IIT JAM 2021 Chemistry (CY) Question Paper

Time Allowed :3 Hours | **Maximum Marks :**100 | **Total questions :**60

General Instructions

General Instructions:

- i) All questions are compulsory. Marks allotted to each question are indicated in the margin.
- ii) Answers must be precise and to the point.
- iii) In numerical questions, all steps of calculation should be shown clearly.
- iv) Use of non-programmable scientific calculators is permitted.
- v) Wherever necessary, write balanced chemical equations with proper symbols and units.
- vi) Rough work should be done only in the space provided in the question paper.

Q.1 The CORRECT order of pK_a for the compounds I to IV in water at 298 K is

II.
$$HCo(CO)_3(PPh_3)$$

III.
$$HCo(CO)_3(P(Ph)_3)$$

IV.
$$HCo(CO)_2(PPh_3)_2$$

- (A) I ; II ; III ; IV
- (**B**) IV ; III ; II ; I
- I \dot{i} III \dot{i} III \dot{i} VI (3)
- VI j II j III j I (**d**)

Q.2 For Na^+ , Mg^{2+} , Al^{3+} and F^- , the CORRECT order of ionic radii is

- (A) Al^{3+} \dot{c} Mg^{2+} \dot{c} Na^+ \dot{c} F^-
- **(B)** Al^{3+} ; Na^+ ; Mg^{2+} ; F^-
- (C) $F^ \stackrel{.}{\dot{c}}$ Na^+ $\stackrel{.}{\dot{c}}$ Mg^{2+} $\stackrel{.}{\dot{c}}$ Al^{3+}
- (D) Na $^+$; F $^-$; Mg $^{2+}$; Al $^{3+}$

Q.3 Spin-only magnetic moments (in BM) of [NiCl₂(PPh₃)₂] and [Mn(NCS)₆]⁴⁻, respectively, are

- (A) 0.00 and 5.92
- **(B)** 2.83 and 1.89
- (C) 0.00 and 1.89
- **(D)** 2.83 and 5.92

Q.4 Two sets of quantum numbers with the same number of radial nodes are

(A) n = 3; l = 0; $m_l = 0$ and n = 2; l = 0; $m_l = 0$

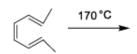
(B)
$$n = 3$$
; $1 = 1$; $m_l = 1$ and $n = 2$; $1 = 1$; $m_l = 0$

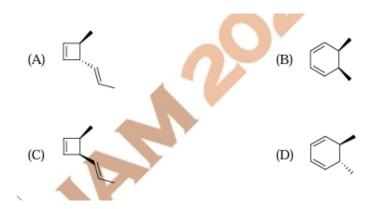
(C)
$$n = 3$$
; $1 = 2$; $m_l = 0$ and $n = 2$; $1 = 1$; $m_l = 0$

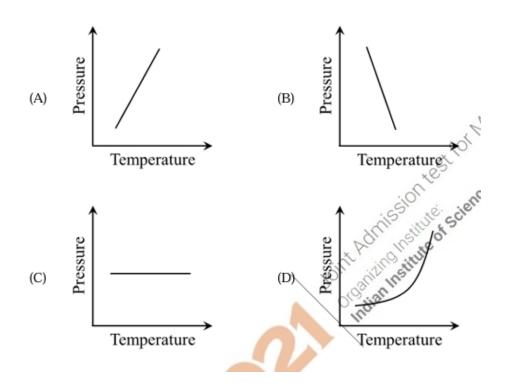
(D)
$$n = 3$$
; $l = 1$; $m_l = -1$ and $n = 2$; $l = 1$; $m_l = 0$

Q.5 The major product formed in the following reaction is

Q.6 The major product formed in the following reaction is


HCN, KCN


Q.7 A compound shows 1 H NMR peaks at δ -values (in ppm) 7.31 (2H), 7.21 (2H), 4.5 (2H) and 2.3 (3H). The structure of the compound is


Q.8 The major product formed in the following reaction is

Q.9 A pure substance M has lesser density in solid state than in liquid state. The ΔS_{fusion} of M is +25 J K⁻¹ mol⁻¹. The CORRECT representative

Pressure–Temperature diagram for the fusion of M is

Q.10 Among the following, the matrices with non-zero determinant are

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 3 & 1 & 3 & 0 \\ 4 & 3 & 1 & 4 \end{bmatrix}, \quad S = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 2 \\ 3 & 4 & 1 & 3 \\ 4 & 1 & 2 & 4 \end{bmatrix}$$

- (A) P, Q and R
- **(B)** P, R and S
- (C) P, Q and S
- (D) Q, R and S

Q.11 Reaction of BCl_3 with NH_4Cl at 140 °C produces compound P. Further, P reacts with $NaBH_4$ to give a colorless liquid Q. The reaction of Q with H_2O at 100 °C produces compound R and a diatomic gas S. Among the following, the CORRECT statement is

(A) P is $B_3N_3H_6$

- **(B)** R is $[B(OH)NH]_3$
- (C) Q is $[BCINH]_3$
- **(D)** S is Cl₂

Q.12 The complex that does NOT obey the 18-electron rule is (Given: Atomic numbers of Ti, Mn, Ta and Ir are 22, 25, 73 and 77, respectively)

- **(A)** $[(\eta^5 C_5 H_5) Ti(CO)_4]^-$
- **(B)** $[Mn(SnPh_3)_2(CO)_2]$
- (C) $[(\eta^5 C_5 H_5) Ir(CH_2)(PMe_3)]$
- **(D)** $[TaCl_3(PEt_3)_2(CHCMe_3)]$

Q.13 Hybridization of the central atoms in I_3^- , ClF_3 and SF_4 , respectively, are

- (A) sp^3d , sp^2 and dsp^2
- **(B)** sp, sp 3 d and dsp 2
- (C) sp^3d , sp^3d and sp^3d
- **(D)** sp, sp 2 and sp 3 d

Q.14 Reaction of $[Ni(CN)_4]^{2-}$ with metallic potassium in liquid ammonia at -33 °C yields complex E. The geometry and magnetic behavior of E, respectively, are

- (A) Square planar and diamagnetic
- **(B)** Tetrahedral and diamagnetic
- (C) Octahedral and paramagnetic
- (**D**) Square pyramidal and paramagnetic

Q.15 The decreasing order of C=C bond length in the following complexes is

 $I: [Cl_3Pt(CH_2=CH_2)]^- \quad II: [Cl_3Pt(C(CN)_2=C(CN)_2)]^- \quad III: [Cl_3Pt(CF_2=CH_2)]^- \quad IV: [Cl_3Pt(CF_2=CH_2)$

- (A) II ; I ; III ; IV
- (**B**) IV ; II ; I ; III
- (C) II ; IV ; III ; I
- III j II j I j VI (**d**)

Q.16 The CORRECT combination for metalloenzymes given in Column I with their catalytic reactions in Column II is

Column II Column II

- (i) Cytochrome P-450 (K) $2H_2O_2 \rightarrow 2H_2O + O_2$
- (ii) Catalase (L) R-CH₂OH + $O_2 \rightarrow$ R-CHO + H_2O_2
- (iii) Galactose oxidase (M) $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$
- (iv) Cytochrome c oxidase (N) R-H + $O_2 + 2e^- + 2H^+ \rightarrow \text{R-OH} + H_2O$
- $\textbf{(A)} \ (i) (M); \ (ii) (N); \ (iii) (K); \ (iv) (L)$
- $\textbf{(B)} \ (i) (N); \ (ii) (L); \ (iii) (K); \ (iv) (M)$
- (C) (i)–(N); (ii)–(K); (iii)–(L); (iv)–(M)
- **(D)** (i)–(M); (ii)–(K); (iii)–(L); (iv)–(N)

Q.17 According to the crystal field theory, d–d transition observed in $[\text{Ti}(\text{H}_2\text{O})_6]^{3+}$ is

- (A) Laporte forbidden and spin forbidden
- (B) Laporte allowed and spin forbidden
- (C) Laporte allowed and spin allowed
- (D) Laporte forbidden and spin allowed

Q.18 The major product formed in the following reaction sequence is

$$(A) \qquad OH \qquad (B) \qquad H_3C \qquad CH_3 \qquad (B) \qquad OH \qquad (C) \qquad OH \qquad (D) \qquad (D) \qquad OH \qquad (D) \qquad (D) \qquad OH \qquad$$

Q.19 The products P, Q, R and S formed in the following reactions are

(A)
$$P = R = \mathcal{L}^{Q}$$
 COOH and $Q = S = \mathcal{L}^{Q}$

(B)
$$P = S =$$
 COOH and $Q = R =$ OH COOH

(C)
$$P = S = 0$$
 and $Q = R = 0$

Q.20 The major products E and F formed in the following reactions are

(A)
$$\mathbf{E} = \mathbf{Br} \underbrace{\begin{array}{c} \mathbf{N} \\ \mathbf{N} \\ \mathbf{H} \end{array}} \mathbf{Br} \quad \text{and} \quad \mathbf{F} = \underbrace{\begin{array}{c} \mathbf{Br} \\ \mathbf{N} \\ \mathbf{N} \end{array}} \mathbf{Br}$$

(B)
$$E = \bigvee_{\substack{N \\ H}} B_r$$
 and $F = \bigvee_{\substack{N \\ B_r}} B_r$

(C)
$$\mathbf{E} = \begin{bmatrix} \mathbf{Br} & \mathbf{Br} \\ \mathbf{N} \\ \mathbf{H} \end{bmatrix}$$
 and $\mathbf{F} = \begin{bmatrix} \mathbf{Br} \\ \mathbf{N} \\ \mathbf{N} \end{bmatrix}$

(D)
$$\mathbf{E} = \mathbf{Br} \mathbf{N} \mathbf{Rr} \mathbf{Br} \mathbf{Rr} \mathbf{F} = \mathbf{N} \mathbf{N} \mathbf{Rr} \mathbf$$

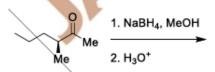
Q.21 The reaction that produces the following as a major product is

(B)

O

I. BuLi

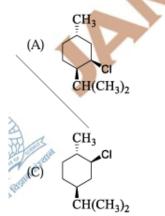
2. H₃CO


CHO

3. PhCOCI

4. Na/Hg

Lindlar's catalyst


Q.22 The major product formed in the following reaction is

$$(C) \qquad \underbrace{\stackrel{QH}{\stackrel{}{\longrightarrow}}}_{Me} \qquad \qquad (D) \qquad \underbrace{\stackrel{QH}{\stackrel{}{\longrightarrow}}}_{Me} \qquad \qquad \\$$

Q.23 The major product formed in the following reaction is

Q.24 In the following reaction, compound Q is

$$(D) \quad \overbrace{\bigcirc^{\text{CH}_3}_{\text{CH}(\text{CH}_3)_2}}^{\text{CH}_3}$$

Q.25 Monochromatic X-rays having energy 2.8×10^{-15} J diffracted (first order) from (200) plane of a cubic crystal at an angle 8.5°. The length of unit cell in Å of the crystal (rounded off to one decimal place) is

(Given: Planck's constant, $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}; c = 3.0 \times 10^8 \text{ m/s}$)

- **(A)** 2.4
- **(B)** 3.4
- **(C)** 4.8
- **(D)** 9.8

Q.26 For $\alpha > 0$, the value of the integral $\int_{-\infty}^{+\infty} x e^{-\alpha x^2} dx$ is

- (A) $\sqrt{\frac{\pi}{\alpha}}$
- **(B)** ∞
- $(\mathbf{C}) 0$
- **(D)** 1

Q.27 The volume correction factor for a non-ideal gas in terms of critical pressure (p_c) , critical molar volume (V_c) , critical temperature (T_c) , and gas constant (R) is

- $(\mathbf{A}) \; \frac{RT_c}{8p_c}$
- **(B)** $\frac{27R^2T_c^2}{64p_c}$
- (C) $\frac{8p_cV_c}{3T_c}$
- **(D)** $3p_cV_c^2$

Q.28 Half-life $(t_{1/2})$ of a chemical reaction varies with the initial concentration of reactant (A_0) as given below:

$$A_0 \; (\text{mol L}^{-1}) \quad 5 \times 10^{-2} \quad 4 \times 10^{-2}$$

$$3 \times 10^{-2}$$

$$t_{1/2} \; (\text{s}) \qquad 360 \qquad 450$$

$$600$$

The order of the reaction is

- (A) 0
- **(B)** 1
- **(C)** 2
- **(D)** 3

Q.29 The CORRECT statement regarding the molecules \mbox{BF}_3 and \mbox{CH}_4 is

- (A) Both BF₃ and CH₄ are microwave active
- (B) Both BF₃ and CH₄ are infrared active
- (C) CH₄ is microwave active and infrared inactive
- (**D**) BF₃ is microwave active and infrared active

Q.30 For the consecutive reaction,

$$X \xrightarrow{k_X} Y \xrightarrow{k_Y} Z$$

 C_0 is the initial concentration of X. The concentrations of X, Y, and Z at time t are C_X , C_Y , and C_Z , respectively. The expression for the concentration of Y at time t is

(A)
$$\frac{k_X C_0}{k_Y - k_X} \left(e^{-k_X t} - e^{-k_Y t} \right)$$

(B)
$$\frac{k_Y C_X}{k_Y - k_X} \left(e^{-k_X t} - e^{-k_Y t} \right)$$

(C) $\frac{k_X C_0}{k_Y - k_X} \left(e^{-k_Y t} - e^{-k_X t} \right)$

(C)
$$\frac{k_X C_0}{k_Y - k_Y} \left(e^{-k_Y t} - e^{-k_X t} \right)$$

(D)
$$\frac{\bar{k}_Y C_X}{k_Y - k_X} \left(e^{-k_Y t} - e^{-k_X t} \right)$$

Q.31 The CORRECT statement(s) about the species is (are)

- (A) $CpMo(CO)_3$ and $CpW(CO)_3$ are isoelectronic (where Cp is cyclopentadienyl)
- **(B)** CH₂⁻ and NH₂ are isolobal and isoelectronic
- (C) BH and CH are isolobal and isoelectronic
- (**D**) CH_3 and $Mn(CO)_5$ are isolobal

Q.32 The complex(es) that show(s) Jahn–Teller distortion is (are)

- (A) $[Co(CN)_5(H_2O)]^{3-}$
- **(B)** $[NiF_6]^{2-}$
- (C) $[Mn(CNMe)_6]^{2+}$
- **(D)** $[Co(en)_3]^{3+}$

Q.33 The CORRECT statement(s) about sodium nitroprusside is (are)

- (A) It is a paramagnetic complex
- **(B)** Nitroprusside ion is formed in the brown ring test for nitrates
- (C) It is used for the detection of S^{2-} in aqueous solution
- (**D**) It contains nitrosyl ligand as NO⁺

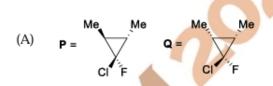
Q.34 The pigment responsible for red color in tomato has one functional group. The CORRECT statement(s) about this functional group is (are)

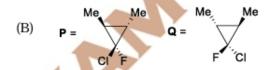
- (A) It decolorizes bromine water
- **(B)** It gives hydrazone derivative on reaction with 2,4-dinitrophenylhydrazine
- (C) It gets cleaved on reaction with ozone
- (**D**) It gives positive silver mirror test

Q.35 Hantzsch pyridine synthesis involves several steps. Some of those are

- (A) Aldol reaction
- (B) Darzens reaction
- (C) Mannich reaction
- (D) Michael addition

Q.36 The compound(s), which give(s) benzoic acid on oxidation with $KMnO_4$, is (are)

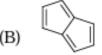

(A)


- (B) (E)
- (c) —
- (D) (D)

Q.37 The products P and Q formed in the reaction are

Me + :CFCl P + Q minor product(s)

Me (singlet state)


$$\mathbf{P} = \begin{array}{c} \mathbf{Me} & \mathbf{Me} \\ \mathbf{Cl} & \mathbf{F} \end{array}$$

 ${\bf Q.38}$ The functional group(s) in reducing sugar that tests positive with Tollen's reagent is (are)

- (A) Aldehyde
- (B) Ketone
- (C) Hemi-acetal
- (D) Acetal

Q.39 Among the following, the anti-aromatic compound(s) is (are)

(D)

Q.40 The CORRECT Maxwell relation(s) derived from the fundamental equations of thermodynamics is (are)

$$\mathbf{(A)} \left(\frac{\partial S}{\partial P} \right)_T = -\left(\frac{\partial V}{\partial T} \right)_P$$

(B)
$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$

$$(\mathbf{C}) \left(\frac{\partial T}{\partial V} \right)_{S}^{T} = \left(\frac{\partial P}{\partial S} \right)_{V}^{V}$$

$$(D) \left(\frac{\partial T}{\partial P}\right)_{S}^{S} = \left(\frac{\partial V}{\partial S}\right)_{P}^{V}$$

Q.41 The total number of optically active isomers of dichloridobis(glycinato)cobalt(III) ion is $___$.

Q.42 The total number of microstates possible for a d⁸ electronic configuration is ____.

Q.43 For the following fusion reaction,

$${}_{1}^{1}H + {}_{1}^{1}H \longrightarrow {}_{2}^{4}He + 2\beta^{+} + 2\nu + \gamma$$

The Q-value (energy of the reaction) in MeV (rounded off to one decimal place) is ____. (Given: Mass of 1 H nucleus = 1.007825 u; Mass of 4 He nucleus = 4.002604 u)

Q.44 MgO crystallizes as rock-salt structure with unit cell length 2.12 Å. From the electrostatic model, the calculated lattice energy in kJ mol^{-1} (rounded off to the nearest integer) is ____.

(Given: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$, M = 1.748, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ J}^{-1}\text{C}^2\text{m}^{-1}$, charge on electron = $1.602 \times 10^{-19} \text{ C}$)

Q.45 Calcium crystallizes in an fcc lattice of unit cell length 5.56 Å and density 1.4848 g cm $^{-3}$. The percentage of Schottky defects (rounded off to one decimal place) in the crystal is ____.

(Given: Atomic mass of Ca = 40 g mol⁻¹, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$)

Q.46 Among the following, the total number of terpenes (terpenoids) is ____.

Q.47 A buffer solution is prepared by mixing 0.3 M NH₃ and 0.1 M NH₄NO₃. If K_b of NH₃ is 1.6×10^{-5} at 25°C, then the pH (rounded off to one decimal place) of the buffer solution at 25°C is ____.

Q.48 The dissociation constant of a weak monoprotic acid is 1.6×10^{-5} and its molar conductance at infinite dilution is 360.5×10^{-4} mho m² mol⁻¹. For 0.01 M solution of this acid, the specific conductance is $n \times 10^{-2}$ mho m⁻¹. The value of n (rounded off to two decimal places) is ____.

Q.49 Adsorption of a toxic gas on 1.0 g activated charcoal is 0.75 cm 3 both at 25 atm, 140 K and at 30.0 atm, 280 K. The isosteric enthalpy for adsorption of the gas in kJ mol $^{-1}$ (rounded off to two decimal places) is ____.

(Given: $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)

Q.50 If the root mean square speed of hydrogen gas at a particular temperature is 1900 m s^{-1} , then the root mean square speed of nitrogen gas at the same temperature (rounded off to the nearest integer) is ____.

(**Given:** Atomic mass of $H = 1 \text{ g mol}^{-1}$; Atomic mass of $N = 14 \text{ g mol}^{-1}$)

Q.51 If the crystal field splitting energy of $[Co(NH_3)_6]^{2+}$ is 5900 cm⁻¹, then the magnitude of its crystal field stabilization energy, in kJ mol⁻¹ (rounded off to one decimal place), is ____.

Q.52 A salt mixture (1.0 g) contains 25 wt% of MgSO₄ and 75 wt% of M₂SO₄. Aqueous solution of this salt mixture on treating with excess BaCl₂ solution results in the precipitation of 1.49 g of BaSO₄. The atomic mass of M (in g mol⁻¹) (rounded off to two decimal places) is $_{---}$.

Q.53 The intensity of a monochromatic visible light is reduced by 90% due to absorption on passing through a 5.0 mM solution of a compound. If the path length is 4 cm, then the molar extinction coefficient of the compound in M^{-1} cm⁻¹ is ____.

Q.54 The surface tension (γ) of a solution, prepared by mixing 0.02 mol of an organic acid in 1 L of pure water, is represented as

$$\gamma^* - \gamma = A\log(1 + Bc)$$

where γ^* is the surface tension of pure water, $A = 0.03 \,\mathrm{N\,m^{-1}}$, $B = 50 \,\mathrm{mol^{-1}\,L}$, and c is concentration in mol L⁻¹. The excess concentration of the organic acid at the surface of the liquid, determined by Gibbs adsorption equation at 300 K, is $n \times 10^{-6} \,\mathrm{mol\,m^{-2}}$. The value of n (rounded off to two decimal places) is ____.

Q.55 The separation of energy levels in the rotational spectrum of CO is 3.8626 cm $^{-1}$. The bond length (assume it does not change during rotation) of CO in Å (rounded off to two decimal places) is ____.

(Given: $h = 6.626 \times 10^{-34} \text{ J s}$; $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$; $c = 3.0 \times 10^8 \text{ m s}^{-1}$; atomic mass of C = 12 g mol⁻¹, atomic mass of O = 16 g mol⁻¹)

Q.56 A dilute solution prepared by dissolving a nonvolatile solute in one liter of water shows a depression in freezing point of 0.186 K. This solute neither dissociates nor associates in water. The boiling point of the solution in K (rounded off to three decimal places) is ____.

(Given: For pure water, $T_b = 373.15 \text{ K}$; $K_f = 1.86 \text{ K} \text{ mol kg}^{-1}$; $K_b = 0.51 \text{ K} \text{ mol kg}^{-1}$)

Q.57 The thermodynamic data at 298 K for the decomposition reaction of limestone at equilibrium is given below:

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

Thermodynamic quantity	CaCO ₃ (s)	CaO(s)	$\mathbf{CO}_2(\mathbf{g})$
ΔG_f° (kJ mol ⁻¹)	-1128.8	-604.0	-394.4
ΔH_f° (kJ mol ⁻¹)	-1206.9	-635.1	-393.5

The partial pressure of $CO_2(g)$ in atm evolved on heating limestone (rounded off to two decimal places) at 1200 K is ____.

(**Given:** $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)

Q.58 The mean ionic activity coefficient of 0.004 molal $CaCl_2$ in water at 298 K (rounded off to three decimal places) is ____.

(Given: Debye-Hückel constant for an aqueous solution at 298 K is 0.509 $kg^{1/2}$ mol^{-1/2})

Q.59 For the reaction,

$$Q+R[k_{-1}]k_1X\xrightarrow{k_2}P$$

Given: $k_1 = 2.5 \times 10^5 \text{ L mol}^{-1} \text{ s}^{-1}$, $k_{-1} = 1.0 \times 10^4 \text{ s}^{-1}$, and $k_2 = 10 \text{ s}^{-1}$. Under steady-state approximation, the rate constant for the overall reaction in L mol⁻¹ s⁻¹ (rounded off to the nearest integer) is ____.

Q.60 For the molecule

$$CH_3 - CH = CH - CH(OH) - CH = CH - CH = C(CH_3)_2$$

the number of all possible stereoisomers is ____.