IIT JAM 2021 Physics (PH) Question Paper

Time Allowed :3 Hours | **Maximum Marks :**100 | **Total questions :**60

General Instructions

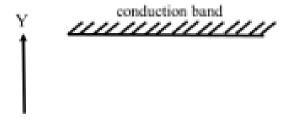
General Instructions:

- i) All questions are compulsory. Marks allotted to each question are indicated in the margin.
- ii) Answers must be precise and to the point.
- iii) In numerical questions, all steps of calculation should be shown clearly.
- iv) Use of non-programmable scientific calculators is permitted.
- v) Wherever necessary, write balanced chemical equations with proper symbols and units.
- vi) Rough work should be done only in the space provided in the question paper.

Q.1. The function $e^{\cos x}$ is Taylor expanded about x=0. The coefficient of x^2 is: $(A) - \frac{1}{2}$ (B) $-\frac{e}{2}$ (C) $\frac{e}{2}$ (D) Zero Q.2. Let M be a 2×2 matrix. Its trace is 6 and its determinant has value 8. Its eigenvalues are: (A) 2 and 4 (B) 3 and 3 (C) 2 and 6 (D) -2 and 3 Q.3. A planet is in a highly eccentric orbit about a star. The distance of its closest approach is 300 times smaller than its farthest distance from the star. If the corresponding speeds are v_c and v_f , then $\frac{v_c}{v_f}$ is: (A) $\frac{1}{300}$ (B) $\frac{1}{\sqrt{300}}$ (C) $\sqrt{300}$ (D) 300 Q.4. An object of density ρ is floating in a liquid with 75% of its volume submerged. The density of the liquid is:

(A) $\frac{4}{3}\rho$

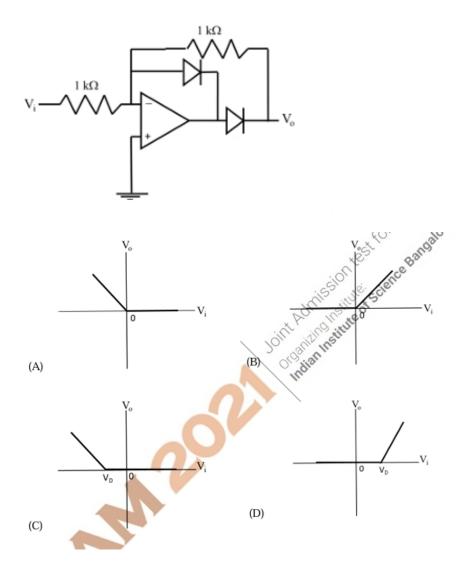
(B) $\frac{3}{2}\rho$


(C) $\frac{8}{5}\rho$

(D) 2ρ

Q.5. An experiment with a Michelson interferometer is performed in vacuum using a laser of wavelength 610 nm. One beam passes through a glass cavity 1.3 cm long. When the cavity is filled with a medium of refractive index n, 472 dark fringes move past a reference line. The speed of light is 3×10^8 m/s. The value of n is:

- (A) 1.01
- (B) 1.04
- (C) 1.06
- (D) 1.10


Q.6. For a semiconductor material, the conventional flat band energy diagram is shown in the figure. The variables Y, X respectively are:

- (A) Energy, Momentum
- (B) Energy, Distance
- (C) Distance, Energy
- (D) Momentum, Energy

Q.7. For the given circuit, V_D is the threshold voltage of the diode. The graph that best depicts the variation of V_o with V_i is:

Q.8. Arrange the following telescopes, where D is the telescope diameter and λ is the wavelength, in order of decreasing resolving power:

I.
$$D = 100 \,\mathrm{m}, \lambda = 21 \,\mathrm{cm}$$

II.
$$D=2\,\mathrm{m}, \lambda=500\,\mathrm{nm}$$

III.
$$D=1\,\mathrm{m}, \lambda=100\,\mathrm{nm}$$

IV.
$$D = 2 \,\text{m}, \lambda = 10 \,\text{mm}$$

- (A) III, II, IV, I
- (B) II, III, I, IV
- (C) IV, III, II, I
- (D) III, II, I, IV

Q.9. Metallic lithium has bcc crystal structure. Each unit cell is a cube of side a. The number of atoms per unit volume is:

- (A) $\frac{1}{a^3}$
- (B) $\frac{2}{\sqrt{2}a^3}$
- (C) $\frac{2}{a^3}$
- (D) $\frac{4}{a^3}$

Q.10. The moment of inertia of a solid sphere (radius R and mass M) about the axis which is at a distance of $\frac{R}{2}$ from the center is:

- (A) $\frac{3}{20}MR^2$
- **(B)** $\frac{1}{2}MR^2$
- (C) $\frac{13}{20}MR^2$
- (D) $\frac{9}{20}MR^2$

Q.11. Let (x, y) denote the coordinates in a rectangular Cartesian coordinate system C. Let (x', y') denote the coordinates in another coordinate system C' defined by

$$x' = 2x + 3y, \quad y' = -3x + 4y$$

The area element in C' is:

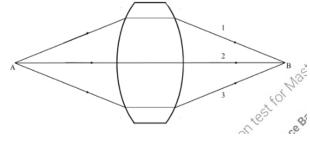
- $(A) \frac{1}{17} dx' dy'$
- (B) 12dx'dy'
- (C) dx'dy'
- (D) x'dx'dy'

Q.12. Three events, $E_1(ct = 0, x = 0)$, $E_2(ct = 0, x = L)$ and $E_3(ct = 0, x = -L)$ occur, as observed in an inertial frame S. Frame S' is moving with a speed v along the positive

x-direction with respect to S. In S', let t'_1, t'_2, t'_3 be the respective times at which E_1, E_2 , and E_3 occurred. Then,

(A)
$$t_2' < t_1' < t_3'$$

(B)
$$t_1' = t_2' = t_3'$$


(C)
$$t_3' < t_1' < t_2'$$

(D)
$$t_3' < t_2' < t_1'$$

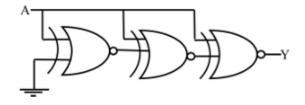
Q.13. The solution y(x) of the differential equation $y\frac{dy}{dx}+3x=0$, y(1)=0, is described by:

- (A) An ellipse
- (B) A circle
- (C) A parabola
- (D) A straight line

Q.14. In the figure below, point A is the object and point B is the image formed by the lens. Let l_1, l_2 and l_3 denote the optical path lengths of the three rays 1, 2 and 3, respectively. Identify the correct statement.

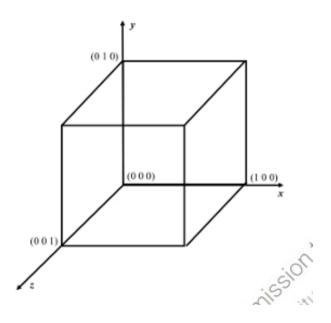
(A)
$$l_1 = l_2 = l_3$$

(B)
$$l_1 > l_2 < l_3$$


(C)
$$l_1 = l_3 < l_2$$

(D)
$$l_1 = l_3 > l_2$$

Q.15. A particle, initially at the origin in an inertial frame S, has a constant velocity $V\hat{i}$. Frame S' is rotating about the z-axis with angular velocity ω (anticlockwise). The coordinate axes of S' coincide with those of S at t=0. The velocity of the particle (V'_x,V'_y) in the S' frame, at $t=\frac{\pi}{2\omega}$, is:


- (A) $\left(-\frac{V\pi}{2}, -V\right)$
- (B) (-V, -V)
- (C) $\left(\frac{V\pi}{2}, -V\right)$
- (D) $\left(\frac{3V\pi}{2}, -V\right)$

Q.16. For the given circuit, the output Y is:

- (A) 0
- (B) 1
- (C) A
- (D) \overline{A}

Q.17. The total charge contained within the cube (see figure), in which the electric field is given by $\vec{E} = K(4x^2\hat{i} + 3y\hat{j})$, where ε_0 is the permittivity of free space, is:

- (A) $7K\varepsilon_0$
- (B) $5K\varepsilon_0$
- (C) $3K\varepsilon_0$
- (D) Zero

Q.18. Four charges are placed very close to each other, as shown. The separation between the two charges on the y-axis is a. The separation between the two charges on the x-axis is also a. The leading order (non-vanishing) form of the electrostatic potential, at point P, at a distance r from the origin $(r \gg a)$, is:

(A)
$$\frac{1}{4\pi\varepsilon_0} \frac{qa}{2r^2} (\sqrt{3} - 1)$$

- (B) $\frac{1}{4\pi\varepsilon_0}\frac{2qa}{r^2}$
- (C) $\frac{1}{4\pi\varepsilon_0} \frac{qa}{r^2} (\sqrt{5} 1)$
- (D) $\frac{1}{4\pi\varepsilon_0} \frac{qa}{r^2} (1 \sqrt{3})$

Q.19. At t=0, N_0 number of radioactive nuclei A start decaying into B with a decay constant λ_a . The daughter nuclei B decay into nuclei C with a decay constant λ_b . Then, the number of nuclei B at small time t (to the leading order) is:

- (A) $\lambda_a N_0 t$
- (B) $(\lambda_a \lambda_b) N_0 t$
- (C) $(\lambda_a + \lambda_b)N_0t$
- (D) $\lambda_b N_0 t$

Q.20. The electric field of an electromagnetic wave has the form $\vec{E} = E_0 \cos(\omega t - kz)\hat{i}$. At z=0, a test particle of charge q and velocity $\vec{v}=0.5c\hat{k}$ (where c is the speed of light) is placed. The total instantaneous force on the particle is:

- (A) $\frac{qE_0}{2}\hat{i}$
- (B) $\frac{qE_0}{\sqrt{2}}(\hat{i}+\hat{j})$
- (C) $\frac{qE_0}{2}(\hat{i} \hat{k})$
- (D) Zero

Q.21. The rms velocity of molecules of oxygen gas is given by $v=\sqrt{\frac{3kT}{m}}$ at some temperature T. The molecules of another gas have the same rms velocity at temperature $T'=\frac{T}{16}$. The second gas is:

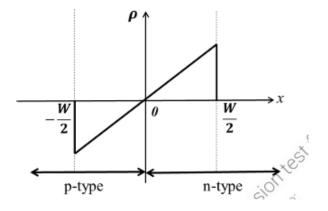
- (A) Hydrogen
- (B) Helium
- (C) Nitrogen

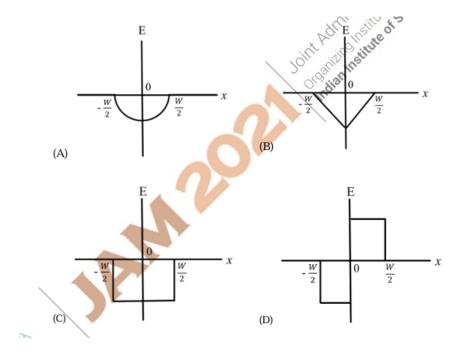
(D) Neon

Q.22. A system undergoes a thermodynamic transformation from state S_1 to S_2 via two different paths 1 and 2. The heat absorbed and work done along path 1 are 50 J and 30 J, respectively. If the heat absorbed along path 2 is 30 J, the work done along path 2 is:

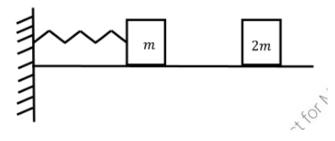
- (A) Zero
- (B) 10 J
- (C) 20 J
- (D) 30 J

Q.23. The condition for maxima in the interference of two waves $Ae^{i(\frac{k}{\sqrt{2}}(\sqrt{3}x+y)-\omega t)}$ and $Ae^{i(\frac{k}{\sqrt{2}}(x+\sqrt{3}y)-\omega t)}$ is given in terms of the wavelength λ and m, an integer, by:


(A)
$$(\sqrt{3} - \sqrt{2})x + (1 - \sqrt{2})y = 2m\lambda$$


(B)
$$(\sqrt{3} + \sqrt{2})x + (1 - \sqrt{2})y = 2m\lambda$$

(C)
$$(\sqrt{3} - \sqrt{2})x - (1 - \sqrt{2})y = m\lambda$$


(D)
$$(\sqrt{3} - \sqrt{2})x + (1 - \sqrt{2})y = (2m+1)\lambda$$

Q.24. A semiconductor pn junction at thermal equilibrium has the space charge density $\rho(x)$ profile as shown in the figure. The figure that best depicts the variation of the electric field E with x is (W denotes the width of the depletion layer):

Q.25. A mass m is connected to a massless spring of spring constant k, which is fixed to a wall. Another mass 2m, having kinetic energy E, collides collinearly with the mass m completely inelastically (see figure). The entire setup is placed on a frictionless floor. The maximum compression of the spring is:

- (A) $\sqrt{\frac{4E}{3k}}$
- (B) $\sqrt{\frac{E}{3k}}$
- (C) $\sqrt{\frac{E}{5k}}$
- (D) $\sqrt{\frac{E}{7k}}$

Q.26. A linearly polarized light falls on a quarter-wave plate and the emerging light is found to be elliptically polarized. The angle between the fast axis of the quarter-wave plate and the plane of polarization of the incident light can be:

- (A) 30°
- **(B)** 45°
- (C) 90°
- (D) 180°

Q.27. The expression for the magnetic field that induces the electric field

 $\vec{E} = K(y\hat{i} + 3z\hat{j} + 4y\hat{k})\cos(\omega t)$ is:

- (A) $-\frac{K}{\omega}(\hat{i} + y\hat{j} z\hat{k})\sin(\omega t)$
- (B) $-\frac{K}{\omega}(\hat{i} + y\hat{j} + z\hat{k})\sin(\omega t)$
- (C) $\frac{K}{\omega}(\hat{i} y\hat{j} + z\hat{k})\sin(\omega t)$
- (D) $\frac{K}{\omega}(\hat{i} + y\hat{j} + z\hat{k})\sin(\omega t)$

Q.28. In the Fourier series expansion of two functions $f_1(t) = 4t^2 + 3$ and $f_2(t) = 6t^3 + 7t$ in the interval $-\frac{T}{2}$ to $+\frac{T}{2}$, the Fourier coefficients a_n and b_n (a_n and b_n are coefficients of $\cos(n\omega t)$ and $\sin(n\omega t)$, respectively) satisfy:

- (A) $a_n = 0$ and $b_n \neq 0$ for $f_1(t)$; $a_n \neq 0$ and $b_n = 0$ for $f_2(t)$
- (B) $a_n \neq 0$ and $b_n = 0$ for $f_1(t)$; $a_n = 0$ and $b_n \neq 0$ for $f_2(t)$
- (C) $a_n \neq 0$ and $b_n \neq 0$ for $f_1(t)$; $a_n = 0$ and $b_n \neq 0$ for $f_2(t)$
- (D) $a_n = 0$ and $b_n \neq 0$ for $f_1(t)$; $a_n \neq 0$ and $b_n \neq 0$ for $f_2(t)$

Q.29. A thin circular disc lying in the xy-plane has a surface mass density

 $\sigma(r) = \begin{cases} \sigma_0 \left(1 - \frac{r^2}{R^2}\right), & \text{if } r \leq R \\ 0, & \text{if } r > R \end{cases} \text{ where } r \text{ is the distance from its center. Its moment of }$

inertia about the z-axis passing through its center is:

- (A) $\frac{\sigma_0 R^4}{4}$
- (B) $\frac{\pi \sigma_0 R^4}{6}$
- (C) $\sigma_0 R^4$

(D) $2\pi\sigma_0 R^4$

Q.30. The radial component of acceleration in plane polar coordinates is given by:

(A)
$$\frac{d^2r}{dt^2}$$

(B)
$$\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2$$

(C)
$$\frac{d^2r}{dt^2} + r\left(\frac{d\theta}{dt}\right)^2$$

(D)
$$2r\frac{d\theta}{dt}\frac{d\theta}{dt} + r\frac{d^2\theta}{dt^2}$$

Q.31. A gaseous system, enclosed in an adiabatic container, is in equilibrium at pressure P_1 and volume V_1 . Work is done on the system in a quasi-static manner due to which the pressure and volume change to P_2 and V_2 , respectively, in the final equilibrium state. At every instant, the pressure and volume obey the condition $PV^{\gamma} = C$, where $\gamma = \frac{C_p}{C_v}$ and C is a constant. If the work done is zero, then identify the correct statement(s).

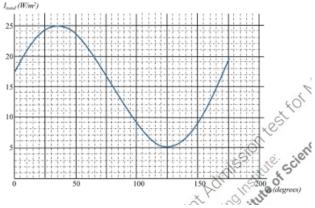
(A)
$$P_2V_2 = P_1V_1$$

(B)
$$P_2V_2 = \gamma P_1V_1$$

(C)
$$P_2V_2 = (\gamma + 1)P_1V_1$$

(D)
$$P_2V_2 = (\gamma - 1)P_1V_1$$

Q.32. An isolated ideal gas is kept at a pressure P_1 and volume V_1 . The gas undergoes free expansion and attains a pressure P_2 and volume V_2 . Identify the correct statement(s).


$$\left(\gamma = \frac{C_p}{C_v}\right)$$

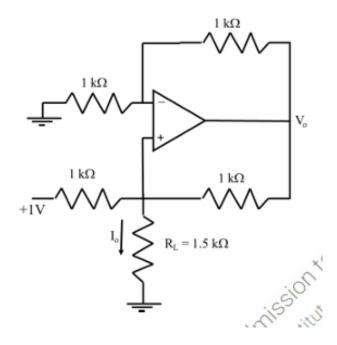
- (A) This is an adiabatic process
- **(B)** $P_1V_1 = P_2V_2$

(C)
$$P_1V_1^{\gamma} = P_2V_2^{\gamma}$$

(D) This is an isobaric process

Q.33. A beam of light traveling horizontally consists of an unpolarized component with intensity I_0 and a polarized component with intensity I_p . The plane of polarization is oriented at an angle θ with respect to the vertical. The figure shows the total intensity I_{total} after the light passes through a polarizer as a function of the angle α , that the axis of the polarizer makes with respect to the vertical. Identify the correct statement(s).

- (A) $\theta = 125^{\circ}$
- (B) $I_p = 5 \text{ W/m}^2$
- (C) $I_0 = 17.5 \,\text{W/m}^2$
- (D) $I_0 = 10 \text{ W/m}^2$; $I_p = 20 \text{ W/m}^2$


Q.34. Consider the following differential equation that describes the oscillations of a physical system:

$$\alpha \frac{d^2y}{dt^2} + \beta \frac{dy}{dt} + \gamma y = 0$$

If α and β are held fixed, and γ is increased, then:

- (A) The frequency of oscillations increases
- (B) The oscillations decay faster
- (C) The frequency of oscillations decreases
- (D) The oscillations decay slower

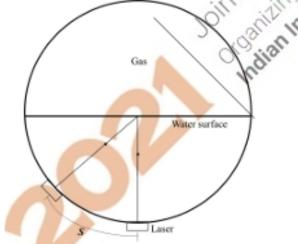
Q.35. For the given circuit, identify the correct statement(s).

- (A) $I_0 = 1 \,\text{mA}$
- (B) $V_0 = 3 \text{ V}$
- (C) If R_L is doubled, I_0 will change to $0.5\,\mathrm{mA}$
- (D) If R_L is doubled, V_0 will change to 6 V

Q.36. A Carnot engine operates between two temperatures, $T_L = 100 \, \text{K}$ and $T_H = 150 \, \text{K}$. Each cycle of the engine lasts for 0.5 seconds during which the power delivered is $500 \, \text{J/s}$. Let Q_H be the heat absorbed by the engine and Q_L be the heat lost. Identify the correct statement(s).

- (A) $Q_H = 750 \,\text{J}$
- (B) $\frac{Q_H}{Q_L} = \frac{3}{2}$
- (C) The change in entropy of the engine and the hot bath in a cycle is $5\,\mathrm{J/K}$
- (D) The change in entropy of the engine in 0.5 seconds is zero

Q.37. A time independent conservative force \vec{F} has the form, $\vec{F} = 3y\hat{i} + f(x,y)\hat{j}$. Its magnitude at x = y = 0 is 8. The allowed form(s) of f(x,y) is (are):


(A)
$$3x + 8$$

(B)
$$2x + 8(y-1)^2$$

(C)
$$3x + 8e^{-y^2}$$

(D)
$$2x + 8\cos y$$

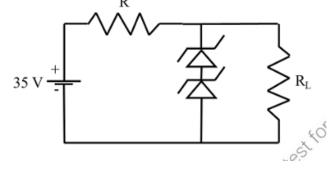
Q.38. The figure shows the cross-section of a hollow cylindrical tank, 2.2 m in diameter, which is half filled with water (refractive index of 1.33). The space above the water is filled with a gas of unknown refractive index. A small laser moves along the bottom surface and aims a light beam towards the center (see figure). When the laser moves a distance of S=1.09 m or beyond from the lowest point in the water, no light enters the gas. Identify the correct statement(s). (Speed of light = 3×10^8 m/s)

- (A) The refractive index of the gas is 1.05
- (B) The time taken for the light beam to travel from the laser to the rim of the tank when $S < 1.09 \, \mathrm{m}$ is $8.9 \, \mathrm{ns}$
- (C) The time taken for the light beam to travel from the laser to the rim of the tank when $S > 1.09 \,\mathrm{m}$ is $9.7 \,\mathrm{ns}$
- (D) The critical angle for the water–gas interface is 56.77°

Q.39. Identify the correct statement(s) regarding nuclei:

(A) The uncertainty in the momentum of a proton in a nucleus is roughly 10^5 times the uncertainty in the momentum of the electron in the ground state of the Hydrogen atom

- (B) The volume of a nucleus grows linearly with the number of nucleons in it
- (C) The energy of γ rays due to de-excitation of a nucleus can be of the order of MeV
- (D) ⁵⁶Fe is the most stable nucleus


Q.40. A particle of mass m is in an infinite square well potential of length L. It is in a superposed state of the first two energy eigenstates, as given by

 $\psi(x)=rac{2}{\sqrt{3L}}\psi_1(x)+rac{2}{\sqrt{3L}}\psi_2(x)$. Identify the correct statement(s). h is Planck's constant.

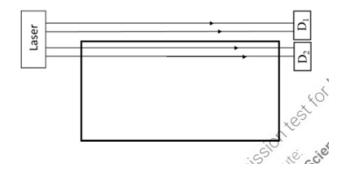
- (A) $\langle p \rangle = 0$
- (B) $\Delta p = \frac{\sqrt{3}h}{2L}$
- (C) $\langle E \rangle = \frac{3h^2}{8mL^2}$
- (D) $\Delta x = 0$

Q.41. One of the roots of the equation, $z^6 - 3z^4 - 16 = 0$ is given by $z_1 = 2$. The value of the product of the other five roots is

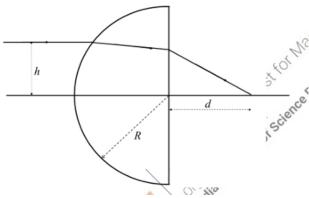
Q.42. The following Zener diode voltage regulator circuit is used to obtain 20 V regulated output at load resistance R_L from a 35 V dc power supply. Zener diodes are rated at 5W and 10V. The value of the resistance R is Ω .

Q.43. A small conducting square loop of side l is placed inside a concentric large conducting square loop of side L (where $L\gg l$). The value of mutual inductance of the system is expressed as $\frac{\mu_0 l^2}{\pi L}$. The value of n is (Round off to two decimal places).

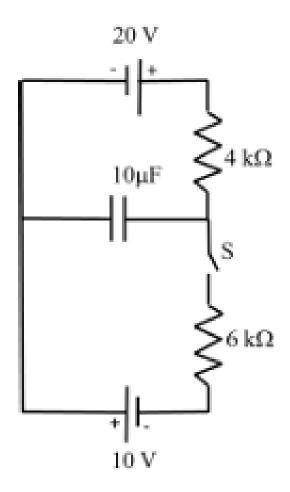
17


Q.44. Consider N_i number of ideal gas particles enclosed in a volume V_1 . If the volume is changed to V_2 and the number of particles is reduced by half, the mean free path becomes four times of its initial value. The ratio $\frac{V_1}{V_2}$ is (Round off to one decimal place).

Q.45. A particle is moving with a velocity 0.8c (where c is the speed of light) in an inertial frame S_1 . Frame S_2 is moving with a velocity 0.8c with respect to S_1 . Let E_1 and E_2 be the respective energies of the particle in the two frames. Then, $\frac{E_2}{E_1}$ is (Round off to two decimal places).

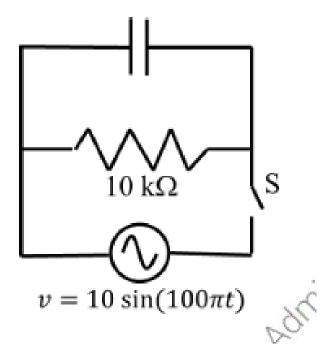

Q.46. At some temperature T, two metals A and B, have Fermi energies ϵ_A and ϵ_B , respectively. The free electron density of A is 64 times that of B. The ratio $\frac{\epsilon_A}{\epsilon_B}$ is (Round off to two decimal places).

Q.47. A crystal has monoclinic structure, with lattice parameters $a=5.14\,\text{Å}$, $b=5.20\,\text{Å}$, $c=5.30\,\text{Å}$ and angle $\beta=99^\circ$. It undergoes a phase transition to tetragonal structure with lattice parameters, $a=5.09\,\text{Å}$ and $c=5.27\,\text{Å}$. The fractional change in the volume $\frac{\Delta V}{V}$ of the crystal due to this transition is (Round off to two decimal places).


Q.48. A laser beam shines along a block of transparent material of length 2.5 m. Part of the beam goes to the detector D_1 while the other part travels through the block and then hits the detector D_2 . The time delay between the arrivals of the two light beams is inferred to be 6.25 ns. The speed of light $c = 3 \times 10^8$ m/s. The refractive index of the block is (Round off to two decimal places).

Q.49. An ideal blackbody at temperature T, emits radiation of energy density u. The corresponding value for a material at temperature $\frac{T}{2}$ is $\frac{u}{256}$. Its emissivity is (Round off to three decimal places).

Q.55. An RC circuit is connected to two dc power supplies, as shown in the figure. With switch S open, the capacitor is fully charged. S is then closed at time t=0. The voltage across the capacitor at t=2.4 ms is V (Round off to one decimal place).



Q.56. A current I is uniformly distributed across a long straight non-magnetic wire $(\mu_r=1)$ of circular cross-section with radius a. Two points P and Q are at distances $\frac{a}{3}$ and 9a, respectively, from the axis of the wire. The ratio of the magnetic fields at points P and Q is

Q.58. In an X-ray diffraction experiment with Cu crystals having lattice parameter

 $3.61\,\text{Å}$, X-rays of wavelength of $0.090\,\text{nm}$ are incident on the family of planes $\{110\}$. The highest order present in the diffraction pattern is

Q.59. A parallel plate capacitor having plate area of 50 cm 2 and separation of 0.1 mm is completely filled with a dielectric (dielectric constant K=10). The capacitor is connected to a 10 k resistance and an alternating voltage $v=10\sin(100\pi t)$, as shown in the figure. The switch S is initially open and then closed at t=0. The ratio of the displacement current in the capacitor, to the current in the resistance, at time $t=\frac{2}{\pi}$ seconds is (Round off to three decimal places).

Q.60. The wavelength of characteristic K_{α} X-ray photons from Mo (atomic number 42) is Å. (Round off to one decimal place).