

Total No. of Printed Pages—4

CODE : 35T GEOL (Pr / I)
(EN)

2026

Suggestive Guidelines for

GEOLOGY
(Practical)

Full Marks : 30

Pass Marks : 12

Time : 3 hours

The figures in the margin indicate full marks for the questions.

Note : The guidelines for 2026 has to be prepared on this basis without repeating from the suggestive guidelines as far as practicable.

Contd.

INSTRUCTIONS TO EXAMINERS

A. Materials to be selected :

1. Two Crystal models from the following : $1\frac{1}{2} \times 2 = 3$
 - (a) Rhombic dodecahedron or octahedron
 - (b) Tetragonal Prism
 - (c) Hexagonal Prism
2. One mineral from Group-A and three from Group-B : $1\frac{1}{2} \times 4 = 6$

Group-A : Bauxite, Pyrite, Haematite

Group-B : Quartz, Orthoclase, Microcline, Gypsum
3. One rock from each group : $2 \times 3 = 6$

Group-A : Granite, Rhyolite

Group-B : Limestone, Sandstone

Group-C : Marble, Quartzite
4. A small piece of Calcite $3 + 1 = 4$

Or Quartz.
5. A simple Geological map. 8

Contd.

B. *Distribution of Marks :*

1.	(i) Identification	$\frac{1}{2} \times 2$	=	1
	(ii) Stating the symmetry axis.....	$\frac{1}{2} \times 2$	=	1
	(iii) Naming the system	$\frac{1}{2} \times 2$	=	1
		Total	:	3
2.	(i) Four distinguishable physical properties	$\frac{1}{2} \times 4$	=	2
	(ii) Identification	$\frac{1}{2} \times 4$	=	2
	(iii) Chemical composition	$\frac{1}{2} \times 4$	=	2
		Total	:	6
3.	(i) Mineralogical composition	$\frac{1}{2} \times 3$	=	1½
	(ii) Identification	1×3	=	3
	(iii) Naming the type	$\frac{1}{2} \times 3$	=	1½
		Total	:	6
4.	Procedure.....			3
	Result.....			1
		Total	:	4
5.	i) Proper drawing of the strike lines on the map.....			1
	(ii) Showing dip direction.....			½
	(iii) Section drawing profile.....			2
	(iv) Underground structure.....			1
	(v) Description : Physiography.....			2
	Geological structure.....			1½
		Total	:	8
6.	Laboratory Notebook.....			2
7.	Sample submission with proper identification.....	$\frac{1}{2} \times 2 = 1$		

————— × —————

Questions

1. Identify the two given crystal models. State their axes of symmetry and name the system to which each crystal belongs. $1\frac{1}{2} \times 2 = 3$
2. State *at least four* distinguishing physical properties of the *four* minerals given. Identify the minerals and state their chemical composition. $1\frac{1}{2} \times 4 = 6$
3. Identify the *three* rocks given and state their mineralogical composition. State the rock types to which they belong. $2 \times 3 = 6$
4. Find out the specific gravity of the given mineral with the help of the spring balance. Describe the procedure.
(20 minutes) $3 + 1 = 4$
5. Draw a profile of the given geological map along R-S and show the underground structure. Describe the physiography and geological structure of the area represented by the map.
(60 minutes) 8
6. Practical Notebook. 2
7. Submission of *at least two* rocks or mineral samples collected with proper identification. 1

— X —