IIT JAM 2020 Mathematics (MA) Question Paper

Time Allowed :3 Hours | **Maximum Marks :**100 | **Total questions :**60

General Instructions

General Instructions:

- i) All questions are compulsory. Marks allotted to each question are indicated in the margin.
- ii) Answers must be precise and to the point.
- iii) In numerical questions, all steps of calculation should be shown clearly.
- iv) Use of non-programmable scientific calculators is permitted.
- v) Wherever necessary, write balanced chemical equations with proper symbols and units.
- vi) Rough work should be done only in the space provided in the question paper.

1. Let $s_n = 1 + \frac{(-1)^n}{n}$, $n \in \mathbb{N}$. Then the sequence $\{s_n\}$ is

- (A) monotonically increasing and is convergent to 1
- (B) monotonically decreasing and is convergent to 1
- (C) neither monotonically increasing nor monotonically decreasing but is convergent to 1
- (D) divergent

2. Let $f(x) = 2x^3 - 9x^2 + 7$. Which of the following is true?

- (A) f is one-one in the interval [-1, 1]
- (B) f is one-one in the interval [2, 4]
- (C) f is NOT one-one in the interval [-4, 0]
- (D) f is NOT one-one in the interval [0, 4]

3. Which of the following is FALSE?

(A)
$$\lim_{x\to\infty} \frac{x}{e^x} = 0$$

(B)
$$\lim_{x\to 0^+} \frac{1}{xe^{1/x}} = 0$$

(B)
$$\lim_{x\to 0^+} \frac{1}{xe^{1/x}} = 0$$

(C) $\lim_{x\to 0^+} \frac{\sin x}{1+2x} = 0$
(D) $\lim_{x\to 0^+} \frac{1}{1+2x} = 0$

(D)
$$\lim_{x\to 0^+} \frac{\cos x}{1+2x} = 0$$

4. Let $g:\mathbb{R}\to\mathbb{R}$ be a twice differentiable function. If f(x,y)=g(y)+xg'(y), then

(A)
$$\frac{\partial f}{\partial x} + y \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial f}{\partial y}$$

(B)
$$\frac{\partial f}{\partial y} + y \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial f}{\partial x}$$

(C)
$$\frac{\partial f}{\partial x} + \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial f}{\partial y}$$

(D)
$$\frac{\partial f}{\partial y} + x \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial f}{\partial x}$$

5. If the equation of the tangent plane to the surface $z=16-x^2-y^2$ at the point

P(1,3,6) is ax + by + cz + d = 0, then the value of |d| is

- (A) 16
- (B) 26
- (C) 36
- (D) 46

6. If the directional derivative of the function $z=y^2e^{2x}$ at (2,-1) along the unit vector

 $ec{b}=lpha\hat{i}+eta\hat{j}$ is zero, then |lpha+eta| equals

- $(A) \frac{1}{2\sqrt{2}}$ $(B) \frac{1}{\sqrt{2}}$
- (C) $\sqrt{2}$
- (D) $2\sqrt{2}$

7. If $u=x^3$ and $v=y^2$ transform the differential equation $3x^5dx-y(y^2-x^3)dy=0$ to

 $\frac{dv}{du} = \frac{\alpha u}{2(u-v)},$ then α is

- (A) 4
- (B) 2
- (C) -2
- (D) -4

8. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by T(x,y) = (-x,y). Then

- (A) $T^{2k} = T$ for all $k \ge 1$
- (B) $T^{2k+1} = -T$ for all $k \ge 1$
- (C) The range of T^2 is a proper subspace of the range of T
- (D) The range of T^2 is equal to the range of T

9. The radius of convergence of the power series $\sum_{n=1}^{\infty} \left(\frac{n+2}{n}\right)^{n^2} x^n$ is

- (A) e^2
- (B) $\frac{1}{\sqrt{e}}$ (C) $\frac{1}{e}$ (D) $\frac{1}{e^2}$

10. Consider the following group under matrix multiplication:

$$H = \left\{ \begin{bmatrix} 1 & p & q \\ 0 & 1 & r \\ 0 & 0 & 1 \end{bmatrix} : p, q, r \in \mathbb{R} \right\}.$$

Then the center of the group is isomorphic to

- (A) $(\mathbb{R} \setminus \{0\}, \times)$
- (B) $(\mathbb{R}, +)$
- (C) $(\mathbb{R}^2, +)$
- (D) $(\mathbb{R}, +) \times (\mathbb{R} \setminus \{0\}, \times)$

11. Let $\{a_n\}$ be a sequence of positive real numbers. Suppose that $l = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$. Which of the following is true?

- (A) If l = 1, then $\lim_{n \to \infty} a_n = 1$
- (B) If l = 1, then $\lim_{n \to \infty} a_n = 0$
- (C) If l < 1, then $\lim_{n \to \infty} a_n = 1$
- (D) If l < 1, then $\lim_{n \to \infty} a_n = 0$

12. Define $s_1 = \alpha > 0$ and $s_{n+1} = \sqrt{\frac{1 + s_n^2}{1 + \alpha}}$, $n \ge 1$. Which of the following is true?

- (A) If $s_n^2 < \frac{1}{\alpha}$, then $\{s_n\}$ is monotonically increasing and $\lim_{n \to \infty} s_n = \frac{1}{\sqrt{\alpha}}$ (B) If $s_n^2 < \frac{1}{\alpha}$, then $\{s_n\}$ is monotonically decreasing and $\lim_{n \to \infty} s_n = \frac{1}{\alpha}$ (C) If $s_n^2 > \frac{1}{\alpha}$, then $\{s_n\}$ is monotonically increasing and $\lim_{n \to \infty} s_n = \frac{1}{\sqrt{\alpha}}$

- (D) If $s_n^2 > \frac{1}{\alpha}$, then $\{s_n\}$ is monotonically decreasing and $\lim_{n \to \infty} s_n = \frac{1}{\sqrt{\alpha}}$

13. Suppose that S is the sum of a convergent series $\sum_{n=1}^{\infty} a_n$. Define $t_n = a_n + a_{n+1} + a_{n+2}$.

Then the series $\sum_{n=0}^{\infty} t_n$

- (A) diverges
- (B) converges to $3S a_1 a_2$
- (C) converges to $3S a_1 2a_2$
- (D) converges to $3S 2a_1 a_2$

14. Let $a \in \mathbb{R}$. If $f(x) = \begin{cases} (x+a)^2, & x \le 0 \\ (x+a)^3, & x > 0 \end{cases}$, then

- (A) $\frac{d^2f}{dx^2}$ does not exist at x = 0 for any value of a
- (B) $\frac{d^2f}{dx^2}$ exists at x = 0 for exactly one value of a
- (C) $\frac{d^2f}{dx^2}$ exists at x = 0 for exactly two values of a
- (D) $\frac{d^2f}{dx^2}$ exists at x = 0 for infinitely many values of a

15. Let $f(x,y) = \begin{cases} x^2 \sin \frac{1}{x} + y^2 \sin \frac{1}{y}, & xy \neq 0 \\ x^2 \sin \frac{1}{x}, & x \neq 0, y = 0 \\ y^2 \sin \frac{1}{y}, & y \neq 0, x = 0 \\ 0, & x = y = 0 \end{cases}$. Which of the following is true at

(0,0)?

- (A) f is not continuous
- (B) $\frac{\partial f}{\partial x}$ is continuous but $\frac{\partial f}{\partial y}$ is not continuous
- (C) f is not differentiable
- (D) f is differentiable but both $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are not continuous

16. Let S be the surface of the portion of the sphere with centre at the origin and radius 4, above the xy-plane. Let $\vec{F} = y\hat{i} - x\hat{j} + yxz^3\hat{k}$. If \hat{n} is the unit outward normal to S, then

$$\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} \, dS$$

equals

- (A) -32π
- (B) -16π
- (C) 16π
- (D) 32π

17. Let $f(x, y, z) = x^3 + y^3 + z^3 - 3xyz$. A point at which the gradient of f is equal to zero is

- (A) (-1, 1, -1)
- (B) (-1, -1, -1)
- (C) (-1, 1, 1)
- (D) (1, -1, 1)

18. The area bounded by the curves $x^2 + y^2 = 2x$ and $x^2 + y^2 = 4x$, and the straight lines y = x and y = 0 is

- (A) $3\left(\frac{\pi}{2} + \frac{1}{4}\right)$ (B) $3\left(\frac{\pi}{4} + \frac{1}{2}\right)$ (C) $2\left(\frac{\pi}{4} + \frac{1}{3}\right)$ (D) $2\left(\frac{\pi}{3} + \frac{1}{4}\right)$

19. Let M be a real 6×6 matrix. Let 2 and -1 be two eigenvalues of M. If $M^5 = aI + bM$, where $a, b \in \mathbb{R}$, then

- (A) a = 10, b = 11
- **(B)** a = -11, b = 10
- (C) a = -10, b = 11
- (D) a = 10, b = -11

20. Let M be an $n \times n$ ($n \ge 2$) non-zero real matrix with $M^2 = 0$ and let $\alpha \in \mathbb{R} \setminus \{0\}$. **Then**

- (A) α is the only eigenvalue of $(M + \alpha I)$ and $(M \alpha I)$
- (B) α is the only eigenvalue of $(M + \alpha I)$ and $(\alpha I M)$
- (C) $-\alpha$ is the only eigenvalue of $(M + \alpha I)$ and $(M \alpha I)$
- (D) $-\alpha$ is the only eigenvalue of $(M + \alpha I)$ and $(I \alpha M)$

21. Consider the differential equation $L[y] = (y - y^2)dx + xdy = 0$. The function f(x, y) is said to be an integrating factor of the equation if f(x,y)L[y]=0 becomes exact. If $f(x,y) = \frac{1}{x^2 y^2}$, then

(A) f is an integrating factor and y = 1 - kxy, $k \in \mathbb{R}$ is NOT its general solution

- (B) f is an integrating factor and y = -1 + kxy, $k \in \mathbb{R}$ is its general solution
- (C) f is an integrating factor and y = -1 + kxy, $k \in \mathbb{R}$ is NOT its general solution
- (D) f is NOT an integrating factor and y = 1 + kxy, $k \in \mathbb{R}$ is its general solution

22. A solution of the differential equation $2x^2\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} - y = 0$, x > 0 that passes through the point (1, 1) is

- (A) $y = \frac{1}{x}$ (B) $y = \frac{1}{x^2}$ (C) $y = \frac{1}{\sqrt{x}}$ (D) $y = \frac{1}{x^{3/2}}$

23. Let M be a 4×3 real matrix and let $\{e_1, e_2, e_3\}$ be the standard basis of \mathbb{R}^3 . Which of the following is true?

- (A) If rank(M) = 1, then $\{Me_1, Me_2\}$ is a linearly independent set
- (B) If rank(M) = 2, then $\{Me_1, Me_2\}$ is a linearly independent set
- (C) If rank(M) = 2, then $\{Me_1, Me_3\}$ is a linearly independent set
- (D) If rank(M) = 3, then $\{Me_1, Me_3\}$ is a linearly independent set

24. The value of the triple integral $\iiint_V (x^2y+1)\,dx\,dy\,dz$, where V is the region given by $x^2 + y^2 \le 1, \ 0 \le z \le 2,$ is

- (A) π
- (B) 2π
- (C) 3π
- (D) 4π

25. Let S be the part of the cone $z^2 = x^2 + y^2$ between the planes z = 0 and z = 1. Then the value of the surface integral $\iint_S (x^2+y^2) \, dS$ is

- (A) π
- (B) $\frac{\pi}{\sqrt{2}}$ (C) $\frac{\pi}{\sqrt{3}}$ (D) $\frac{\pi}{2}$

26. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}, \ x, y, z \in \mathbb{R}$. Which of the following is FALSE?

- (A) $\nabla(\vec{a}\cdot\vec{r}) = \vec{a}$
- **(B)** $\nabla \cdot (\vec{a} \times \vec{r}) = 0$
- (C) $\nabla \times (\vec{a} \times \vec{r}) = \vec{a}$
- (D) $\nabla \cdot ((\vec{a} \cdot \vec{r})\vec{r}) = 4(\vec{a} \cdot \vec{r})$

27. Let $D = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$ and $f: D \to \mathbb{R}$ be a non-constant continuous function. Which of the following is TRUE?

- (A) The range of f is unbounded
- (B) The range of f is a union of open intervals
- (C) The range of f is a closed interval
- (D) The range of f is a union of at least two disjoint closed intervals

28. Let $f:[0,1]\to\mathbb{R}$ be a continuous function such that $f\left(\frac{1}{2}\right)=-\frac{1}{2}$ and

$$|f(x) - f(y) - (x - y)| \le \sin(|x - y|^2)$$

for all $x, y \in [0, 1]$. Then $\int_0^1 f(x) dx$ is

$$(A) - \frac{1}{2}$$

(B)
$$-\frac{1}{4}$$

(C) $\frac{1}{4}$
(D) $\frac{1}{2}$

(C)
$$\frac{1}{4}$$

(D)
$$\frac{1}{2}$$

29. Let $S^1=\{z\in\mathbb{C}:|z|=1\}$ be the circle group under multiplication and $i=\sqrt{-1}$. Then the set $\{\theta \in \mathbb{R} : (e^{i2\pi\theta}) \text{ is infinite}\}$ is

- (A) empty
- (B) non-empty and finite
- (C) countably infinite
- (D) uncountable

30. Let $F = \{\omega \in \mathbb{C} : \omega^{2020} = 1\}$. Consider the groups

$$G = \left\{ \begin{pmatrix} \omega & z \\ 0 & 1 \end{pmatrix} : \omega \in F, z \in \mathbb{C} \right\} \quad \text{ and } \quad H = \left\{ \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} : z \in \mathbb{C} \right\}$$

under matrix multiplication. Then the number of cosets of H in G is

- (A) 1010
- (B) 2019
- (C) 2020
- (D) infinite

31. Let $a, b, c \in \mathbb{R}$ such that a < b < c. Which of the following is/are true for any continuous function $f: \mathbb{R} \to \mathbb{R}$ satisfying f(a) = b, f(b) = c and f(c) = a?

- (A) There exists $\alpha \in (a, c)$ such that $f(\alpha) = \alpha$
- (B) There exists $\beta \in (a, b)$ such that $f(\beta) = \beta$
- (C) There exists $\gamma \in (a,b)$ such that $(f \circ f)(\gamma) = \gamma$

(D) There exists $\delta \in (a,c)$ such that $(f \circ f \circ f)(\delta) = \delta$

32. If
$$s_n = \frac{(-1)^n}{2^n + 3}$$
 and $t_n = \frac{(-1)^n}{4n - 1}$, $n = 0, 1, 2, \dots$, then

- (A) $\sum_{n=0}^{\infty} s_n$ is absolutely convergent
- (B) $\sum_{n=0}^{\infty} t_n$ is absolutely convergent
- (C) $\sum_{n=0}^{\infty} s_n$ is conditionally convergent
- (D) $\sum_{n=0}^{\infty} t_n$ is conditionally convergent

33. Let $a, b \in \mathbb{R}$ and a < b. Which of the following statement(s) is/are true?

- (A) There exists a continuous function $f:[a,b]\to(a,b)$ such that f is one-one
- (B) There exists a continuous function $f:[a,b]\to(a,b)$ such that f is onto
- (C) There exists a continuous function $f:(a,b)\to [a,b]$ such that f is one-one
- (D) There exists a continuous function $f:(a,b)\to [a,b]$ such that f is onto

34. Let V be a non-zero vector space over a field F. Let $S \subset V$ be a non-empty set.

Consider the following properties of S:

- (I) For any vector space W over F, any map $f: S \to W$ extends to a linear map from V to W.
- (II) For any vector space W over F and any two linear maps $f,g:V\to W$ satisfying
- f(s) = g(s) for all $s \in S$, we have f(v) = g(v) for all $v \in V$.
- (III) S is linearly independent.
- (IV) The span of S is V.

Which of the following statement(s) is/are true?

- (A) (I) implies (IV)
- (B) (I) implies (III)
- (C) (II) implies (III)
- (D) (II) implies (IV)

35. Let $L[y] = x^2 \frac{d^2y}{dx^2} + px \frac{dy}{dx} + qy$, where p, q are real constants. Let $y_1(x)$ and $y_2(x)$ be two solutions of L[y] = 0, x > 0, that satisfy $y_1(x_0) = 1$, $y_1'(x_0) = 0$, $y_2(x_0) = 0$, $y_2'(x_0) = 1$ for some $x_0 > 0$. Then,

- (A) $y_1(x)$ is not a constant multiple of $y_2(x)$
- (B) $y_1(x)$ is a constant multiple of $y_2(x)$
- (C) $1, \ln x$ are solutions of L[y] = 0 when p = 1, q = 0
- (D) x, $\ln x$ are solutions of L[y] = 0 when $p + q \neq 0$

36. Consider the following system of linear equations:

$$\begin{cases} x + y + 5z = 3, \\ x + 2y + mz = 5, \\ x + 2y + 4z = k. \end{cases}$$

The system is consistent if

- (A) $m \neq 4$
- (B) $k \neq 5$
- (C) m = 4
- (D) k = 5

37. Let $a = \lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2} \right)$ and $b = \lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right)$.

Which of the following is/are true?

- (A) a > b
- (B) a < b
- (C) $ab = \ln \sqrt{2}$
- (D) $\frac{a}{b} = \ln \sqrt{2}$

38. Let S be that part of the surface of the paraboloid $z=16-x^2-y^2$ which is above the plane z=0 and D be its projection on the xy-plane. Then the area of S equals

(A)
$$\iint_D \sqrt{1 + 4(x^2 + y^2)} \, dx \, dy$$

(B)
$$\iint_D \sqrt{1 + 2(x^2 + y^2)} \, dx \, dy$$

(C)
$$\int_0^{2\pi} \int_0^4 \sqrt{1+4r^2} \, dr \, d\theta$$

(D)
$$\int_0^{2\pi} \int_0^4 \sqrt{1 + 4r^2} \, r \, dr \, d\theta$$

39. Let f be a real-valued function of a real variable, such that $|f^{(n)}(0)| \le K$ for all $n \in \mathbb{N}$, where K > 0. Which of the following is/are true?

(A)
$$\frac{|f^{(n)}(0)|^{1/n}}{n!} \to 0 \text{ as } n \to \infty$$

(B)
$$\frac{|f^{(n)}(0)|^{1/n}}{n!} \to \infty \text{ as } n \to \infty$$

(C)
$$f^{(n)}(x)$$
 exists for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$

(D)
$$\sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{(n-1)!}$$
 is absolutely convergent

40. Let G be a group with identity e. Let H be an abelian non-trivial proper subgroup of G with the property that $H \cap gHg^{-1} = \{e\}$ for all $g \notin H$. If

$$K = \{g \in G : gh = hg \text{ for all } h \in H\}, \text{ then }$$

- (A) K is a proper subgroup of H
- (B) H is a proper subgroup of K
- (C) K = H
- (D) There exists no abelian subgroup $L \subseteq G$ such that K is a proper subgroup of L

41. Let $x_n = n^{1/n}$ and $y_n = e^{1-x_n}, n \in \mathbb{N}$. Then the value of $\lim_{n\to\infty} y_n$ is

42. Let $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ and S be the sphere given by $(x-2)^2 + (y-2)^2 + (z-2)^2 = 4$. If \hat{n} is the unit outward normal to S, then $\frac{1}{\pi} \iint_S \vec{F} \cdot \hat{n} \, dS$ is

- **43.** Let $f: \mathbb{R} \to \mathbb{R}$ be such that f, f', f'' are continuous with f > 0, f' > 0, f'' > 0. Then $\lim_{x \to -\infty} \frac{f(x) + f'(x)}{2}$ is
- **44.** Let $S=\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$ and $f:S\to\mathbb{R}$ be defined by $f(x)=\frac{1}{x}.$ Then

$$\max\left\{\delta:|x-\tfrac{1}{3}|<\delta\Rightarrow|f(x)-f(\tfrac{1}{3})|<1\right\}$$

is (rounded off to two decimal places).

45. Let $f(x,y)=e^x\sin y,\ x=t^3+1,\ y=t^4+t.$ Then $\frac{df}{dt}$ at t=0 is (rounded off to two decimal places).

46. Consider the differential equation

$$\frac{dy}{dx} + 10y = f(x), \quad x > 0,$$

where f(x) is a continuous function such that $\lim_{x\to\infty} f(x) = 1$. Then the value of $\lim_{x\to\infty} y(x)$ is

47. If
$$\int_0^1 \int_{2y}^2 e^{x^2} dx dy = k(e^4 - 1)$$
, then k equals

48. Let f(x,y) = 0 be a solution of the homogeneous differential equation (2x + 5y)dx - (x + 3y)dy = 0.

If $f(x+\alpha,y-3)=0$ is a solution of (2x+5y-1)dx+(2-x-3y)dy=0, then the value of α is

49. Consider the real vector space $P_{2020} = \left\{ \sum_{i=0}^{n} a_i x^i : a_i \in \mathbb{R}, \ 0 \le n \le 2020 \right\}$. Let W be the subspace given by

$$W = \left\{ \sum_{i=0}^{n} a_i x^i \in P_{2020} : a_i = 0 \text{ for all odd } i \right\}.$$

Then the dimension of W is

- 50. Let $\phi: S_3 \to S_1$ be a non-trivial non-injective group homomorphism. Then the number of elements in the kernel of ϕ is
- 51. The sum of the series

$$\frac{1}{2(2^2-1)} + \frac{1}{3(3^2-1)} + \frac{1}{4(4^2-1)} + \cdots$$

is

- **52.** Consider the expansion of the function $f(x)=\frac{3}{(1-x)(1+2x)}$ in powers of x, valid in $|x|<\frac{1}{2}$. Then the coefficient of x^4 is
- **53.** The minimum value of the function $f(x, y) = x^2 + xy + y^2 3x 6y + 11$ is
- **54.** Let $f(x) = \sqrt{x} + \alpha x, \ x > 0$ and

$$g(x) = a_0 + a_1(x-1) + a_2(x-1)^2$$

be the sum of the first three terms of the Taylor series of f(x) around x=1. If g(3)=3, then α is

55. Let C be the boundary of the square with vertices (0,0),(1,0),(1,1),(0,1) oriented counterclockwise. Then the value of the line integral

$$\oint_C x^2 y^2 dx + (x^2 - y^2) dy$$

is (rounded off to two decimal places).

56. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with f'(x) = f(x) for all x. Suppose that $f(\alpha x)$ and $f(\beta x)$ are two non-zero solutions of the differential equation

$$4\frac{d^2y}{dx^2} - p\frac{dy}{dx} + 3y = 0$$

satisfying $f(\alpha x)f(\beta x)=f(2x)$ and $f(\alpha x)f(-\beta x)=f(x)$. Then, the value of p is

57. If $x^2 + xy^2 = c$, where $c \in \mathbb{R}$, is the general solution of the exact differential equation

$$M(x,y) dx + 2xy dy = 0,$$

then M(1,1) is

58. Let

$$M = \begin{bmatrix} 9 & 2 & 7 & 1 \\ 0 & 7 & 2 & 1 \\ 0 & 0 & 11 & 6 \\ 0 & 0 & -5 & 0 \end{bmatrix}.$$

Then, the value of $\det((8I-M)^3)$ is

59. Let $T: \mathbb{R}^7 \to \mathbb{R}^7$ be a linear transformation with Nullity(T)=2. Then, the minimum possible value for Rank (T^2) is