### IIT JAM 2019 Chemistry (CY) Question Paper

**Time Allowed :**3 Hours | **Maximum Marks :**100 | **Total questions :**60

### **General Instructions**

#### **General Instructions:**

- i) All questions are compulsory. Marks allotted to each question are indicated in the margin.
- ii) Answers must be precise and to the point.
- iii) In numerical questions, all steps of calculation should be shown clearly.
- iv) Use of non-programmable scientific calculators is permitted.
- v) Wherever necessary, write balanced chemical equations with proper symbols and units.
- vi) Rough work should be done only in the space provided in the question paper.

| Q1. For a reaction of the type A + B $\to$ Products, the unit of the rate constant is mol L^{-1} s^{-1}. The overall order of the reaction is |                                                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|                                                                                                                                               |                                                                            |  |
| (B) 1                                                                                                                                         |                                                                            |  |
| (C) 2                                                                                                                                         |                                                                            |  |
| (D) 3                                                                                                                                         |                                                                            |  |
| Q2. The thermodynamic crite                                                                                                                   | erion for spontaneity of a process in a system under                       |  |
| constant volume and tempera                                                                                                                   | ture and in the absence of any work other than expansion                   |  |
| work (if any) is                                                                                                                              |                                                                            |  |
| (A) change in entropy is positive                                                                                                             | ve                                                                         |  |
| (B) change in enthalpy is negat                                                                                                               | ive                                                                        |  |
| (C) change in Helmholtz free e                                                                                                                | nergy is negative                                                          |  |
| (D) change in Gibbs free energ                                                                                                                | y is negative                                                              |  |
| Q3. The number of vibration                                                                                                                   | al mode(s) of a carbon dioxide molecule that can be                        |  |
| detected using infrared spectr                                                                                                                | roscopy is                                                                 |  |
| (A) 1                                                                                                                                         |                                                                            |  |
| (B) 2                                                                                                                                         |                                                                            |  |
| (C) 3                                                                                                                                         |                                                                            |  |
| (D) 4                                                                                                                                         |                                                                            |  |
| Q4. For three non-coplanar v                                                                                                                  | vectors a, b and c, the expression a $\cdot$ (b $\times$ c) can be written |  |
| as                                                                                                                                            |                                                                            |  |

(A)  $(a \times b) \cdot c$ 

- (C)  $(a \cdot b) \times (a \cdot c)$
- (D)  $(a \cdot b) \times c$

### Q5. Correct trend in the bond order is

- (A)  $O^{2+}$   $\downarrow$   $O_2^{2-}$   $\downarrow$   $O_2$
- (B)  $O_2^{2-}$  ;  $O_2^+$  ;  $O_2^{2-}$
- (C)  $O_2^{2-}$  ;  $O_2$  ;  $O^{2+}$
- (D)  $O_2^{2-}$  ;  $O_2^{2+}$  ;  $O_2^+$

# Q6. The correct option for the metal ion present in the active site of myoglobin, hemocyanin and vitamin B12, respectively, is

- (A) iron, iron and zinc
- (B) molybdenum, iron and copper
- (C) iron, copper and cobalt
- (D) copper, copper and cobalt

Q7. The correct order of wavelength ( $\lambda_{max}$ ) of the halide to metal charge-transfer band of [Co(NH<sub>3</sub>)<sub>5</sub>Cl]<sup>2+</sup> (I), [Co(NH<sub>3</sub>)<sub>5</sub>Br]<sup>2+</sup> (II) and [Co(NH<sub>3</sub>)<sub>5</sub>I]<sup>2+</sup> (III), is

- $(A) \ III < II < I$
- (B) I < II < III
- $(C) \ II < III < I$
- $(D) \; I < III < II$

Q8. The correct option for the major products of the following reaction is

$$(A)$$
 $(A)$ 
 $(A)$ 

### Q9. The major product formed in the following reaction is

(C) OH NHo

#### Q10. The complementary strand for the following single strand of DNA is

$$(B) \\ 3' \longleftarrow A \longrightarrow T \longrightarrow G \longrightarrow C \longrightarrow T \longrightarrow 5'$$

$$(C)$$
 5'  $\leftarrow$  T  $\longrightarrow$  A  $\longrightarrow$  C  $\longrightarrow$  G  $\longrightarrow$  A  $\longrightarrow$  3'

## Q11. The function $f(x) = xe^{-x^2}$ has a minimum at

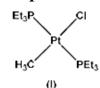
(A) 
$$x = \sqrt{2}$$

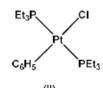
$$(B) x = -\sqrt{2}$$

(C) 
$$x = \frac{1}{\sqrt{2}}$$

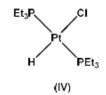
(D) 
$$x = -\frac{1}{\sqrt{2}}$$

# Q12. The correct option for the number of bending modes of vibration in each of $H_2O$ , $CS_2$ , and $SO_2$ molecules, respectively, is


- (A) 1, 2 and 2
- (B) 2, 2 and 1


| (C) 2, 1 and 2      |                                                                                      |  |
|---------------------|--------------------------------------------------------------------------------------|--|
| (D) 1, 2 and 1      |                                                                                      |  |
| Q13. The total n    | umber of degrees of freedom of an HBr molecule that is constrained to                |  |
| translate along a   | straight line but does not have any constraints for its rotation and                 |  |
| vibration is        |                                                                                      |  |
| (A) 6               |                                                                                      |  |
| (B) 5               |                                                                                      |  |
| (C) 4               |                                                                                      |  |
| (D) 3               |                                                                                      |  |
| Q14. According      | to the kinetic theory of gases, the ratio of the root mean square velocity           |  |
| of molecular oxy    | gen and molecular hydrogen at 300 K is                                               |  |
| (A) 1:1             |                                                                                      |  |
| (B) 1 : $2\sqrt{2}$ |                                                                                      |  |
| (C) 1:4             |                                                                                      |  |
| (D) 1:16            |                                                                                      |  |
| Q15. The half-lif   | Te of the chemical reaction, $\mathbf{A} 	o \mathbf{Product}$ , for initial reactant |  |
| concentrations o    | f 0.1 and 0.4 mol ${\bf L}^{-1}$ are 200 and 50 s, respectively. The order of the    |  |
| reaction is         |                                                                                      |  |
| (A) 0               |                                                                                      |  |
| (B) 1               |                                                                                      |  |
|                     |                                                                                      |  |
| (C) 2               |                                                                                      |  |

Q16. The ratio of the nearest neighbor atomic distances in body-centered cubic (bcc) and face-centered cubic (fcc) crystals with the same unit cell edge length is


- (A)  $\frac{\sqrt{3}}{2}$
- (B)  $\frac{\sqrt{3}}{2}$
- (C)  $\frac{1}{\sqrt{2}}$
- (D)  $\frac{1}{2}$

Q17. The correct trend in the rate of substitution of Cl<sup>-</sup> by pyridine in the following complexes is









- (A) III < II < IV
- (B) II < III < IV
- $(C) \; I < III < IV$
- $(D) \ I < II < IV$

Q18. In qualitative inorganic analysis of metal ions, the ion which precipitates as sulfide in the presence of  $H_2S$  in warm dilute HCl is

- (A) Cr<sup>3+</sup>
- (B) Al<sup>3+</sup>
- (C) Co<sup>2+</sup>
- (D) Bi<sup>3+</sup>

Q19. The correct statement regarding the observed magnetic properties of NO,  $O_2$ ,  $B_2$  and  $C_2$  in their ground state is

- (A) NO, B<sub>2</sub>, and C<sub>2</sub> are paramagnetic
- (B) O<sub>2</sub>, O and NO are paramagnetic
- (C) O<sub>2</sub>, C<sub>2</sub> and NO are paramagnetic
- (D) O2, B2 and C2 are paramagnetic

Q20. The observed magnetic moments of octahedral  $Mn^{3+}$ ,  $Fe^{3+}$  and  $Co^{3+}$  complexes are 4.95, 6.06 and 0.00 BM, respectively. The correct option for the electronic configuration of  $Mn^{3+}$ ,  $Fe^{3+}$  and  $Co^{3+}$  metal ions in these complexes, respectively, is

- (A)  $\mathfrak{t}_{2g}^6$   $\mathfrak{e}_g^0$ ,  $\mathfrak{t}_{2g}^5$   $\mathfrak{e}_g^1$  and  $\mathfrak{t}_{2g}^6$   $\mathfrak{e}_g^0$
- (B)  $\mathbf{t}_{2g}^6$   $\mathbf{e}_g^1$ ,  $\mathbf{t}_{2g}^5$   $\mathbf{e}_g^0$  and  $\mathbf{t}_{2g}^6$   $\mathbf{e}_g^1$
- (C)  $t_{2q}^6 e_g^0$ ,  $t_{2q}^6 e_g^1$  and  $t_{2q}^5 e_g^1$
- (D)  $\mathfrak{t}_{2g}^5$   $\mathfrak{e}_g^1$ ,  $\mathfrak{t}_{2g}^6$   $\mathfrak{e}_g^1$  and  $\mathfrak{t}_{2g}^6$   $\mathfrak{e}_g^0$

Q21. Among the following compounds, the one having the lowest boiling point is

- (A) SnCl<sub>4</sub>
- (B) GeCl<sub>4</sub>
- (C) SiCl<sub>4</sub>
- (D) CCl<sub>4</sub>

Q22. The correct option having one complex from each of the following pairs which is more reactive towards the oxidative addition reaction by hydrogen molecule is

- $(A)\ (I)\ and\ (III)$
- (B) (I) and (IV)
- (C) (II) and (III)
- (D) (II) and (IV)

### Q23. Among the following, the correct statement is

(A) The density follows the order,  $Cs^+\ \cline{c}\ Rb^+\ \cline{c}\ Li^+\ \cline{c}\ Na^+$ 

(B) The solubility in water follows the order, Cs<sub>2</sub>CO<sub>3</sub> ¿ K<sub>2</sub>CO<sub>3</sub> ¿ Na<sub>2</sub>CO<sub>3</sub> ¿ Li<sub>2</sub>CO<sub>3</sub>

(C) The first ionization potential follows the order, Li  $^+$   $^+$   $^ K^+$   $^ ^ Na^+$   $^ ^ Cs^+$ 

(D) The melting point follows the order, MgCl $_2$  ; BeCl $_2$  ; CaCl $_2$  ; SrCl $_2$ 

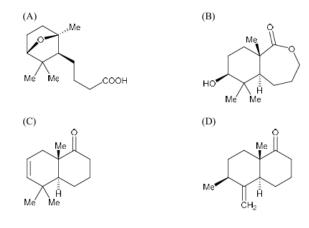
### Q24. The major product of the following reaction is

## Q25. In 1H NMR spectrum of the given molecule, the correct order of chemical shifts of the labelled protons $(\mathbf{H}^X, \mathbf{H}^Y, \mathbf{H}^Z)$ is

(A) 
$$\mathbf{H}^Z$$
 ;  $\mathbf{H}^X$  ;  $\mathbf{H}^Y$ 

(B) 
$$\mathbf{H}^Z$$
  $\mathcal{H}^Y$   $\mathcal{H}^X$ 

(C) 
$$\mathbf{H}^X$$
  $\mathcal{L}$   $\mathbf{H}^Y$   $\mathcal{L}$   $\mathbf{H}^Z$ 


(D) 
$$\mathsf{H}^Y \ \ \mathcal{L} \ \mathsf{H}^X \ \ \mathcal{L} \ \mathsf{H}^Z$$

Q26. In the following reaction of (D)-Glucose, a product P is formed.

Among the following compounds, the one which will give the same product (P) under identical reaction conditions is

10

Q27. The major product of the following reaction is



## Q28. The correct option for the product(s) of the following reaction is

(B)

(C)

(D)

### Q29. The increasing order of acidity of the given molecules in aqueous media is

- $(A) \ IV < I < II < III$
- (B) II < I < IV < III
- (C) II < IV < I < III
- $(D) \ IV < II < I < III$

Q30. The compound formed upon subjecting an aliphatic amine to Lassaigne's test is

- (A) NaNH<sub>2</sub>
- (B) NaNO<sub>2</sub>
- (C) NaCN
- (D) NaN<sub>3</sub>

Q31. The eigenvalue(s) of the matrix

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 is/are

- (A) -1
- (B) 1
- (C) 2
- (D) 3

Q32. The unit of the constant 'a' in van der Waals equation of state of a real gas can be expressed as

- (A)  $m^6$  Pa  $mol^{-2}$
- (B)  $m^3 \text{ J mol}^{-2}$
- (C)  $m^3$  Pa  $mol^{-2}$
- (D)  $m^3 J mol^{-2}$

Q33. Among the following, microwave active molecule(s) is/are  $\,$ 

- (A) trans-dichloroethene
- (B) 1,2-dinitrobenzene
- (C) 3-methylphenol
- (D) para-aminophenol

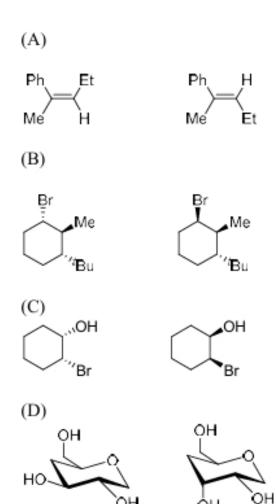
# Q34. The true statement(s) regarding the brown ring test carried out in the laboratory for the detection of $NO_3^-$ is/are

- (A) Brown ring is due to the formation of the iron nitrosyl complex.
- (B) Concentrated nitric acid is used for the test.
- (C) The complex formed in the reaction is [Fe(CN)]NO<sup>2</sup>.
- (D) The brown colored complex is paramagnetic in nature.

#### Q35. The true statement(s) regarding the carbonic anhydrase enzyme is/are

- (A) It is involved in peptide bond cleavage.
- (B) Redox inactive Zn<sup>2+</sup> ion is involved in the catalytic activity of this enzyme.
- (C) Activated M-OH (M = metal ion) acts as the nucleophile in the enzyme.
- (D) The metal ion is coordinated to the side chain of histidine residues.

### Q36. The correct statement(s) about NO $_2$ , NO $_2^+$ and CO $_2$ is/are


- (A) Both NO<sub>2</sub> and CO<sub>2</sub> are paramagnetic.
- (B) NO<sub>2</sub> is paramagnetic and NO<sub>2</sub><sup>+</sup> is diamagnetic.
- (C) Both  $CO_2$  and  $NO_2^+$  have linear geometry.
- (D)  $CO_2$  and  $NO_2^+$  are isoelectronic.

## Q37. The compound(s) formed as intermediate(s) in the following reaction sequence is/are

### Q38. The correct statement(s) among the following is/are

- (A) Secondary structure of a polypeptide describes the number and type of amino acid residues.
- (B) Uracil is a pyrimidine nucleobase.
- (C) Natural fatty acids have odd number of carbon atoms.
- (D) Reaction of (D)-glucose with Ca(OH)<sub>2</sub> gives a product mixture containing (D)-fructose,
- (D)-mannose, and (D)-glucose.

#### Q39. The diastereomeric pair(s) among the following option(s) is/are



Q40. The reaction(s) that result(s) in the formation of aromatic species is/are

(A)

(B)

(C)

(D)

Q41. The bond order of  $N_2^+$  ion is \_\_\_\_\_\_. (Round off to one decimal place)

Q42. One liter of a buffer solution contains 0.004 mole of acetic acid ( $pK_a = 4.76$ ) and 0.4 mole of sodium acetate. The pH of the solution is \_\_\_\_\_\_. (Round off to two decimal places)

Q43. The limiting molar conductivity of  $La^{3+}$  and  $Cl^-$  ions in aqueous medium at 298 K are 209.10  $\times 10^{-4}$  and 76.35  $\times 10^{-4}$  S m<sup>2</sup> mol<sup>-1</sup>, respectively. The transport number of  $Cl^-$  in an infinitely dilute aqueous solution of  $LaCl_3$  at 298 K is \_\_\_\_\_\_. (Round off to two decimal places)

Q44. The magnetic field strength required to excite an isolated proton to its higher spin state with an electromagnetic radiation of 300 MHz is \_\_\_\_\_\_ Tesla. (Round off to two decimal places)

[Magnetogyric ratio of proton is  $26.75 \times 10^7 \text{ rad } \text{T}^{-1} \text{ s}^{-1}$ ]

Q45. The value of n for the complex  $[Fe(CO)_4(SiMe_3)]^n$  satisfying the 18-electron rule is

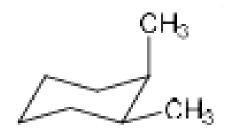
\_\_\_\_\_

Q46. In the structure of  $P_4O_{10}$ , the number of P-O-P bond(s) is \_\_\_\_\_\_

Q47. Number of vertices in an icosahedral closo-borane is \_\_\_\_\_

Q48. Based on the information given below, the isoelectric point (pI) of lysine is

\_\_\_\_\_. (Round off to one decimal place)


$$H_3N$$
 $\longrightarrow MH_3 \odot H_3N$ 
 $\longrightarrow MH_3 \odot H_3N$ 
 $\longrightarrow MH_3 \odot M$ 

$$H_2N$$
 $\stackrel{N}{\longrightarrow} H_2 \stackrel{\Theta}{\longrightarrow} O$ 
 $\stackrel{O}{\longrightarrow} H_3O \stackrel{\Theta}{\longrightarrow} O$ 
 $\stackrel{N}{\longrightarrow} H_2 \stackrel{\Theta}{\longrightarrow} O$ 
 $\stackrel{N}{\longrightarrow} H_2 \stackrel{\Theta}{\longrightarrow} O$ 

The pK<sub>a</sub>1 = 2.2 and pK<sub>a</sub>2 = 9.1 and pK<sub>a</sub>3 = 10.5.

Q49. (R)-2-methyl-1-butanol has a specific rotation of  $+13.5^{\circ}$ . The specific rotation of 2-methyl-1-butanol containing 40% of the (S)-enantiomer is \_\_\_\_\_. (Round off to one decimal place)

Q50. The number of gauche-butane interaction(s) in the following compound is \_\_\_\_\_



Q51. The ionization energy of hydrogen atom is 13.6 eV and the first ionization energy of sodium atom is 5.1 eV. The effective nuclear charge experienced by the valence electron of sodium atom is \_\_\_\_\_\_. (Round off to one decimal place)

Q52. One mole of an ideal gas is subjected to an isothermal increase in pressure from 100 kPa to 1000 kPa at 300 K. The change in Gibbs free energy of the system is  $\_\_\_$ kJ mol $^{-1}$ . (Round off to one decimal place)

[Given: Gas constant (R) =  $8.3 \text{ J K}^{-1} \text{ mol}^{-1}$ ]

Q53. One liter of an aqueous urea solution contains 6 g of urea. The osmotic pressure of the solution at 300 K (assuming an ideal behavior) is \_\_\_\_\_ kPa. (Round off to one decimal place)

[Given: Molecular weight of urea = 60, gas constant (R) =  $8.3 \text{ J K}^{-1} \text{ mol}^{-1}$ ]

Q54. A first order reflection of X-ray from  $\{220\}$  plane of copper crystal is observed at a glancing angle of  $22^{\circ}$ . The wavelength of the X-ray used is \_\_\_\_\_ pm. (Round off to one decimal place)

[Given: Copper forms fcc crystal with unit cell edge length of 361 pm.]

Q55. The collision flux of a monoatomic gas on copper surface is  $3.0 \times 10^{18}$  m<sup>-2</sup> s<sup>-1</sup>. Note that copper surface forms a square lattice with lattice constant of 210 pm. If the sticking coefficient of the atom with copper is 1.0, the time taken by the gas to form a complete monolayer on the surface is \_\_\_\_\_\_ s. (Round off to one decimal place)

### Q56. The turnover frequency (TOF) for the catalytic reaction,

$$A \; (1 \; mol) \xrightarrow{Catalyst \; (0.01 \; mol)} B$$

with 90% yield of the product is \_\_\_\_\_ hour<sup>-1</sup>. (Round off to the nearest integer)

Q57. A radioactive sample decays to 10% of its initial amount in 4600 minutes. The rate constant of this process is \_\_\_\_\_ hour^{-1}. (Round off to two decimal places)

Q58. Given that the radius of the first Bohr orbit of hydrogen atom is 53 pm, the radius of its third Bohr orbit is \_\_\_\_\_ pm. (Round off to the nearest integer)

(MW = Molecular weight)

Q60. Assume that the reaction of MeMgBr with ethylacetate proceeds with 100% conversion to give tert-butanol. The volume of 0.2 M solution of MeMgBr required to

| convert 10 mL of a 0.025 M solution of ethylacetate to tert-butanol is mL. |  |
|----------------------------------------------------------------------------|--|
| (Round off to one decimal place)                                           |  |
|                                                                            |  |
|                                                                            |  |