IIT JAM 2018 Mathematical Statistics (MS) Question Paper

Time Allowed: 3 Hours | Maximum Marks: 100 | Total questions: 60

General Instructions

General Instructions:

- i) All questions are compulsory. Marks allotted to each question are indicated in the margin.
- ii) Answers must be precise and to the point.
- iii) In numerical questions, all steps of calculation should be shown clearly.
- iv) Use of non-programmable scientific calculators is permitted.
- v) Wherever necessary, write balanced chemical equations with proper symbols and units.
- vi) Rough work should be done only in the space provided in the question paper.

1. Let $\{a_n\}$ be a sequence of real numbers such that $a_1=2$, and for $n\geq 1$, $a_{n+1}=\frac{2a_n+1}{a_n+1}$.

- (A) $1.5 \le a_n \le 2$, for all natural numbers $n \ge 1$
- (B) There exists a natural number $n \ge 1$ such that $a_n > 2$
- (C) There exists a natural number $n \ge 1$ such that $a_n < 1.5$
- (D) There exists a natural number $n \ge 1$ such that $a_n = \frac{1+\sqrt{5}}{2}$

2. The value of

$$\lim_{n\to\infty} \left(1+\frac{2}{n}\right)^{n^2} e^{-2n} \text{ is}$$

- (A) e^{-2}
- (B) e^{-1}
- (C) e
- (D) e^2

3. Let $\{a_n\}$ and $\{b_n\}$ be two convergent sequences of real numbers. For $n \ge 1$, define $u_n = \max\{a_n, b_n\}$ and $v_n = \min\{a_n, b_n\}$. Then

- (A) Neither {a_n} nor {b_n} converges
- (B) $\{u_n\}$ converges but $\{v_n\}$ does not converge
- (C) $\{u_n\}$ does not converge but $\{v_n\}$ converges
- (D) Both $\{u_n\}$ and $\{v_n\}$ converge

4. Let

$$M = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}.$$

2

If I is the 2×2 identity matrix and 0 is the 2×2 zero matrix, then

- (A) $20M^2 13M + 7I = 0$
- (B) $20M^2 13M 7I = 0$

- (C) $20M^2 + 13M + 7I = 0$
- (D) $20M^2 + 13M 7I = 0$

5. Let X be a random variable with the probability density function

$$f(x) = \begin{cases} \frac{x^p}{\Gamma(p)} e^{-\alpha x} x^{p-1}, & x \ge 0, \ \alpha > 0, \ p > 0, \\ 0, & \text{otherwise.} \end{cases}$$

If E(X) = 20 and Var(X) = 10, then (α, p) is

- (A)(2,20)
- (B)(2,40)
- (C)(4,20)
- (D)(4,40)

6. Let X be a random variable with the distribution function

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{4} + \frac{4x - x^2}{8}, & 0 \le x < 2, \\ 1, & x \ge 2. \end{cases}$$

Then

$$P(X=0) + P(X=1.5) + P(X=2) + P(X \ge 1)$$

equals

- (A) $\frac{3}{8}$
- (B) $\frac{5}{8}$
- (C) $\frac{7}{8}$
- (D) 1

7. Let X_1, X_2 and X_3 be i.i.d. U(0,1) random variables. Then

$$E\left(\frac{X_1 + X_2}{X_1 + X_2 + X_3}\right)$$

equals

- (A) $\frac{1}{3}$
- (B) $\frac{1}{2}$
- (C) $\frac{2}{3}$
- (D) $\frac{3}{4}$

8. Let $x_1 = 0, x_2 = 1, x_3 = 2, x_4 = 3$ and $x_5 = 0$ be the observed values of a random sample of size 5 from a discrete distribution with the probability mass function

$$f(x;\theta) = P(X = x) = \begin{cases} \frac{\theta}{3}, & x = 0, \\ \frac{2\theta}{3}, & x = 1, \\ \frac{1-\theta}{2}, & x = 2, 3, \end{cases}$$

where $\theta \in [0,1]$ is the unknown parameter. Then the maximum likelihood estimate of θ is

- (A) $\frac{2}{5}$
- (B) $\frac{3}{5}$
- (C) $\frac{5}{7}$
- (D) $\frac{5}{9}$

9. Consider four coins labelled as 1, 2, 3 and 4. Suppose that the probability of obtaining a 'head' in a single toss of the *i*th coin is $\frac{1}{4}$, i=1,2,3,4. A coin is chosen uniformly at random and flipped. Given that the flip resulted in a 'head', the conditional probability that the coin was labelled either 1 or 2 equals

- (A) $\frac{1}{10}$
- (B) $\frac{2}{10}$
- (C) $\frac{3}{10}$
- (D) $\frac{4}{10}$

10. Consider the linear regression model

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, 2, ..., n, where ϵ_i are i.i.d. standard normal random variables. Given that

$$\frac{1}{n}\sum_{i=1}^{n} x_i = 3.2, \quad \frac{1}{n}\sum_{i=1}^{n} y_i = 4.2, \quad \frac{1}{n}\sum_{j=1}^{n} \left(x_j - \frac{1}{n}\sum_{i=1}^{n} x_i\right)^2 = 1.5,$$

$$\frac{1}{n}\sum_{i=1}^{n} \left(x_j - \frac{1}{n}\sum_{i=1}^{n} x_i\right) \left(y_j - \frac{1}{n}\sum_{i=1}^{n} y_i\right) = 1.7,$$

the maximum likelihood estimates of β_0 and β_1 , respectively, are

- (A) $\frac{17}{15}$ and $\frac{32}{75}$
- (B) $\frac{32}{75}$ and $\frac{17}{15}$
- (C) $\frac{43}{75}$ and $\frac{17}{15}$
- (D) $\frac{43}{75}$ and $\frac{5}{9}$

11. Let $f:[-1,1] \to \mathbb{R}$ be defined by

 $f(x) = \frac{x^2 + [\sin(\pi x)]}{1 + |x|}$, where [y] denotes the greatest integer less than or equal to y.

Then

- (A) f is continuous at -1, 0, 1
- (B) f is discontinuous at $-1, 0, \frac{1}{2}$
- (C) f is discontinuous at $-1, \frac{1}{2}, 0, \frac{1}{2}$
- (D) f is continuous everywhere except at 0

12. Let $f, g : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = x^2 - \frac{\cos(x)}{2}, \quad g(x) = \frac{x\sin(x)}{2}.$$

5

Then

(A) f(x) = g(x) for more than two values of x

- (B) $f(x) \neq g(x)$, for all $x \in \mathbb{R}$
- (C) f(x) = g(x) for exactly one value of x
- (D) f(x) = g(x) for exactly two values of x

13. Consider the domain $D=\{(x,y)\in\mathbb{R}^2:x\leq y\}$ and the function $h:D\to\mathbb{R}$ defined by

$$h((x,y)) = (x-2)^4 + (y-1)^4, \quad (x,y) \in D.$$

Then the minimum value of h on D equals

- (A) $\frac{1}{2}$
- (B) $\frac{1}{4}$
- (C) $\frac{1}{8}$
- (D) $\frac{1}{16}$

14. Let $M=[X\ Y\ Z]$ be an orthogonal matrix with $X,Y,Z\in\mathbb{R}^3$ as its column vectors. Then

$$Q = XX^T + YY^T$$
 and $QZ = Z$

implies

- (A) M is a skew-symmetric matrix
- (B) M is the 3×3 identity matrix
- (C) $Q^2 = Q$
- (D) Q satisfies QZ = Z

15. Let $f:[0,3] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 0, & 0 \le x < 1, \\ e^{x^2} - e, & 1 \le x < 2, \\ e^{x^2} + 1, & 2 \le x \le 3. \end{cases}$$

Now, define $F:[0,3]\to\mathbb{R}$ by

$$F(0) = 0$$
 and $F(x) = \int_0^x f(t) dt$, for $0 < x \le 3$.

Then

(A) F is differentiable at x = 1 and F'(1) = 0

(B) F is differentiable at x = 2 and F'(2) = 0

(C) F is not differentiable at x = 1

(D) F is differentiable at x = 2 and F''(2) = 1

16. If x, y, z are real numbers such that

$$4x + 2y + z = 31$$
 and $2x + 4y - z = 19$,

then the value of 9x + 7y + z is

(A) cannot be computed from the given information

(B) equals $\frac{281}{3}$

(C) equals $\frac{182}{3}$

(D) equals $\frac{218}{3}$

17. Let

$$M = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

If

$$V = \{(x, y, 0) \in \mathbb{R}^3 : M \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \},$$

$$W = \{(x, y, z) \in \mathbb{R}^3 : M \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \},$$

then

- (A) the dimension of V equals 2
- (B) the dimension of V equals 4
- (C) the dimension of W equals 1
- (D) $V \cap W = \{(0,0,0)\}$

18. Let M be a 3×3 non-zero, skew-symmetric real matrix. If I is the 3×3 identity matrix, then

- (A) M is invertible
- (B) The matrix I + M is invertible
- (C) There exists a non-zero real number α such that $\alpha I + M$ is not invertible
- (D) All the eigenvalues of M are real

19. Let X be a random variable with the moment generating function

$$M_X(t) = \frac{6}{\pi^2} \sum_{n>1} \frac{e^{t^2/n}}{n^2}, \quad t \in \mathbb{R}.$$

Then $P(X \in \mathbb{Q})$, where \mathbb{Q} is the set of rational numbers, equals

- (A) 0
- (B) $\frac{1}{4}$
- (C) $\frac{1}{2}$
- (D) $\frac{3}{4}$

20. Let \boldsymbol{X} be a discrete random variable with the moment generating function

$$M_X(t) = \frac{(1+3e^t)^2(3+e^t)^3}{1024}, \quad t \in \mathbb{R}.$$

Then

(A)
$$E(X) = \frac{9}{4}$$

- (B) $Var(X) = \frac{15}{32}$
- (C) $P(X \ge 1) = \frac{27}{1024}$
- (D) $P(X=5) = \frac{3}{1024}$

21. Let $\{X_n\}_{n\geq 1}$ be a sequence of independent random variables with X_n having the probability density function as

$$f_n(x) = \begin{cases} \frac{1}{2n^{1/2}\Gamma(\frac{5}{2})} e^{-x^2/2}, & x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\lim_{n \to \infty} \left[P(X_n > \frac{3n}{4}) + P(X_n > n + 2\sqrt{2n}) \right]$$

equals

- (A) $1 + \Phi(2)$
- **(B)** $1 \Phi(2)$
- (C) $\Phi(2)$
- (D) $2 \Phi(2)$

22. Let X be a Poisson random variable with mean $\frac{1}{2}$. Then E((X+1)!) equals

- (A) $2e^{-\frac{1}{2}}$
- **(B)** $4e^{-\frac{1}{2}}$
- (C) $4e^{-1}$
- (D) $2e^{-1}$

23. Let X be a standard normal random variable. Then $P(X^3-2X^2-X+2>0)$ equals

- (A) $2\Phi(1) 1$
- **(B)** $1 \Phi(2)$
- (C) $2\Phi(1) \Phi(2)$

(D)
$$\Phi(2) - \Phi(1)$$

24. Let *X* and *Y* have the joint probability density function

$$f(x,y) = \begin{cases} 2, & 0 \le x \le y \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Let $a=E(Y|X=\frac{1}{2})$ and $b=\text{Var}(Y|X=\frac{1}{2}).$ Then (a,b) is

- (A) $(\frac{3}{4}, \frac{7}{12})$
- (B) $(\frac{1}{4}, \frac{7}{12})$
- (C) $\left(\frac{3}{4}, \frac{1}{48}\right)$
- (D) $\left(\frac{3}{4}, \frac{1}{48}\right)$

25. Let X and Y have the joint probability mass function

$$P(X = m, Y = n) = \frac{m+n}{21}, \quad m = 1, 2, 3; n = 1, 2,$$
 otherwise.

Then P(X=2|Y=2) equals

- (A) $\frac{1}{3}$
- (B) $\frac{2}{3}$
- (C) $\frac{1}{2}$
- (D) $\frac{1}{4}$

26. Let X and Y be two independent standard normal random variables. Then the probability density function of $Z=\frac{|X|}{|Y|}$ is

- (A) $f(z) = \frac{1}{\sqrt{\pi}}e^{-z^2/2}, \quad z > 0, \quad 0,$ otherwise
- (B) $f(z) = \frac{2}{\sqrt{2\pi}}e^{-z^2/2}, \quad z > 0, \quad 0, \quad \text{otherwise}$
- (C) $f(z) = e^{-z}$, z > 0, otherwise
- (D) $f(z) = \frac{2}{\pi(1+z^2)}, \quad z > 0, \quad 0, \quad \text{otherwise}$

27. Let X and Y have the joint probability density function

$$f(x,y) = \begin{cases} e^{-y}, & 0 < x < y < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

Then the correlation coefficient between X and Y equals

- (A) $\frac{1}{3}$
- (B) $\frac{1}{\sqrt{3}}$
- (C) $\frac{1}{\sqrt{2}}$
- (D) $\frac{2}{\sqrt{3}}$

28. Let $x_1 = -2$, $x_2 = 1$ and $x_3 = -1$ be the observed values of a random sample of size three from a discrete distribution with the probability mass function

$$f(x;\theta) = P(X = x) = \begin{cases} \frac{1}{2\theta+1}, & x \in \{-\theta, -\theta+1, \dots, 0, \dots, \theta\}, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta \in \{1, 2, \dots\}$ is the unknown parameter. Then the method of moment estimate of θ is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

29. Let X be a random sample from a discrete distribution with the probability mass function

$$f(x;\theta) = P(X = x) = \begin{cases} \frac{1}{\theta}, & x = 1, 2, \dots, \theta, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta \in \{20, 40\}$ is the unknown parameter. Consider testing

$$H_0: \theta = 40$$
 against $H_1: \theta = 20$

11

at a level of significance $\alpha=0.1$. Then the uniformly most powerful test rejects H_0 if and only if

- (A) $X \leq 4$
- (B) X > 4
- (C) $X \ge 3$
- (D) X < 3

30. Let X_1 and X_2 be a random sample of size 2 from a discrete distribution with the probability mass function

$$f(x;\theta) = P(X=x) = \begin{cases} \theta, & x = 0, \\ 1 - \theta, & x = 1, \end{cases}$$

where $\theta \in \{0.2, 0.4\}$ is the unknown parameter. For testing

$$H_0: \theta = 0.2$$
 against $H_1: \theta = 0.4$,

consider a test with the critical region

$$C = \{(x_1, x_2) \in \{0, 1\}^2 : x_1 + x_2 < 2\}.$$

Let α and β denote the probability of Type I error and power of the test, respectively. Then (α, β) is

- (A) (0.36, 0.74)
- **(B)** (0.64, 0.36)
- (C) (0.05, 0.64)
- (D) (0.05, 0.36)

31. Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers such that

$$a_n = \sum_{k=n+1}^{2n} \frac{1}{k}, \quad n \ge 1.$$

Then which of the following statement(s) is (are) true?

- (A) $\{a_n\}_{n\geq 1}$ is an increasing sequence
- (B) $\{a_n\}_{n\geq 1}$ is bounded below
- (C) $\{a_n\}_{n\geq 1}$ is bounded above
- (D) $\{a_n\}_{n\geq 1}$ is a convergent sequence

32. Let $\sum_{n\geq 1} a_n$ be a convergent series of positive real numbers. Then which of the following statement(s) is (are) true?

- (A) $\sum_{n>1} (a_n)^2$ is always convergent
- (B) $\sum_{n>1} \sqrt{a_n}$ is always convergent
- (C) $\sum_{n\geq 1} \frac{\sqrt{a_n}}{n}$ is always convergent
- (D) $\sum_{n\geq 1} \frac{\sqrt{a_n}}{n^{1/4}}$ is always convergent

33. Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers such that $a_1=3$ and, for $n\geq 1$,

$$a_{n+1} = \frac{a_n^2 - 2a_n + 4}{2}.$$

Then which of the following statement(s) is (are) true?

- (A) $\{a_n\}_{n\geq 1}$ is a monotone sequence
- (B) $\{a_n\}_{n\geq 1}$ is a bounded sequence
- (C) $\{a_n\}_{n\geq 1}$ is convergent
- (D) $a_n \to 2$ as $n \to \infty$

34. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2(2 + \sin\frac{1}{x}), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Then which of the following statement(s) is (are) true?

(A) f attains its minimum at 0

- (B) f is monotone
- (C) f is differentiable at 0
- (D) $f(x) > 2x^4 + x^3$, for all x > 0

35. Let P be a probability function that assigns the same weight to each of the points of the sample space $\Omega = \{1, 2, 3, 4\}$. Consider the events

$$E = \{1, 2\}, \quad F = \{1, 3\}, \quad G = \{3, 4\}.$$

Then which of the following statement(s) is (are) true?

- (A) E and F are independent
- (B) E and G are independent
- (C) F and G are independent
- (D) E, F, and G are independent

36. Let X_1, X_2, \dots, X_n , where $n \ge 5$, be a random sample from a distribution with the probability density function

$$f(x;\theta) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta \in \mathbb{R}$ is the unknown parameter. Then which of the following statement(s) is (are) true?

- (A) A 95% confidence interval of θ has to be of finite length
- (B) $\left(\min(X_1, X_2, \dots, X_n) + \frac{1}{n}\ln(0.05), \min(X_1, X_2, \dots, X_n)\right)$ is a 95% confidence interval of θ
- (C) A 95% confidence interval of θ can be of length 1
- (D) A 95% confidence interval of θ can be of length 2

37. Let X_1, X_2, \ldots, X_n be a random sample from $U(0, \theta)$, where $\theta > 0$ is the unknown parameter. Let

$$X_{(n)} = \max(X_1, X_2, \dots, X_n).$$

Then which of the following is (are) consistent estimator(s) of θ^3 ?

- (A) $8X_{(n)}^3$
- (C) $\frac{2}{n} \sum_{i=1}^{n} X_i^3$ (D) $\frac{nX_{(n)}^3 + 1}{n+1}$

38. Let X_1, X_2, \dots, X_n be a random sample from a distribution with the probability density function

$$f(x;\theta) = \begin{cases} c(\theta)e^{-x-\theta}, & x \ge \theta, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta \in \mathbb{R}$ is the unknown parameter. Then which of the following statement(s) is (are) true?

- (A) The maximum likelihood estimator of θ is $\min(X_1, X_2, \dots, X_n)$
- (B) $c(\theta) = 1$, for all $\theta \in \mathbb{R}$
- (C) The maximum likelihood estimator of θ is $\min(X_1, X_2, \dots, X_n)$
- (D) The maximum likelihood estimator of θ does not exist

39. Let X_1, X_2, \dots, X_n be a random sample from a distribution with the probability density function

$$f(x;\theta) = \begin{cases} \theta^2 x e^{-\theta x}, & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

15

where $\theta>0$ is the unknown parameter. If $Y=\sum_{i=1}^n X_i$, then which of the following statement(s) is (are) true?

(A) Y is a complete sufficient statistic for θ

- (B) $\frac{2n}{V}$ is the uniformly minimum variance unbiased estimator of θ
- (C) $\frac{2n-1}{V}$ is the uniformly minimum variance unbiased estimator of θ
- (D) $\frac{2n+1}{Y}$ is the uniformly minimum variance unbiased estimator of θ

40. Let X_1, X_2, \dots, X_n be a random sample from $U(\theta, \theta + 1)$, where $\theta \in \mathbb{R}$ is the unknown parameter. Let

$$U = \max(X_1, X_2, \dots, X_n)$$
 and $V = \min(X_1, X_2, \dots, X_n)$.

Then which of the following statement(s) is (are) true?

- (A) U is a consistent estimator of θ
- (B) V is a consistent estimator of θ
- (C) 2U V is a consistent estimator of θ
- (D) 2U V is a consistent estimator of $\theta + 1$

41. Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers such that

$$a_n = \frac{1+3+5+\dots+(2n-1)}{n!}, \quad n \ge 1.$$

Then $\sum_{n\geq 1} a_n$ converges to

42. Let

$$S = \{(x, y) \in \mathbb{R}^2 : x \ge 0, \sqrt{4 - (x - 2)^2} \le y \le \sqrt{9 - (x - 3)^2} \}.$$

Then the area of S equals

43. Let

$$S = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}.$$

Then the area of S equals

44. Let

$$J = \frac{1}{\pi} \int_0^1 t^{-\frac{1}{2}} (1-t)^{\frac{3}{2}} dt.$$

Then the value of J equals

46. Let X and Y be two positive integer-valued random variables with the joint probability mass function

$$P(X = m, Y = n) = g(m)h(n), \quad m, n \ge 1,$$

where $g(m) = \left(\frac{1}{2}\right)^{m-1}$, $m \ge 1$, and $h(n) = \left(\frac{1}{3}\right)^n$, $n \ge 1$. Then E(XY) equals

47. Let E, F and G be three events such that

$$P(E \cap F \cap G) = 0.1$$
, $P(G \mid F) = 0.3$ and $P(E \mid F \cap G) = P(E \mid F)$.

Then $P(G \mid E \cap F)$ equals

48. Let A_1, A_2 and A_3 be three events such that

$$P(A_i) = \frac{1}{3}, \quad i = 1, 2, 3; \quad P(A_i \cap A_j) = \frac{1}{6}, \quad 1 \le i \ne j \le 3 \quad \text{and} \quad P(A_1 \cap A_2 \cap A_3) = \frac{1}{6}.$$

Then the probability that none of the events A_1, A_2, A_3 occur equals

49. Let X_1, X_2, \dots, X_n be a random sample from the distribution with the probability density function

$$f(x) = \frac{1}{4}e^{-|x-4|} + \frac{1}{4}e^{-|x-6|}, \quad x \in \mathbb{R}.$$

Then $\frac{1}{n} \sum_{i=1}^{n} X_i$ converges in probability to

50. Let $x_1 = 1.1, x_2 = 2.2, x_3 = 3.3$ be the observed values of a random sample of size three from a distribution with the probability density function

$$f(x;\theta) = \begin{cases} \frac{1}{\theta}e^{-x/\theta}, & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta \in \{1, 2, \dots\}$ is the unknown parameter. Then the maximum likelihood estimate of θ equals

51. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f' is continuous on \mathbb{R} with f'(3) = 18. Define

$$g_n(x) = n\left(f\left(x + \frac{5}{n}\right) - f\left(x - \frac{2}{n}\right)\right).$$

Then $\lim_{n\to\infty} g_n(3)$ equals

52. Let $M = \sum_{i=1}^{4} X_i X_i^T$, where

$$X_1^T = [1 \ -1 \ 1 \ 0], \quad X_2^T = [1 \ 1 \ 0 \ 1], \quad X_3^T = [1 \ 3 \ 1 \ 0] \quad \text{and} \quad X_4^T = [1 \ 1 \ 1 \ 0].$$

Then the rank of M equals

53. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with

$$\lim_{x \to \infty} f(x) = \infty$$
 and $\lim_{x \to \infty} f'(x) = 2$.

Then

$$\lim_{x \to \infty} \left(1 + \frac{f(x)}{x^2} \right) \text{ equals}$$

54. The value of

$$\int_0^{\pi} \left(\int_0^x e^{\sin y} \sin x \, dy \right) dx$$

equals

55. Let X be a random variable with the probability density function

$$f(x) = \begin{cases} 4x^k, & 0 < x < 1, \\ x - \frac{x^2}{2}, & 1 \le x < 2, \\ 0, & \text{otherwise,} \end{cases}$$

where k is a positive integer. Then

$$P\left(\frac{1}{2} \le X \le \frac{3}{2}\right)$$
 equals

56. Let X and Y be two discrete random variables with the joint moment generating function

$$M_{X,Y}(t_1, t_2) = \left(\frac{1}{3}e^{t_1} + \frac{2}{3}\right)^2 \left(\frac{2}{3}e^{t_2} + \frac{1}{3}\right)^3, \quad t_1, t_2 \in \mathbb{R}.$$

Then P(2X + 3Y > 1) equals

57. Let X_1, X_2, X_3 and X_4 be i.i.d. discrete random variables with the probability mass function

$$P(X_1 = n) = \frac{3n-1}{4n}, \quad n = 1, 2, \dots,$$

Then $P(X_1 + X_2 + X_3 + X_4 = 6)$ equals

58. Let X be a random variable with the probability mass function

$$P(X = n) = \frac{1}{10}, \quad n = 1, 2, \dots, 10.$$

Then $E(\max\{X,5\})$ equals

59. Let X be a sample observation from $U(\theta,\theta^2)$ distribution, where $\theta \in \{2,3\}$ is the unknown parameter. For testing

$$H_0: \theta = 2$$
 against $H_1: \theta = 3$,

let α and β be the size and power, respectively, of the test that rejects H_0 if and only if $X \geq 3.5$. Then $\alpha + \beta$ equals

60. A fair die is rolled four times independently. For i = 1, 2, 3, 4, define

$$Y_i = \begin{cases} 1, & \text{if 6 appears in the } i\text{-th throw,} \\ 0, & \text{otherwise.} \end{cases}$$

Then $P(\max\{Y_1, Y_2, Y_3, Y_4\} = 1)$ equals