IIT JAM 2018 Mathematics (MA) Question Paper

Time Allowed :3 Hours | **Maximum Marks :**100 | **Total questions :**60

General Instructions

General Instructions:

- i) All questions are compulsory. Marks allotted to each question are indicated in the margin.
- ii) Answers must be precise and to the point.
- iii) In numerical questions, all steps of calculation should be shown clearly.
- iv) Use of non-programmable scientific calculators is permitted.
- v) Wherever necessary, write balanced chemical equations with proper symbols and units.
- vi) Rough work should be done only in the space provided in the question paper.

1. Which one of the following is TRUE?

- (A) \mathbb{Z}_n is cyclic if and only if n is prime
- (B) Every proper subgroup of \mathbb{Z}_n is cyclic
- (C) Every proper subgroup of S_4 is cyclic
- (D) If every proper subgroup of a group is cyclic, then the group is cyclic

2. Let $a_n = \frac{b_{n+1}}{b_n}$, where $b_1 = 1$, $b_2 = 1$, and $b_{n+2} = b_n + b_{n+1}$, $n \in \mathbb{N}$. Then $\lim_{n \to \infty} a_n$ is

- (A) $\frac{1-\sqrt{5}}{2}$
- (B) $\frac{1-\sqrt{3}}{2}$
- (C) $\frac{1+\sqrt{3}}{2}$
- (D) $\frac{1+\sqrt{5}}{2}$

3. If $\{v_1, v_2, v_3\}$ is a linearly independent set of vectors in a vector space over \mathbb{R} , then which one of the following sets is also linearly independent?

- (A) $\{v_1 + v_2 v_3, 2v_1 + 2v_2 + 3v_3, 5v_1 + 4v_2\}$
- (B) $\{v_1 v_2, v_2 v_3, v_3 v_1\}$
- (C) $\{v_1 + v_2 v_3, v_2 + v_3 v_1, v_3 + v_1 v_2\}$
- (D) $\{v_1 + v_2, v_2 + 2v_3, v_3 + 3v_1\}$

4. Let a be a positive real number. If f is a continuous and even function defined on the interval [-a,a], then

- (A) $\int_0^a f(x)dx$
- (B) $2 \int_0^a f(x) dx$
- (C) $\int_{-a}^{a} f(x)dx$
- (D) $2a \int_0^a \frac{f(x)}{1+x^2} dx$

5. The tangent plane to the surface $z = \sqrt{x^2 + 3y^2}$ at (1, 1, 2) is given by

(A)
$$x - 3y + z = 0$$

(B)
$$x + 3y - 2z = 0$$

(C)
$$2x + 4y - 3z = 0$$

(D)
$$3x - 7y + 2z = 0$$

6. In \mathbb{R}^3 , the cosine of the acute angle between the surfaces $x^2 + y^2 + z^2 - 9 = 0$ and $z - x^2 - y^2 + 3 = 0$ at the point (2, 1, 2) is

- (A) $\frac{8}{5\sqrt{21}}$
- (B) $\frac{10}{5\sqrt{21}}$
- (C) $\frac{8}{3\sqrt{21}}$
- (D) $\frac{10}{3\sqrt{21}}$

7. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a scalar field, $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field and let $\vec{a} \in \mathbb{R}^3$ be a constant vector. If \vec{r} represents the position vector $x\hat{i} + y\hat{j} + z\hat{k}$, then which one of the following is FALSE?

(A)
$$\operatorname{curl}(\vec{f}\vec{v}) = \nabla f \times \vec{v} + f \operatorname{curl}(\vec{v})$$

(B)
$$\operatorname{div}(\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

(C)
$$\operatorname{curl}(\vec{a} \times \vec{r}) = 2|\vec{a}|\vec{r}$$

(D) div
$$\left(\frac{\vec{r}}{|\vec{r}|^3}\right) = 0$$
, for $\vec{r} \neq \vec{0}$

8. In \mathbb{R}^2 , the family of trajectories orthogonal to the family of asteroids $x^{2/3}+y^{2/3}=a^{2/3}$ is given by

(A)
$$x^{4/3} + y^{4/3} = c^{4/3}$$

(B)
$$x^{4/3} - y^{4/3} = c^{4/3}$$

(C)
$$x^{5/3} - y^{5/3} = c^{5/3}$$

(D)
$$x^{2/3} - y^{2/3} = c^{2/3}$$

9. Consider the vector space V over $\mathbb R$ of polynomial functions of degree less than or equal to 3 defined on $\mathbb R$. Let $T:V\to V$ be defined by (Tf)(x)=f(x)-xf'(x). Then the rank of T is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

10. Let $s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$ for $n \in \mathbb{N}$. Then which one of the following is TRUE for the sequence $\{s_n\}$?

- (A) $\{s_n\}$ converges in \mathbb{Q}
- (B) $\{s_n\}$ is a Cauchy sequence but does not converge in \mathbb{Q}
- (C) The subsequence $\{s_k\}_{k=1}^{\infty}$ is convergent in \mathbb{R} , only when k is even natural number
- (D) $\{s_n\}$ is not a Cauchy sequence

11. Let
$$a_n = \begin{cases} 2 + (-1)^n \frac{n}{2^n} & \text{if } n \text{ is odd} \\ 1 + \frac{n}{2^n} & \text{if } n \text{ is even}, \end{cases}$$
 $n \in \mathbb{N}$.

Then which one of the following is TRUE?

- (A) $\sup\{a_n \mid n \in \mathbb{N}\} = 3$ and $\inf\{a_n \mid n \in \mathbb{N}\} = 1$
- (B) $\lim \inf(a_n) = \lim \sup(a_n) = \frac{3}{2}$
- (C) $\sup\{a_n \mid n \in \mathbb{N}\} = 3 \text{ and } \inf\{a_n \mid n \in \mathbb{N}\} = 1$
- (D) $\liminf (a_n) = 1$ and $\limsup (a_n) = 3$

12. Let $a,b,c\in\mathbb{R}$. Which of the following values of a,b,c do NOT result in the convergence of the series

$$\sum_{n=3}^{\infty} \frac{a^n}{n^b (\log n)^c}?$$

- (A) $|a| < 1, b \in \mathbb{R}, c \in \mathbb{R}$
- (B) $a = 1, b > 1, c \in \mathbb{R}$
- (C) a = 1, b > 0, c < 1
- (D) $a = -1, b \ge 0, c > 0$

13. Let $a_n=n+\frac{1}{n}$, $n\in\mathbb{N}$. Then the sum of the series $\sum_{n=1}^{\infty}(-1)^nn^{n+1}\frac{a_{n+1}}{n!}$ is

- (A) e 1
- (B) e^{-1}
- (C) $1 e^{-1}$
- (D) $1 + e^{-1}$

14. Let $a_n = \frac{(-1)^n}{\sqrt{1+n}}$ and let $c_n = \sum_{k=0}^n a_{n-k} a_k$, where $n \in \mathbb{N} \cup \{0\}$. Then which one of the following is TRUE?

- (A) Both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=1}^{\infty} c_n$ are convergent
- (B) $\sum_{n=0}^{\infty} a_n$ is convergent but $\sum_{n=1}^{\infty} c_n$ is not convergent
- (C) $\sum_{n=1}^{\infty} c_n$ is convergent but $\sum_{n=0}^{\infty} a_n$ is not convergent
- (D) Neither $\sum_{n=0}^{\infty} a_n$ nor $\sum_{n=1}^{\infty} c_n$ is convergent

15. Suppose that $f,g:\mathbb{R}\to\mathbb{R}$ are differentiable functions such that f is strictly increasing and g is strictly decreasing. Define p(x)=f(g(x)) and q(x)=g(f(x)), $\forall x\in\mathbb{R}$. Then, for t>0, the sign of $\int_0^t p'(x)q'(x)\,dx$ is

(A) positive

- (B) negative
- (C) dependent on t
- (D) dependent on f and g

16. For
$$x \in \mathbb{R}$$
, let $f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$. Then which one of the following is

FALSE?

(A)
$$\lim_{x\to 0} \frac{f(x)}{x} = 0$$

- **(B)** $\lim_{x \to 0} f(x) = 0$
- (C) f(x) has infinitely many maxima and minima on the interval (0,1)
- (D) f(x) is continuous at x = 0 but not differentiable at x = 0

17. Let
$$f(x,y)=\begin{cases} \frac{xy}{(x^2+y^2)^{\alpha}}, & (x,y)\neq (0,0)\\ 0, & (x,y)=(0,0) \end{cases}$$
 Then which one of the following is TRUE for f at the point $(0,0)$?

- (A) For $\alpha = \frac{1}{2}$, f is continuous but not differentiable
- (B) For $\alpha = 1$, f is continuous and differentiable
- (C) For $\alpha = \frac{1}{4}$, f is continuous and differentiable
- (D) For $\alpha = \frac{3}{4}$, f is neither continuous nor differentiable

18. Let $a,b \in \mathbb{R}$ and let $f: \mathbb{R} \to \mathbb{R}$ be a thrice differentiable function. If $z = e^u f(v)$, where u = ax + by and v = ax - by, then which one of the following is TRUE?

6

(A)
$$b^2 z_{xx} - a^2 z_{yy} = 4a^2 b^2 e^u f'(v)$$

(B)
$$b^2 z_{xx} - a^2 z_{yy} = -4e^u f'(v)$$

(C)
$$bz_x + az_y = abz$$

(D)
$$bz_{xx} + az_y = -abz$$

19. Consider the region D in the yz-plane bounded by the line $y=\frac{1}{2}$ and the curve $y^2+z^2=1$, where $y\geq 0$. If the region D is revolved about the z-axis in \mathbb{R}^3 , then the volume of the resulting solid is

- (A) $\frac{\pi}{\sqrt{3}}$
- (B) $\frac{2\pi}{\sqrt{3}}$
- (C) $\pi\sqrt{3}$
- (D) $\pi\sqrt{3}$

20. If $\hat{F}(x,y) = (3x - 8y)\hat{i} + (4y - 6xy)\hat{j}$ for $(x,y) \in \mathbb{R}^2$, then $\oint_C \hat{F} \cdot d\hat{r}$, where C is the boundary of the triangular region bounded by the lines x = 0, y = 0, and x + y = 1 oriented in the anti-clockwise direction, is

- (A) $\frac{5}{2}$
- (B) 3
- (C) 4
- (D) 5

21. Let U, V and W be finite dimensional real vector spaces, $T: U \to V$, $S: V \to W$ and $P: W \to U$ be linear transformations. If range (ST) = nullspace (P), nullspace (ST) = range (P) and rank (T) = rank (S), then which one of the following is TRUE?

- (A) nullity of T = nullity of S
- (B) dimension of $U \neq$ dimension of W
- (C) If dimension of V = 3, dimension of U = 4, then P is not identically zero
- (D) If dimension of V=4, dimension of U=3 and T is one-one, then P is identically zero

22. Let y(x) be the solution of the differential equation $\frac{dy}{dx}+y=f(x)$, for $x\geq 0, y(0)=0$, where

$$f(x) = \begin{cases} 2, & 0 \le x < 1 \\ 0, & x \ge 1 \end{cases}$$

Then y(x) is

(A) $2(1 - e^{-x})$ when $0 \le x < 1$ and $2(e^{-x} - 1)$ when $x \ge 1$

(B) $2(1 - e^{-x})$ when $0 \le x < 1$ and 0 when $x \ge 1$

(C) $2(1 - e^{-x})$ when $0 \le x < 1$ and $2(1 - e^{-1})e^{-x}$ when $x \ge 1$

(D) $2(1 - e^{-x})$ when $0 \le x < 1$ and $2(1 - e^{-x})$ when $x \ge 1$

23. An integrating factor of the differential equation

$$\left(y + \frac{1}{3}y^3 + \frac{1}{2}x^2\right) dx + \frac{1}{4}(x + x^2)^2 dy = 0$$

is

(A) x^2

(B) $3 \log x$

(C) x^{3}

(D) $2 \log x$

${\bf 24.} \ {\bf A} \ particular \ integral \ of \ the \ differential \ equation$

$$y'' + 3y' + 2y = e^{ex}$$

is

(A) $e^{ex}e^{-x}$

(B) $e^{ex}e^{-2x}$

(C) $e^{ex}e^{2x}$

(D) $e^{ex}e^x$

25. Let G be a group satisfying the property that $f: G \to \mathbb{Z}_{221}$ is a homomorphism implies f(g) = 0, $\forall g \in G$. Then a possible group G is

- (A) \mathbb{Z}_{21}
- (B) \mathbb{Z}_{51}
- (C) \mathbb{Z}_{91}
- (D) \mathbb{Z}_{119}

26. Let H be the quotient group \mathbb{Q}/\mathbb{Z} . Consider the following statements.

- I. Every cyclic subgroup of H is finite.
- II. Every finite cyclic group is isomorphic to a subgroup of ${\cal H}$.

Which one of the following holds?

- (A) I is TRUE but II is FALSE
- (B) II is TRUE but I is FALSE
- (C) both I and II are TRUE
- (D) neither I nor II is TRUE

27. Let I denote the 4×4 identity matrix. If the roots of the characteristic polynomial of a 4×4 matrix M are $\pm \frac{1+\sqrt{5}}{2}$, then M^8 is

- (A) $I + M^2$
- (B) $2I + M^2$
- (C) $2I + 3M^2$
- (D) $3I + 2M^2$

28. Consider the group $\mathbb{Z}^2 = \{(a,b)|a,b \in \mathbb{Z}\}$ under component-wise addition. Then which of the following is a subgroup of \mathbb{Z}^2 ?

(A) $\{(a,b) \in \mathbb{Z}^2 | ab = 0\}$

- (B) $\{(a,b) \in \mathbb{Z}^2 | 3a + 2b = 15 \}$
- (C) $\{(a,b) \in \mathbb{Z}^2 | 7 \text{ divides } ab \}$
- (D) $\{(a,b) \in \mathbb{Z}^2 | 2 \text{ divides } a \text{ and } 3 \text{ divides } b \}$

29. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and let I be a bounded open interval in \mathbb{R} . Define

$$W(f, I) = \sup\{f(x)|x \in I\} - \inf\{f(x)|x \in I\}$$

Which one of the following is FALSE?

- (A) $W(f, J_1) \le W(f, J_2)$ if $J_1 \subseteq J_2$
- (B) If f is a bounded function in I and $J_1 \supseteq J_2 \supseteq \cdots \supseteq J_n$ such that the length of the interval J_n tends to 0 as $n \to \infty$, then $\lim_{n \to \infty} W(f, J_n) = 0$
- (C) If f is discontinuous at a point $a \in I$, then $W(f, I) \neq 0$
- (D) If f is continuous at a point $a \in I$, then for any given $\epsilon > 0$ there exists an interval $I \subseteq J$ such that $W(f, I) < \epsilon$

30. For $x > -\frac{1}{2}$, let $f_1(x) = \frac{2x}{1+2x}$, $f_2(x) = \log_e(1+2x)$ and $f_3(x) = 2x$. Then which one of the following is TRUE?

- (A) $f_3(x) < f_2(x) < f_1(x)$ for $0 < x < \frac{\sqrt{3}}{2}$
- (B) $f_1(x) < f_3(x) < f_2(x)$ for x > 0
- (C) $f_1(x) + f_2(x) < \frac{f_3(x)}{2}$ for $x > \frac{\sqrt{3}}{2}$
- (D) $f_2(x) < f_1(x) < f_3(x)$ for x > 0

31. Let $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be defined by $f(x) = x + \frac{1}{x^3}$. On which of the following interval(s) is f one-to-one?

- $(A) (-\infty, -1)$
- **(B)** (0,1)
- (C)(0,2)

(D) $(0, \infty)$

32. The solution(s) of the differential equation

$$\frac{dy}{dx} = (\sin 2x)y^{1/3}$$
 satisfying $y(0) = 0$ is (are)

- $(\mathbf{A}) \ y(x) = 0$
- (B) $y(x) = -\frac{\sqrt{8}}{27}\sin^3 x$
- (C) $y(x) = \frac{\sqrt{8}}{27}\sin^3 x$
- (D) $y(x) = \frac{\sqrt{8}}{27}\cos^3 x$

33. Suppose f, g, h are permutations of the set $\{\alpha, \beta, \gamma, \delta\}$, where

f interchanges α and β but fixes γ and δ ,

g interchanges β and γ but fixes α and δ ,

h interchanges γ and δ but fixes α and β .

Which of the following permutations interchange(s) α and δ but fix(es) β and γ ?

- (A) $f \circ g \circ h \circ g \circ f$
- **(B)** $g \circ h \circ f \circ h \circ g$
- (C) $g \circ f \circ h \circ f \circ g$
- (D) $h \circ g \circ f \circ g \circ h$

34. Let P and Q be two non-empty disjoint subsets of \mathbb{R} . Which of the following is (are) FALSE?

- (A) If P and Q are compact, then $P \cup Q$ is also compact
- (B) If P and Q are not connected, then $P \cup Q$ is also not connected
- (C) If the subsequence $\{s_n\}$ converges, then $P \cup Q$ is connected
- (D) If $P \cup Q$ are closed, then Q is closed

35. Let $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ denote the group of non-zero complex numbers under multiplication. Suppose

$$Y_n = \{ z \in \mathbb{C} \mid z^n = 1 \}, \quad n \in \mathbb{N}.$$

Which of the following is (are) subgroup(s) of \mathbb{C}^* ?

- $(A) \bigcup_{n=1}^{100} Y_n$
- (B) $\bigcup_{n=1}^{\infty} Y_n$
- (C) $\bigcup_{n=100}^{\infty} Y_n$
- (D) $\bigcup_{n=1}^{\infty} Y_n$

36. Suppose $\alpha, \beta, \gamma \in \mathbb{R}$. Consider the following system of linear equations.

$$x + y + z = \alpha$$
, $x + \beta y + z = \gamma$, $x + y + \alpha z = \beta$.

If this system has at least one solution, then which of the following statements is (are) TRUE?

- (A) If $\alpha = 1$, then y = 1
- (B) If $\beta = 1$, then $y = \alpha$
- (C) If $\beta \neq 1$, then $\alpha = 1$
- (D) If y = 1, then $\alpha = 1$

37. Let $m, n \in \mathbb{N}, m < n, P \in M_{m \times n}(\mathbb{R}), Q \in M_{n \times n}(\mathbb{R})$. Which of the following is (are)

NOT possible?

- (A) $\operatorname{rank}(PQ) = m$
- (B) $\operatorname{rank}(P) = n$
- (C) $\operatorname{rank}(P) = n$
- (D) $\operatorname{rank}(PQ) = \frac{m+n}{2}$

38. If $\mathbf{F}(x,y,z)=(2x+3yz)\hat{i}+(3xz+2y)\hat{j}+(3xy+2z)\hat{k}$ for $(x,y,z)\in\mathbb{R}^3$, then which among the following is (are) TRUE?

- (A) $\nabla \times \mathbf{F} = \mathbf{0}$
- (B) $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ along any simple closed curve C
- (C) There exists a scalar function $\varphi: \mathbb{R}^3 \to \mathbb{R}$ such that $\nabla \cdot \mathbf{F} = \varphi_{xx} + \varphi_{yy} + \varphi_{zz}$
- (D) $\nabla \cdot \mathbf{F} = 0$

39. Which of the following subsets of \mathbb{R} is (are) connected?

- (A) $\{x \in \mathbb{R} | x^2 + x > 4\}$
- (B) $\{x \in \mathbb{R} | x^2 + x < 4\}$
- (C) $\{x \in \mathbb{R} | |x| < |x-4| \}$
- (D) $\{x \in \mathbb{R} | |x| > |x 4| \}$

40. Let S be a subset of $\mathbb R$ such that 2018 is an interior point of S. Which of the following is (are) TRUE?

- (A) S contains an interval
- (B) There is a sequence in S which does not converge to 2018
- (C) There is an element $y \in S$, $y \neq 2018$, such that y is also an interior point of S
- (D) There is a point $z \in S$, such that |z 2018| = 0.002018

41. The order of the element $(1\ 2\ 3)(2\ 4\ 5)(4\ 5\ 6)$ in the group S_6 is

42. Let $\varphi(x,y,z)=3y^2+3xyz$ for $(x,y,z)\in\mathbb{R}^3$. Then the absolute value of the directional derivative of φ in the direction of the line

$$\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z}{-2}$$

at the point (1, -2, 1) is

43. Let $f(x) = \sum_{n=0}^{\infty} (-1)^n x(x-1)^n$ for 0 < x < 2. Then the value of $f\left(\frac{\pi}{4}\right)$ is

44. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} \frac{x^2y(x-y)}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Then

$$\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f \right) - \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f \right)$$
 at the point $(0,0)$ is

45. Let $f(x,y) = \sqrt{3}x^3y\sin\left(\frac{\pi}{2}e^{(x-1)}\right) + xy\cos\left(\frac{\pi}{3}e^{(y-1)}\right)$ for $(x,y) \in \mathbb{R}^2, x > 0, y > 0$. Then $f_x(1,1) + f_y(1,1) = \dots$

46. Let $f:[0,\infty)\to [0,\infty)$ be continuous on $[0,\infty)$ and differentiable on $(0,\infty)$. If

$$f(x) = \int_0^x \sqrt{f(t)} dt$$
, then $f(6) = \dots$

47. Let

$$a_n = \frac{(1 + (-1)^n)}{2n} + \frac{(1 + (-1)^{n-1})}{3n}.$$

Then the radius of convergence of the power series

$$\sum_{n=1}^{\infty} a_n x^n \text{ about } x = 0 \text{ is } \dots$$

- 48. Let A_6 be the group of even permutations of 6 distinct symbols. Then the number of elements of order 6 in A_6 is
- 49. Let W_1 be the real vector space of all 5×2 matrices such that the sum of the entries in each row is zero. Let W_2 be the real vector space of all 5×2 matrices such that the sum of the entries in each column is zero. Then the dimension of the space $W_1 \cap W_2$ is
- **50.** The coefficient of x^4 in the power series expansion of $e^{\sin x}$ about x=0 is (correct up to three decimal places).
- **51.** Let $a_k = (-1)^{k-1}$, $s_n = a_1 + a_2 + \cdots + a_n$, and $\sigma_n = \frac{1}{n}(s_1 + s_2 + \cdots + s_n)$, where $k, n \in \mathbb{N}$. Then

 $\lim_{n\to\infty} \sigma_n = \dots$ (correct up to one decimal place).

52. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f'' is continuous on \mathbb{R} and f(0) = 1, f'(0) = 0, and f''(0) = -1. Then

$$\lim_{x\to\infty} \left(f\left(\sqrt{\frac{2}{x}}\right) \right)^x \text{ is (correct up to three decimal places)}.$$

53. Suppose x, y, z are positive real numbers such that x + 2y + 3z = 1. If M is the maximum value of xyz^2 , then the value of $\frac{1}{M}$ is

54. If the volume of the solid in \mathbb{R}^3 bounded by the surfaces

$$x = -1$$
, $x = 1$, $y = -1$, $y = 1$, $z = 2$, $y^2 + z^2 = 2$

is $\alpha - \pi$, then

 $\alpha = \dots$

55. If

$$a = \int_{\pi/3}^{\pi/6} \frac{\sin t + \cos t}{\sqrt{\sin 2t}} dt,$$

then the value of

$$\left(2\sin\frac{\alpha}{2}+1\right)^2$$
 is

56. The value of the integral

$$\int_0^1 \int_0^1 y e^{xy^2} dy dx$$
 is (correct up to three decimal places).

57. Suppose $Q \in M_{3\times 3}(\mathbb{R})$ is a matrix of rank 2. Let $T: M_{3\times 3}(\mathbb{R}) \to M_{3\times 3}(\mathbb{R})$ be the linear transformation defined by

$$T(P) = QP.$$

Then the rank of T is

58. The area of the parametrized surface

$$S = \left\{ ((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u) \in \mathbb{R}^3 \mid 0 \le u \le \frac{\pi}{2}, 0 \le v \le \frac{\pi}{2} \right\}$$

is (correct up to two decimal places).

59. If x(t) is the solution to the differential equation

$$\frac{dx}{dt} = xt^3 + xt$$
, for $t > 0$, satisfying $x(0) = 1$,

then the value of $x(\sqrt{2})$ is (correct up to two decimal places).

60. If $y(x) = v(x) \sec x$ is the solution of

$$y'' - (2\tan x)y' + 5y = 0$$
, $-\frac{\pi}{2} < x < \frac{\pi}{2}$, satisfying $y(0) = 0$ and $y'(0) = \sqrt{6}$,

then $v\left(\frac{\pi}{6\sqrt{6}}\right)$ is (correct up to two decimal places).