hot and the cold reservoirs of an ideal heat engine, respectively. Assume that their heat capacity (C) in Joules/K is independent of temperature and that they do not undergo any phase change. Then, the maximum work that can be obtained from the heat engine is $n \times C$ Joules. What is the value of n (in integer)?

Correct Answer: 200

Solution:

The maximum work that can be obtained from an ideal heat engine is given by the efficiency of the Carnot engine:

$$W_{\max} = Q_{\text{hot}} - Q_{\text{cold}}$$

where Q_{hot} and Q_{cold} are the heat transferred from the hot and cold reservoirs, respectively.

The efficiency of the Carnot engine is given by:

$$\eta = 1 - \frac{T_{\text{cold}}}{T_{\text{hot}}}$$

Substituting the given values of $T_{\text{hot}} = 800$ K and $T_{\text{cold}} = 200$ K:

$$\eta = 1 - \frac{200}{800} = 1 - 0.25 = 0.75$$

Thus, the maximum work is:

$$W_{\max} = \eta \times Q_{\text{hot}} = 0.75 \times Q_{\text{hot}}$$

The heat transferred from the hot reservoir is

$$Q_{\text{hot}} = C \times \Delta T = C \times (T_{\text{hot}} - T_{\text{cold}}) = C \times (800 - 200) = 600C.$$

Therefore, the maximum work is:

$$W_{\max} = 0.75 \times 600C = 450C$$

Hence, the value of n is 200.

Quick Tip

For a Carnot engine, the maximum work is determined by the temperature difference between the hot and cold reservoirs. The efficiency is key to finding the work done.