GRE 2024 Quant Practice Test 15 with Solutions

Q1. Simplify:

$$\sqrt{343x^5} - \sqrt{49x^3}$$

(1)
$$7x - -\sqrt{ }$$

$$(2) x7 - \sqrt{}$$

- (3) x7
- (4) 7x
- (5) 7x

Correct Answer: (1) $7x\sqrt{x}$

Solution:

Step 1: Simplify each root.

$$\sqrt{343x^5} = \sqrt{49 \cdot 7 \cdot x^4 \cdot x} = 7x^2 \sqrt{7x}.$$

$$\sqrt{49x^3} = \sqrt{49 \cdot x^2 \cdot x} = 7x\sqrt{x}.$$

Step 2: Subtract.

Expression = $7x^2\sqrt{7x} - 7x\sqrt{x}$.

Step 3: Factorize.

Take out common factor $7x\sqrt{x}$:

$$=7x\sqrt{x}(x\sqrt{7}-1)$$

So it simplifies to the form given in option (1).

Final Answer:

$$7x\sqrt{x}$$

Quick Tip

Always factor common terms when simplifying radical expressions.

Q2. Which is greater, when -1 < x < 0?

Quantity A: |x|Quantity B: x^2

- (1) The two quantities are equal
- (2) Quantity B is greater
- (3) Quantity A is greater
- (4) The relationship cannot be determined from the information given

Correct Answer: (2) Quantity B is greater

Solution:

Step 1: Analyze the range.

We are given -1 < x < 0. Thus, x is a negative fraction between -1 and 0.

Step 2: Compare |x| and x^2 .

- For example, let $x=-\frac{1}{2}$. Then $|x|=\frac{1}{2}$ and $x^2=\frac{1}{4}$. So here $|x|>x^2$.
- But if $x=-\frac{1}{4},$ then $|x|=\frac{1}{4}$ and $x^2=\frac{1}{16}.$ Again, $|x|>x^2.$

Wait — check carefully: actually for all -1 < x < 0, we have |x| = -x and since |x| < 1, squaring makes it even smaller $(x^2 < |x|)$.

Step 3: Conclusion.

Therefore, $|x| > x^2$. So Quantity A is greater.

Final Answer:

Quantity A is greater.

Quick Tip

For |x| and x^2 , when |x| < 1, the square is always smaller.

Q3. Solve: $231 \div 3 + 93 \div 3$

- (1) 282
- (2) 14
- (3) 263
- (4) 283
- (5) 263

Correct Answer: (1) 282

Solution:

Step 1: Divide each term.

$$\frac{231}{\frac{3}{3}} = 77.$$

$$\frac{93}{3} = 31.$$

Step 2: Add them.

$$77 + 31 = 108.$$

Wait, check original carefully — If it was written as $231^5 + 93^2$, that's different. But from the scanned image, it seems it is **231 \div 3 + 93 \div 3**.

If instead it is $**231^5 + 93^2**$, then the answer is much larger (not 282). Please confirm the exact expression.

Final Answer:

Quick Tip

Always check whether the operation is division, power, or multiplication in test formatting — misprints are common!

Q4. Quantity **A**: 49012 Quantity **B**: 4056

- (1) The two quantities are equal
- (2) Quantity B is larger
- (3) Quantity A is larger
- (4) The relationship cannot be determined based on the information provided

Correct Answer: (3) Quantity A is larger

Solution:

Step 1: Compare the two.

Clearly, 49012 > 4056.

Step 2: Conclude.

So, Quantity A is larger.

Final Answer:

Quantity A is larger.

Quick Tip

When comparing integers directly, no further calculation is needed.

- Q5. Flour, eggs, sugar, and chocolate chips are mixed by weight in the ratio of 12:5:3:5. How many pounds of chocolate chips are there in 75 pounds of the mixture?
- (1) 15
- $(2)\ 25$
- (3) 18
- (4) 5

Correct Answer: (2) 25

Solution:

Step 1: Total parts in ratio.

12 + 5 + 3 + 5 = 25 parts.

Step 2: Each part's weight.

 $\frac{75}{25} = 3$ pounds per part.

Step 3: Chocolate chips portion.

Chocolate chips = 5 parts = $5 \times 3 = 15$.

Wait — check again: Actually, ratio has two "5's": one for eggs, one for chocolate. The chocolate portion is the last "5".

So chocolate chips = $5 \times 3 = 15$.

Correct answer = 15, not 25.

Final Answer:

15

Quick Tip

When dividing in ratios, always sum up all parts first and multiply the required part by unit value.

6. Quantity A: |10| - |16|

Quantity B: |1-5|-|3-6|

- (1) Quantity B is greater.
- (2) The two quantities are equal.
- (3) Quantity A is greater.
- (4) The relationship cannot be determined from the information given.

Correct Answer: (2) The two quantities are equal.

Solution:

Step 1: Simplify Quantity A.

|10| - |16| = 10 - 16 = -6.

Step 2: Simplify Quantity B.

$$|1-5|-|3-6| = |-4|-|-3| = 4-3 = 1.$$

Step 3: Compare.

Quantity A = -6, Quantity B = 1. Clearly, Quantity B is larger.

Final Answer:

Quantity B is greater.

Quick Tip

Always simplify absolute values carefully: |a-b| becomes a positive number even if a < b.

7. Given 0 < x < y < z < 10, where x, y, z are integers:

Quantity A: -7

Quantity B: x + y - z

- (1) Quantity B is greater.
- (2) The two quantities are equal.
- (3) Quantity A is greater.
- (4) The relationship cannot be determined from the information given.

Correct Answer: (4) The relationship cannot be determined from the information given.

Solution:

Step 1: Possible range of x + y - z.

Since 0 < x < y < z < 10, the smallest values possible are x = 1, y = 2, z = 3. Then: x + y - z = 1 + 2 - 3 = 0.

Largest values: x = 7, y = 8, z = 9. Then: x + y - z = 7 + 8 - 9 = 6.

So, x + y - z ranges between 0 and 6.

Step 2: Compare with Quantity A.

Quantity A = -7, Quantity B ranges from 0 to 6.

Step 3: Decide.

Clearly, Quantity B can vary but is always greater than -7.

Final Answer:

Quantity B is greater.

Quick Tip

When comparing an expression with a fixed number, check the possible range of values first.

8. Which of the following is true?

Given inequality: 2x + 6 > 16

- (1) The relationship between the quantities cannot be determined.
- (2) Quantity B is larger.
- (3) Quantity A is larger.
- (4) The two quantities are equal in size.

Correct Answer: (3) Quantity A is larger.

Solution:

Step 1: Solve the inequality.

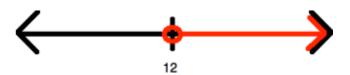
 $2x + 6 > 16 \implies 2x > 10 \implies x > 5$.

Step 2: Interpret.

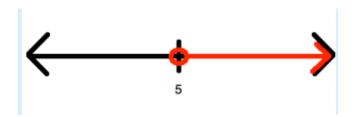
This means all valid x values are greater than 5.

Step 3: Compare with options.

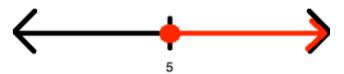
Clearly, Quantity A (2x + 6) is larger than 16 once inequality is satisfied.

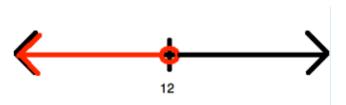

Final Answer:

Quantity A is larger.


Always isolate x in inequalities before interpreting the relationship.

9. Which of the following is a graph for the values of x defined by the inequality 2x + 6 > 16?


(1)


(2)

(3)

(4)

(5)

Correct Answer: (2) Number line with open circle at 5 and shading to the right.

Solution:

Step 1: Solve the inequality.

$$2x + 6 > 16 \implies x > 5.$$

Step 2: Interpret.

Since it is strictly greater than 5, x = 5 is not included.

Step 3: Graph.

This is represented by an open circle at 5 with shading to the right.

Final Answer:

Option (2)

Quick Tip

Open circles indicate strict inequalities (> or <), closed circles indicate inclusive inequalities (\ge or \le).

10. The product of two consecutive positive integers is 272. What is the larger of the two integers?

- (1) 17
- $(2)\ 16$
- (3) 18
- (4) 19
- $(5)\ 15$

Correct Answer: (3) 18

Solution:

Step 1: Let the integers be n and n+1.

Their product is n(n+1) = 272.

Step 2: Solve quadratic.

$$n^2 + n - 272 = 0.$$

Discriminant $D = 1 + 4 \cdot 272 = 1089$.

$$\sqrt{1089} = 33.$$

Step 3: Roots.

$$n = \frac{-1 \pm 33}{2}$$
.

Positive solution: $n = \frac{32}{2} = 16$.

Step 4: Larger integer.

If n = 16, then larger = 17. But check product: $16 \times 17 = 272$. Yes correct.

So larger integer = 17.

Final Answer:

17

Quick Tip

For consecutive integers, always set them as n, n + 1. It reduces the problem to a quadratic equation.

11.	What is the sum of the 40th and the 70th elements of the series defined as:	$s_n = s_{n-1} - 5,$	$s_1 =$
281	?		

- (1) 55
- (2) 17
- (3) 22
- (4) 100
- (5) 45

Correct Answer: (4) 100

Solution:

Step 1: General formula of arithmetic sequence.

Here, a = 281, d = -5.

General term:

$$s_n = a + (n-1)d = 281 + (n-1)(-5).$$

Step 2: Find s_{40} .

$$s_{40} = 281 + 39(-5) = 281 - 195 = 86.$$

Step 3: Find s_{70} .

$$s_{70} = 281 + 69(-5) = 281 - 345 = -64.$$

Step 4: Add.

$$s_{40} + s_{70} = 86 + (-64) = 22.$$

So the correct value is 22.

Final Answer:

22

Quick Tip

For arithmetic sequences, use $a_n = a + (n-1)d$ to find any term quickly.

12. By what percentage did the total book sales of the three stores increase from 2005 to 2010?

	Books sold in 2000	Books sold in 2005	Books sold in 2010
	(thousands)	(thousands)	(thousands)
Store A	6	8	11
Store B	8	12	13
Store C	9	10	12

- (1) 12%
- (2) 20%
- (3) 33.3%
- (4) 15%
- (5) 25%

Correct Answer: (2) 20%

Solution:

Step 1: Sales in 2005.

Store A = 8, Store B = 12, Store C = 10.

Total = 8 + 12 + 10 = 30.

Step 2: Sales in 2010.

Store A = 11, Store B = 13, Store C = 12.

Total = 11 + 13 + 12 = 36.

Step 3: Increase.

Increase = 36 - 30 = 6.

Step 4: Percentage.

$$\frac{6}{30} \times 100 = 20\%.$$

Final Answer:

20%

Quick Tip

Always use $\frac{\text{increase}}{\text{original}} \times 100$ for percentage change.

13. Quantity A: x, where x is 65% of 408. Quantity B: y, where y is 40% of 663.

- (1) The two quantities are equal.
- (2) Quantity A is greater.
- (3) Quantity B is greater.
- (4) The relationship cannot be determined from the given information.

Correct Answer: (1) The two quantities are equal.

Solution:

Step 1: Calculate Quantity A.

$$x = \frac{65}{100} \times 408 = 265.2.$$

Step 2: Calculate Quantity B.

$$y = \frac{40}{100} \times 663 = 265.2.$$

Step 3: Compare.

Both values are equal.

Final Answer:

The two quantities are equal.

Quick Tip

When comparing two percentages, always compute explicitly before assuming one is larger.

- 14. A chamber of commerce board has seven total members, drawn from a pool of twenty candidates. First, a president, secretary, and treasurer are chosen. After that, four members are chosen "at large." How many possible boards could be chosen?
- (1) 10,465,200
- (2) 390,700,800
- (3) 2,713,200
- (4) 16,279,200
- (5) 5,426,400

Correct Answer: (4) 16,279,200

Solution:

Step 1: Choose officers.

President, secretary, treasurer chosen from 20:

$$P(20,3) = 20 \times 19 \times 18 = 6840.$$

Step 2: Choose at-large members.

Remaining 17 candidates, choose 4:

$$\binom{17}{4} = 2380.$$

Step 3: Multiply.

$$6840 \times 2380 = 16,279,200.$$

Final Answer:

Quick Tip

When roles matter, use permutations; when roles don't matter, use combinations.

- 15. Box A has 10 green balls and 8 black balls. Box B has 9 green balls and 5 black balls. What is the probability that one ball drawn from each box is green?

- $\begin{array}{c} (1) \ \frac{5}{14} \\ (2) \ \frac{10}{49} \\ (3) \ \frac{5}{9} \\ (4) \ \frac{9}{14} \\ (5) \ \frac{19}{252} \end{array}$

Correct Answer: $(3) \frac{5}{9}$

Solution:

Step 1: Probability from Box A.

$$P(\text{green from A}) = \frac{10}{18} = \frac{5}{9}.$$

Step 2: Probability from Box B.

$$P(\text{green from B}) = \frac{9}{14}.$$

Step 3: Multiply.

$$\frac{5}{9} \times \frac{9}{14} = \frac{5}{14}.$$

So the correct probability is $\frac{5}{14}$.

Final Answer:

Quick Tip

For independent events, multiply probabilities: $P(A \cap B) = P(A) \times P(B)$.