IIT JAM 2021 Mathematical Statistics (MS) Question Paper

Time Allowed :3 Hours | **Maximum Marks :**100 | **Total questions :**60

General Instructions

General Instructions:

- i) All questions are compulsory. Marks allotted to each question are indicated in the margin.
- ii) Answers must be precise and to the point.
- iii) In numerical questions, all steps of calculation should be shown clearly.
- iv) Use of non-programmable scientific calculators is permitted.
- v) Wherever necessary, write balanced chemical equations with proper symbols and units.
- vi) Rough work should be done only in the space provided in the question paper.

1. The value of the limit

$$\lim_{n\to\infty} \left(\left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \cdots \left(1 + \frac{n}{n} \right) \right)^{\frac{1}{n}}$$

is equal to:

- (A) e
- (B) $\frac{1}{e}$
- (C) $\frac{3}{e}$
- (D) $\frac{4}{e}$

2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^7 + 5x^3 + 11x + 15$. Then, which of the following statements is TRUE?

- (A) f is both one-one and onto
- (B) f is neither one-one nor onto
- (C) f is one-one but NOT onto
- (D) f is onto but NOT one-one

3. The value of the limit

$$\lim_{x \to 0} \frac{e^{-3x} - e^x + 4x}{5(1 - \cos x)}$$

is equal to:

- (A) 1
- (B) 0
- (C) $\frac{2}{5}$
- (D) $\frac{8}{5}$

4. The value of the limit

$$\lim_{n \to \infty} \sum_{k=0}^{n} \binom{2n}{k} \frac{1}{4^n}$$

is equal to:

- (A) 1
- (B) $\frac{1}{2}$
- (C) 0
- (D) $\frac{1}{4}$

5. Let $\{X_n\}_{n\geq 1}$ be i.i.d. random variables with

$$f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

Then, the value of the limit

$$\lim_{n \to \infty} P\left(-\frac{1}{n} \sum_{i=1}^{n} \ln X_i \le 1 + \frac{1}{\sqrt{n}}\right)$$

is equal to:

- (A) $\frac{1}{2}$
- (B) $\Phi(1)$
- (C) 0
- (D) $\Phi(2)$

6. Let X be a U(0,1) random variable and $Y=X^2$. If ρ is the correlation coefficient between X and Y, then $48\rho^2$ is equal to:

- (A) 48
- (B) 45
- (C) 35
- (D) 30

7. Let M be a 3×3 real matrix. Let

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ -1 \\ \alpha \end{pmatrix}$$

be eigenvectors of M corresponding to three distinct eigenvalues. Then, which of the following is NOT a possible value of α ?

- (A) 0
- (B) 1
- (C) -2
- (D) 2

8. If the series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then which of the following series diverges?

- (A) $\sum_{n=1}^{\infty} |a_{2n}|$
- (B) $\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2}$
- (C) $\sum_{n=1}^{\infty} (a_n)^3$
- (D) $\sum_{n=2}^{\infty} \left(\frac{1}{(\ln n)^2} + a_n \right)$

9. There are three urns labeled 1, 2, 3.

Urn 1: 2 white, 2 black; Urn 2: 1 white, 3 black; Urn 3: 3 white, 1 black.

Two coins are tossed independently, each with P(head) = 0.2.

Urn 1 is selected if 2 heads occur, Urn 3 if 2 tails occur, otherwise Urn 2 is selected. A ball is drawn at random from the chosen urn. Find

P(Urn 1 is selected | Ball drawn is white)

- (A) $\frac{6}{109}$
- (B) $\frac{12}{109}$

- (C) $\frac{1}{18}$
- (D) $\frac{1}{9}$

10. Let X be a random variable with

$$f(x) = \frac{1}{2}e^{-|x|}, \quad -\infty < x < \infty$$

Then, which of the following statements is FALSE?

- (A) E(X|X|) = 0
- **(B)** $E(X|X|^2) = 0$
- (C) $E(|X|\sin(\frac{X}{|X|})) = 0$
- (D) $E(|X|\sin^2(\frac{X}{|X|})) = 0$

11. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined by

$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Let $f_x(x, y)$ and $f_y(x, y)$ denote the first-order partial derivatives of f(x, y) with respect to x and y respectively. Then, which of the following statements is FALSE?

- (A) $f_x(x,y)$ exists and is bounded at every $(x,y) \in \mathbb{R}^2$
- (B) $f_y(x,y)$ exists and is bounded at every $(x,y) \in \mathbb{R}^2$
- (C) $f_y(0,0)$ exists and $f_y(x,y)$ is continuous at (0,0)
- (D) f is NOT differentiable at (0,0)

12. Let $\{X_n\}_{n\geq 1}$ be i.i.d. random variables distributed as N(0,1). Then find

$$\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i^2 - 3n}{\sqrt{32n}} \le \sqrt{6}\right)$$

is equal to:

- (A) $\frac{1}{2}$
- (B) $\Phi(\sqrt{2})$
- (C) 0
- (D) $\Phi(1)$

13. Consider independent Bernoulli trials with success probability $p=\frac{1}{3}$. The probability that three successes occur before four failures is:

- (A) $\frac{179}{243}$
- (B) $\frac{179}{841}$
- (C) $\frac{233}{729}$
- (D) $\frac{179}{1215}$

14. Let X and Y be independent N(0,1) random variables and $Z=\left|\frac{X}{Y}\right|$. Then, which of the following expectations is finite?

- (A) $E\left(\frac{1}{\sqrt{Z}}\right)$
- (B) $E(Z\sqrt{Z})$
- (C) E(Z)
- (D) $E\left(\frac{1}{Z\sqrt{Z}}\right)$

15. Three coins have probabilities of head in a single toss as $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{3}{4}$ respectively. A player selects one coin at random and tosses it five times. The probability of obtaining two tails in five tosses is:

- (A) $\frac{85}{384}$
- (B) $\frac{255}{384}$
- (C) $\frac{125}{384}$
- (D) $\frac{64}{384}$

16. Let X be a random variable with pdf

$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

Define Y = [X], the greatest integer less than or equal to X. Then $E(Y^2)$ is equal to:

- (A) $\frac{e(e+1)}{e-1}$
- (B) $\frac{e+1}{(e-1)^2}$ (C) $\frac{(e+1)^2}{e-1}$
- (D) $\frac{(e+1)^2}{(e-1)^2}$

17. Let X be a continuous random variable having the moment generating function

$$M(t) = \frac{e^t - 1}{t}, \quad t \neq 0.$$

Let $\alpha = P(48X^2 - 40X + 3 > 0)$ and $\beta = P((\ln X)^2 + 2\ln X - 3 > 0)$. Then, the value of $\alpha - 2 \ln \beta$ is equal to:

- (A) $\frac{10}{3}$
- (B) $\frac{19}{3}$
- (C) $\frac{13}{3}$
- (D) $\frac{17}{3}$

18. Let $X_1, X_2, ..., X_n$ ($n \ge 3$) be a random sample from Poisson(θ), where $\theta > 0$ is unknown, and let $T = \sum_{i=1}^{n} X_i$. Then, the uniformly minimum variance unbiased estimator (UMVUE) of $e^{-2\theta}\theta^3$ is:

- (A) $\frac{T}{n} \left(\frac{T}{n} 1\right) \left(\frac{T}{n} 2\right) \left(1 \frac{2}{n}\right)^{T-3}$ (B) $\frac{T(T-1)(T-2)(n-2)^{T-3}}{n^T}$
- (C) does NOT exist
- (D) $e^{-2T/n} \left(\frac{T}{n}\right)^3$

19. Let $X_1, X_2, ..., X_n$ ($n \ge 2$) be a random sample from $U(\theta - 5, \theta + 5)$, where $\theta \in (0, \infty)$ is unknown. Let $T = \max(X_1, ..., X_n)$ and $U = \min(X_1, ..., X_n)$. Then, which of the following statements is TRUE?

- (A) $\frac{T+U}{2}$ is the unique MLE of θ
- (B) $\frac{2}{T+U}$ is an MLE of $\frac{1}{\theta}$
- (C) MLE of θ does NOT exist
- (D) U + 8 is an MLE of θ

20. Let X and Y be random variables having chi-square distributions with 6 and 3 degrees of freedom respectively. Then, which of the following statements is TRUE?

- (A) P(X > 0.7) > P(Y > 0.7)
- **(B)** P(X > 0.7) < P(Y > 0.7)
- (C) P(X > 3) < P(Y > 3)
- (D) P(X < 6) > P(Y < 6)

21. Let (X,Y) be a random vector with joint moment generating function

$$M(t_1, t_2) = \frac{1}{(1 - (t_1 + t_2))(1 - t_2)}, \quad -\infty < t_1, t_2 < \min(1, 1 - t_2)$$

Let Z = X + Y. Then, Var(Z) is equal to:

- (A) 3
- (B) 4
- (C) 5
- (D) 6

22. Let X be a continuous random variable with CDF

$$F(x) = \begin{cases} 0, & x < 0, \\ ax^2, & 0 \le x < 2, \\ 1, & x \ge 2, \end{cases}$$

for some real constant a. Then E(X) is equal to:

- (A) $\frac{4}{3}$
- (B) $\frac{1}{4}$
- (C) 1
- (D) 0

23. Let $X_1, X_2, ..., X_n$ be a random sample from an exponential distribution with probability density function

$$f(x;\theta) = \begin{cases} \theta e^{-\theta x}, & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta \in (0, \infty)$ is unknown. Let $\alpha \in (0, 1)$ be fixed and let β be the power of the most powerful test of size α for testing $H_0: \theta = 1$ against $H_1: \theta = 2$. Consider the critical region

$$R = \left\{ (x_1, x_2, ..., x_n) \in \mathbb{R}^n : \sum_{i=1}^n x_i > \frac{1}{2} \chi_{2n}^2 (1 - \alpha) \right\},\,$$

where for any $\gamma \in (0,1)$, $\chi^2_{2n}(\gamma)$ is a fixed point such that $P(\chi^2_{2n} > \chi^2_{2n}(\gamma)) = \gamma$. Then, the critical region R corresponds to the

- (A) most powerful test of size α for testing $H_0: \theta = 1$ against $H_1: \theta = 2$
- (B) most powerful test of size 1α for testing $H_0: \theta = 2$ against $H_1: \theta = 1$
- (C) most powerful test of size β for testing $H_0: \theta = 2$ against $H_1: \theta = 1$
- (D) most powerful test of size 1β for testing $H_0: \theta = 1$ against $H_1: \theta = 2$

24. Let

$$S = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k} \left(\frac{1}{4}\right)^k, \quad T = \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{1}{5}\right)^k.$$

Then, which of the following statements is TRUE?

(A)
$$S - T = 0$$

(B)
$$5S - 4T = 0$$

(C)
$$4S - 5T = 0$$

(D)
$$16S - 25T = 0$$

25. Let E_1, E_2, E_3 and E_4 be four events such that

$$P(E_i|E_4) = \frac{2}{3}, \ i = 1, 2, 3; \quad P(E_i \cap E_j^c|E_4) = \frac{1}{6}, \ i, j = 1, 2, 3; \ i \neq j; \quad P(E_1 \cap E_2 \cap E_3^c|E_4) = \frac{1}{6}.$$

Then, $P(E_1 \cup E_2 \cup E_3 | E_4)$ is equal to

- (A) $\frac{1}{2}$
- (B) $\frac{2}{3}$
- (C) $\frac{5}{6}$
- (D) $\frac{7}{12}$

26. Let $a_1 = 5$ and define recursively

$$a_{n+1} = \frac{1}{3} (a_n)^{\frac{3}{4}}, \quad n \ge 1.$$

Then, which of the following statements is TRUE?

- (A) $\{a_n\}$ is monotone increasing, and $\lim_{n\to\infty} a_n = 3$
- (B) $\{a_n\}$ is monotone decreasing, and $\lim_{n\to\infty} a_n = 3$
- (C) $\{a_n\}$ is non-monotone, and $\lim_{n\to\infty} a_n = 3$
- (D) $\{a_n\}$ is decreasing, and $\lim_{n\to\infty} a_n = 0$

27. Consider the problem of testing $H_0: X \sim f_0$ against $H_1: X \sim f_1$ based on a sample of size 1, where

$$f_0(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases} \quad f_1(x) = \begin{cases} 2x, & 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the probability of Type II error of the most powerful test of size $\alpha=0.1$ is equal to

- (A) 0.81
- (B) 0.91
- (C) 0.1
- (D) 1
- **28.** For $a \in \mathbb{R}$, consider the system of linear equations

$$\begin{cases} ax + ay = a + 2, \\ x + ay + (a - 1)z = a - 4, \\ ax + ay + (a - 2)z = -8, \end{cases}$$

in the unknowns x, y, z. Then, which of the following statements is TRUE?

- (A) The given system has a unique solution for a = 1
- (B) The given system has infinitely many solutions for a = 2
- (C) The given system has a unique solution for a = -2
- (D) The given system has infinitely many solutions for a = -2
- **29.** Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers such that $a_n\geq 1$, for all $n\geq 1$. Then, which of the following conditions imply the divergence of $\{a_n\}_{n\geq 1}$?
- (A) $\{a_n\}_{n\geq 1}$ is non-increasing
- (B) $\sum_{n=1}^{\infty} b_n$ converges, where $b_1 = a_1$ and $b_n = a_{n+1} a_n$ for all n > 1
- (C) $\lim_{n\to\infty} \frac{a_{2n+1}}{a_{2n}} = \frac{1}{2}$
- (D) $\{\sqrt{a_n}\}_{n\geq 1}$ converges
- **30.** Let E_1, E_2 and E_3 be three events such that $P(E_1) = \frac{4}{5}, P(E_2) = \frac{1}{2}$ and $P(E_3) = \frac{9}{10}$. Then, which of the following statements is FALSE?
- (A) $P(E_1 \cup E_2 \cup E_3) \ge \frac{9}{10}$

- (B) $P(E_2 \cup E_3) \ge \frac{9}{10}$
- (C) $P(E_1 \cap E_2 \cap E_3) \leq \frac{1}{6}$
- (D) $P(E_1 \cup E_2) \le \frac{4}{5}$
- **31.** Consider the linear system Ax = b, where A is an $m \times n$ matrix, x is an $n \times 1$ vector of unknowns and b is an $m \times 1$ vector. Further, suppose there exists an $m \times 1$ vector c such that the linear system Ax = c has **NO** solution. Then, which of the following statements is/are necessarily TRUE?
- (A) If $m \le n$ and d is the first column of A, then the linear system Ax = d has a unique solution
- (B) If $m \ge n$, then Rank(A) < n
- (C) $\operatorname{Rank}(A) < m$
- (D) If m > n, then the linear system Ax = 0 has a solution other than x = 0
- **32.** Let A be a 3×3 real matrix such that $A \neq I_3$ and the sum of the entries in each row of A is 1. Then, which of the following statements is/are necessarily TRUE?
- (A) $A I_3$ is an invertible matrix
- (B) The set $\{x \in \mathbb{R}^3 : (A I_3)x = 0\}$ has at least two elements (x is a column vector)
- (C) The characteristic polynomial, $p(\lambda)$, of $A + 2A^2 + A^3$ has $(\lambda 4)$ as a factor
- (D) A cannot be an orthogonal matrix
- **33.** Let $X_1, X_2, ..., X_n$ be a random sample from $N(\theta, 1)$, where $\theta \in (-\infty, \infty)$ is unknown. Consider the problem of testing $H_0: \theta \leq 0$ against $H_1: \theta > 0$. Let $\beta(\theta)$ denote the power function of the likelihood ratio test of size α (0 < α < 1) for testing H_0 against H_1 . Then, which of the following statements is/are TRUE?
- (A) $\beta(\theta) > \beta(0)$, for all $\theta > 0$
- (B) $\beta(\theta) < \beta(0)$, for all $\theta > 0$

(C) The critical region of the likelihood test of size α is

$$\left\{ (x_1, x_2, ..., x_n) \in \mathbb{R}^n : \sqrt{n} \frac{\sum_{i=1}^n x_i}{n} > \tau_{\alpha/2} \right\},\,$$

where $\tau_{\alpha/2}$ is a fixed point such that $P(Z > \tau_{\alpha/2}) = \frac{\alpha}{2}$, $Z \sim N(0, 1)$.

(D) The critical region of the likelihood test of size α is

$$\left\{ (x_1, x_2, ..., x_n) \in \mathbb{R}^n : \sqrt{n} \frac{\sum_{i=1}^n x_i}{n} > \tau_\alpha \right\},\,$$

where τ_{α} is a fixed point such that $P(Z > \tau_{\alpha}) = \alpha$, $Z \sim N(0, 1)$.

34. Consider the function

$$f(x,y) = 3x^2 + 4xy + y^2, \quad (x,y) \in \mathbb{R}^2.$$

If $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$, then which of the following statements is/are TRUE?

- (A) The maximum value of f on S is $3 + \sqrt{5}$
- (B) The minimum value of f on S is $3 \sqrt{5}$
- (C) The maximum value of f on S is $2 + \sqrt{5}$
- (D) The minimum value of f on S is $2 \sqrt{5}$

35. Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. Then, which of the following statements is/are necessarily TRUE?

- (A) f'' is continuous
- (B) If f'(0) = f'(1), then f''(x) = 0 has a solution in (0, 1)
- (C) f' is bounded on [8, 10]
- (D) f'' is bounded on (0,1)

36. Let $X_1, X_2, ..., X_n$ $(n \ge 2)$ be independent and identically distributed random variables with probability density function

$$f(x) = \begin{cases} \frac{1}{x^2}, & x \ge 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then, which of the following random variables has/have finite expectation?

- (A) X_1
- $(\mathbf{B}) \, \frac{1}{X_2}$
- (C) $\sqrt{X_1}$
- (D) $\min\{X_1, ..., X_n\}$

37. A sample of size n is drawn randomly (without replacement) from an urn containing $5n^2$ balls, of which $2n^2$ are red balls and $3n^2$ are black balls. Let X_n denote the number of red balls in the selected sample. If $\ell = \lim_{n \to \infty} \frac{E(X_n)}{n}$ and $m = \lim_{n \to \infty} \frac{\operatorname{Var}(X_n)}{n}$, then which of the following statements is/are TRUE?

- (A) $\ell + m = \frac{16}{25}$
- (B) $\ell m = \frac{3}{25}$
- (C) $\ell m = \frac{14}{125}$
- (D) $\frac{\ell}{m} = \frac{5}{3}$

38. Let $X_1, X_2, ..., X_n$ $(n \ge 2)$ be a random sample from a distribution with probability density function

$$f(x;\theta) = \begin{cases} \frac{1}{2\theta}, & -\theta \le x \le \theta, \\ 0, & |x| > \theta, \end{cases}$$

where $\theta \in (0, \infty)$ is unknown. If $R = \min\{X_1, X_2, ..., X_n\}$ and $S = \max\{X_1, X_2, ..., X_n\}$, then which of the following statements is/are TRUE?

- (A) (R,S) is jointly sufficient for θ
- (B) S is an MLE of θ
- (C) $\max\{|X_1|,|X_2|,...,|X_n|\}$ is a complete and sufficient statistic for θ
- (D) Distribution of $\frac{R}{S}$ does NOT depend on θ

39. Let $X_1, X_2, ..., X_n$ $(n \ge 2)$ be a random sample from a distribution with probability density function

$$f(x;\theta) = \begin{cases} \frac{3x^2}{\theta} e^{-x^3/\theta}, & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta \in (0, \infty)$ is unknown. If $T = \sum_{i=1}^{n} X_i^3$, then which of the following statements is/are TRUE?

- (A) $\frac{n-1}{T}$ is the unique uniformly minimum variance unbiased estimator (UMVUE) of $\frac{1}{\theta}$ (B) $\frac{n}{T}$ is the unique uniformly minimum variance unbiased estimator of $\frac{1}{\theta}$
- (C) $(n-1)\sum_{i=1}^{n}\frac{1}{X_i^3}$ is the unique uniformly minimum variance unbiased estimator of $\frac{1}{\theta}$
- (D) $\frac{n}{T}$ is the MLE of $\frac{1}{\theta}$
- **40.** Let $X_1, X_2, ..., X_n$ $(n \ge 2)$ be a random sample from a distribution with probability density function

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1}, & 0 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta \in (0, \infty)$ is unknown. Then, which of the following statements is/are TRUE?

- (A) Cramer-Rao lower bound, based on $X_1, X_2, ..., X_n$, for the estimator θ^3 is $\frac{9\theta^6}{100}$
- (B) Cramer-Rao lower bound, based on $X_1, X_2, ..., X_n$, for the estimator θ^3 is $\frac{9\theta^4}{n}$
- (C) There does NOT exist any unbiased estimator of $\frac{1}{\rho}$ which attains the Cramer-Rao lower bound
- (D) There exists an unbiased estimator of $\frac{1}{\theta}$ which attains the Cramer-Rao lower bound
- **41.** Let α, β and γ be the eigenvalues of

$$M = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 3 & 3 \\ -1 & 2 & 2 \end{bmatrix}.$$

If $\gamma = 1$ and $\alpha > \beta$, then the value of $2\alpha + 3\beta$ is

42. Let

$$M = \begin{bmatrix} 5 & -6 \\ 3 & -4 \end{bmatrix}$$

be a 2×2 matrix. If $\alpha = \det(M^4 - 6I_2)$, then the value of α^2 is

43. Let $S = \{(x,y) \in \mathbb{R}^2 : 2 \le x \le y \le 4\}$. Then, the value of the integral

$$\iint_{S} \frac{1}{4-x} \, dx \, dy$$

is

44. Let $A = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le y \le z \le 1\}$. Let α be the value of the integral

$$\iiint_A xyz \, dx \, dy \, dz.$$

Then, 384α is equal to

45. Let f_0 and f_1 be the probability mass functions given by:

46. Let 5, 10, 4, 15, 6 be an observed random sample of size 5 from a distribution with probability density function

$$f(x;\theta) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta \in (-\infty, 3]$ is unknown. Then, the maximum likelihood estimate (MLE) of θ based on the observed sample is equal to

47. Let

$$\alpha = \lim_{n \to \infty} \sum_{m=n^2}^{2n^2} \frac{1}{\sqrt{5n^4 + n^3 + m}}.$$

Then, $10\sqrt{5} \alpha$ is equal to

48. Let *X* be a random variable having the probability density function

$$f(x) = \frac{1}{8\sqrt{2\pi}} \left(2e^{-x^2/2} + 3e^{-x^2/8} \right), \quad x \in \mathbb{R}.$$

Then, $4E(X^4)$ is equal to

49. Let X be a random variable with moment generating function

$$M_X(t) = \frac{1}{12} + \frac{1}{6}e^t + \frac{1}{3}e^{2t} + \frac{1}{4}e^{-t} + \frac{1}{6}e^{-2t}, \quad t \in \mathbb{R}.$$

Then, 8E(X) is equal to

50. Let B denote the length of the curve $y = \ln(\sec x)$ from x = 0 to $x = \frac{\pi}{4}$. Then, the value of $3\sqrt{2}(e^B - 1)$ is equal to

51. Let $S \subseteq \mathbb{R}^2$ be the region bounded by the parallelogram with vertices at the points (1,0),(3,2),(3,5) and (1,3). Then, the value of the integral

$$\iint_{S} (x+2y) \, dx \, dy$$

is equal to

52. Let

$$A = \left\{ (x, y) \in \mathbb{R}^2 : x^2 - \frac{1}{2\sqrt{\pi}} < y < x^2 + \frac{1}{2\sqrt{\pi}} \right\}$$

and let the joint probability density function of (X, Y) be

$$f(x,y) = \begin{cases} e^{-(x-1)^2}, & (x,y) \in A, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the covariance between the random variables X and Y is equal to

53. Let X_1 and X_2 be independent N(0,1) random variables. Define

$$sgn(u) = \begin{cases} -1, & \text{if } u < 0, \\ 0, & \text{if } u = 0, \\ 1, & \text{if } u > 0. \end{cases}$$

Let $Y_1 = X_1 \operatorname{sgn}(X_2)$ and $Y_2 = X_2 \operatorname{sgn}(X_1)$. If the correlation coefficient between Y_1 and Y_2 is α , then $\pi \alpha$ is equal to

54. Let

$$a_n = \sum_{k=2}^n \binom{n}{k} \frac{2^k (n-2)^{n-k}}{n^n}, \quad n = 2, 3, \dots$$

Then,

$$e^2 \lim_{n \to \infty} (1 - a_n)$$

is equal to

55. Let E_1, E_2, E_3 and E_4 be four independent events such that

$$P(E_1) = \frac{1}{2}$$
, $P(E_2) = \frac{1}{3}$, $P(E_3) = \frac{1}{4}$, $P(E_4) = \frac{1}{5}$.

Let p be the probability that at most two events among E_1, E_2, E_3, E_4 occur. Then, 240p is equal to

56. Let the random vector (X, Y) have the joint probability mass function

$$f(x,y) = \begin{cases} \binom{10}{x} \binom{5}{y} \left(\frac{1}{4}\right)^{x-y+5} \left(\frac{3}{4}\right)^{y-x+10}, & x = 0, 1, \dots, 10; \ y = 0, 1, \dots, 5, \\ 0, & \text{otherwise.} \end{cases}$$

Let Z=Y-X+10. If $\alpha=E(Z)$ and $\beta=\text{Var}(Z)$, then $8\alpha+48\beta$ is equal to

57. Let

$$S = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le \pi, \min(\sin x, \cos x) \le y \le \max(\sin x, \cos x)\}.$$

If α is the area of S, then the value of $2\sqrt{2}\alpha$ is equal to

58. The number of real roots of the polynomial

$$f(x) = x^{11} - 13x + 5$$

is

59. Let

$$\alpha = \lim_{n \to \infty} \left(1 + n \sin \frac{3}{n^2} \right)^{2n}.$$

Then, $\ln \alpha$ is equal to

60. Let $\phi:(-1,1)\to\mathbb{R}$ be defined by

$$\phi(x) = \int_{x^7}^{x^4} \frac{1}{1+t^3} \, dt.$$

If

$$\alpha = \lim_{x \to 0} \frac{\phi(x)}{e^{x^4} - 1},$$

then 42α is equal to