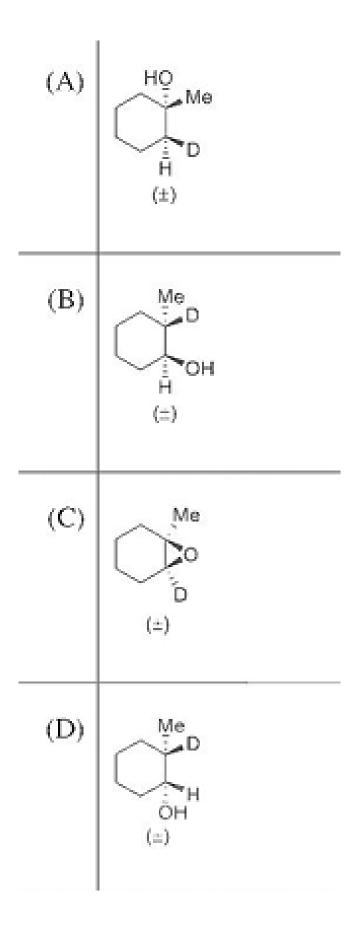
IIT JAM 2022 Chemistry (CY) Question Paper

Time Allowed :3 Hours | **Maximum Marks :**100 | **Total questions :**60

General Instructions


General Instructions:

- i) All questions are compulsory. Marks allotted to each question are indicated in the margin.
- ii) Answers must be precise and to the point.
- iii) In numerical questions, all steps of calculation should be shown clearly.
- iv) Use of non-programmable scientific calculators is permitted.
- v) Wherever necessary, write balanced chemical equations with proper symbols and units.
- vi) Rough work should be done only in the space provided in the question paper.

1. The reagent required for the following transformation

- (A) NaBH₄
- (B) LiAlH₄
- (C) $H_3B \cdot THF$
- (D) Zn(Hg)/HCl

2. The major product formed in the following reaction

3. The major product formed in the following reaction

(A)	OH OH
(B)	O⊕Na O⊕Na Na
(C)	ОСОН
(D)	

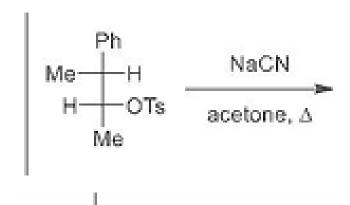
4.	The ma	ior pro	duct fo	rmed i	in the	following	reaction
••	A IIV IIIU	IOI DIO	uuci it	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			I CUCUIO.

$\mathbf{K} + \mathbf{O}_2$

- (A) K_2O
- (B) K_2O_2
- (C) KO₂
- (D) K₂O₃

5. Which one of the following options is best suited for effecting the transformation?

- (A) MnO_2
- (B) DMSO, $(COCl)_2$, Et_3N
- (C) Al(Oi-Pr)₃
- (D) Ag_2O/NH_4OH


6. The structure of $[XeF_8]^{2-}$ is

- (A) cubic
- (B) hexagonal bipyramid
- (C) square antiprism
- (D) octagonal

7. Among the following, the compound that forms the strongest hydrogen bond is

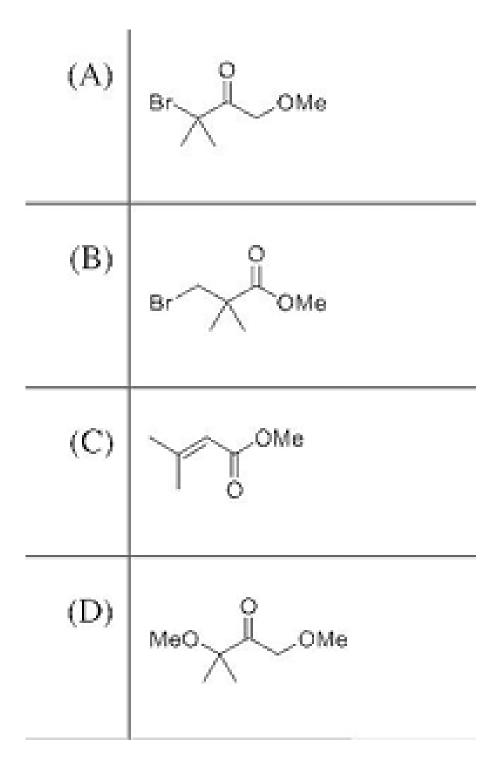
- (A) HF
- (B) HCl

(C) HBr	
(D) HI	
8. Among the follow	wing, the biomolecule with a direct metal-carbon bond is
(A) coenzyme B ₁₂	
(B) nitrogenase	
(C) chlorophyll	
(D) hemoglobin	
9. For the reaction	
	$(aq) \rightarrow HPO_4^{2-} (aq) + H_2 (g)$
_	is $k[H_2PO_4^-][OH^-]$. If the concentration of $\mathbf{H}_2\mathbf{PO}_4^-$ is doubled, the
rate is	41. 1
(A) tripled	
(B) halved	
(C) doubled	
(D) unchanged	
10. The nature of in	nteraction involved at the gas-solid interface in physisorption is
(A) ionic	
()	
(B) van der Waals(C) hydrogen bonding	ng

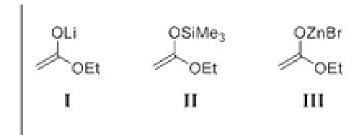
12. An organic compound having molecular formula ${\bf C}_9{\bf H}_{10}{\bf O}_2$ exhibits the following spectral characteristics:

 $^{1}HNMR: \delta 9.72$ (t, 1H), $\delta 7.1$ (d, 2H), $\delta 6.7$ (d, 2H), $\delta 3.8$ (s, 3H), $\delta 3.6$ (d, 2H)

IR: 1720 cm⁻1


The most probable structure of the compound is

13. The major product formed in the reaction of (2S,3R)-2-chloro-3-phenylbutane with NaOEt in EtOH is


(A) (E)-2-phenyl-but-2-ene

- (B) (Z)-2-phenyl-but-2-ene
- (C) 3-phenyl-but-1-ene
- (D) (2R,3R)-2-ethoxy-3-phenylbutane

14. The major product formed in the following reaction

15. The reactivity of the enol derivatives towards benzaldehyde follows the order

- III ; II ; I (A)
- (B) III ¿ II ¿ I
- (C) II ; I ; III
- II ; III ; I (d)

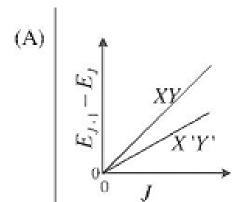
16. All possible lattice types are observed in the

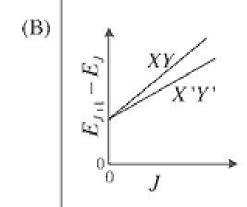
- (A) cubic crystal system
- (B) monoclinic crystal system
- (C) tetragonal crystal system
- (D) orthorhombic crystal system

17. The structure types of $\mathbf{B}_{10}\mathbf{H}_{10}^{2-}$ and $\mathbf{B}_{10}\mathbf{H}_{14}$, respectively, are

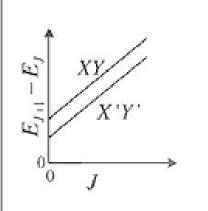
- (A) closo and nido
- (B) nido and arachno
- (C) nido and closo
- (D) closo and arachno

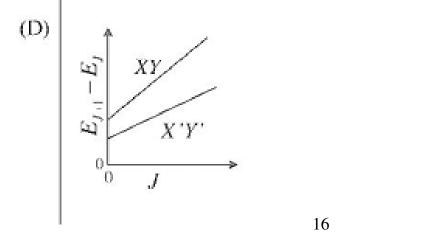
18. The ground state and the maximum number of spin-allowed electronic transitions possible in a Co^{2+} tetrahedral complex, respectively, are

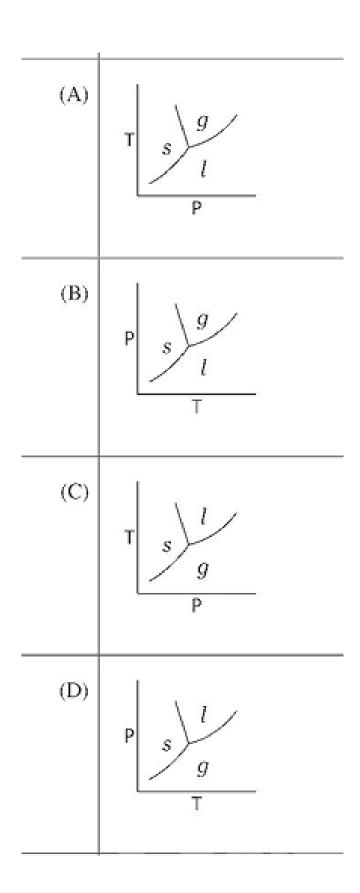

- (A) 4A_2 and 3
- **(B)** ${}^{4}T_{1}$ and **2**


- (C) 4A_2 and 2
- **(D)** 4T_1 and **3**
- 19. The correct statement about the geometries of BH_2^+ and NH_2^+ based on valence shell electron pair repulsion (VSEPR) theory is
- (A) both BH_2^+ and NH_2^+ are trigonal planar
- (B) BH_2^+ is linear and NH_2^+ is trigonal planar
- (C) BH_2^+ is trigonal planar and NH_2^+ is linear
- (D) both BH_2^+ and NH_2^+ are linear
- 20. The order of increasing CO stretching frequencies in $[Co(CO)_4]^+$, $[Cu(CO)_4]^+$, $[Fe(CO)_4]^{2-}$ and $[Ni(CO)_4]$ is
- (A) $[Cu(CO)_4]^+$; $[Ni(CO)_4]$; $[Co(CO)_4]^+$; $[Fe(CO)_4]^{2-}$
- (B) $[Fe(CO)_4]^{2-}$; $[Co(CO)_4]^+$; $[Ni(CO)_4]$; $[Cu(CO)_4]^+$
- (C) $[Co(CO)_4]^+$; $[Fe(CO)_4]^{2-}$; $[Cu(CO)_4]^+$; $[Ni(CO)_4]$
- (D) $[Ni(CO)_4]$; $[Cu(CO)_4]^+$; $[Fe(CO)_4]^{2-}$; $[Co(CO)_4]^+$
- 21. The reaction of 2,4-dinitrofluorobenzene with hydrazine produces a yellow-orange solid X used for the identification of an organic functional group G. X and G, respectively, are

22. The stability of adducts H_3B - PF_3 , H_3B - NMe_3 , H_3B -CO, H_3B - OMe_2 follows the order


- (A) H_3B -OMe₂; H_3B -CO; H_3B -PF₃; H_3B -NMe₃
- (B) H_3B -PF $_3$; H_3B -CO; H_3B -NMe $_3$; H_3B -OMe $_2$
- (C) H_3B -CO ; H_3B -PF $_3$; H_3B -NMe $_3$; H_3B -OMe $_2$
- (D) H_3B -PF $_3$; H_3B -CO ; H_3B -OMe $_2$; H_3B -NMe $_3$


23. The spacing between	en successive rotatio	nal energy levels of a	diatomic molecule XY
and its heavier isotopic analogue X'Y' varies with the rotational quantum no		quantum number, J, as	


(C)

24. The ratio of the $2p \rightarrow 1s$ transi	sition energy in $\mathrm{He^+}$ to that in the H atom is closest t	0
(A) 1		
(B) 2		
(C) 4		
(D) 8		

25. The phase diagram of water is best represented by

 ${\bf 26. \ Capillary \ W \ contains \ water \ and \ capillary \ M \ contains \ mercury. \ The \ contact \ angles}$ between the capillary wall and the edge of the meniscus at the air-liquid interface in W

and M are θ_w and θ_m , respectively. The contact angles satisfy the conditions

- (A) $\theta_w > 90^\circ$ and $\theta_m > 90^\circ$
- **(B)** $\theta_w > 90^\circ$ and $\theta_m < 90^\circ$
- (C) $\theta_w < 90^\circ$ and $\theta_m > 90^\circ$
- **(D)** $\theta_w < 90^\circ$ and $\theta_m < 90^\circ$

27. The Maxwell-Boltzmann distribution $f(v_x)$ of one-dimensional velocities v_x at temperature T is

[Given: A is a normalization constant such that $\int_{-\infty}^{\infty} f(v_x) dv_x = 1$, and k_b is the **Boltzmann constant**]

- (A) $A \exp\left(-\frac{mv_x^2}{2k_bT}\right)$ (B) $A \exp\left(-\frac{mv_x^2}{k_bT}\right)$
- (C) $Av_x^2 \exp\left(-\frac{mv_x^2}{2k_bT}\right)$ (D) $Av_x^2 \exp\left(-\frac{mv_x^2}{k_bT}\right)$

28. The potential for a particle in a one-dimensional box is given as:

V(x) = 0 for $0 \le x \le L$, and $V(x) = \infty$ elsewhere.

The locations of the internal nodes of the eigenfunctions $\psi_n(x)$, $n \ge 2$, are

[Given: m is an integer such that 0 < m < n]

- **(A)** $x = \frac{m + \frac{1}{2}}{n} L$
- **(B)** $x = \frac{m}{n}L$
- (C) $x = \frac{m}{n+1}L$
- **(D)** $x = \frac{m+1}{n+1}L$

29. The number of CO stretching bands in the infrared spectrum of Fe(CO)₅ is

(A) 1

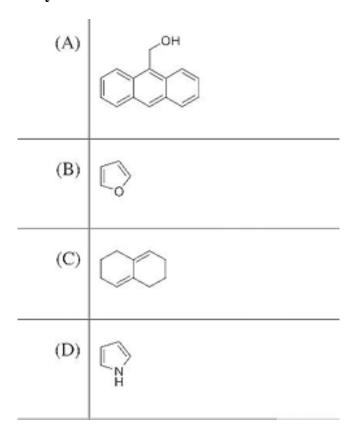
- (B) 2
- (C)3
- (D)4

30. The standard Gibbs free energy change for the reaction

$$\mathbf{H}_2\mathbf{O}(\mathbf{g}) \to \mathbf{H}_2(\mathbf{g}) + \frac{1}{2}\mathbf{O}_2(\mathbf{g})$$

at 2500 K is +118 kJ mol⁻¹. The equilibrium constant for the reaction is

[Given: $R = 8.314 \, \text{J K}^{-1} \text{mol}^{-1}$]


- (A) 0.994
- (B) 1.006
- (C) 3.42×10^{-3}
- (D) 292.12

31. Among the following, the reaction(s) that favor(s) the formation of the products at 25° C is/are

32. Among the following, the correct statement(s) is/are:

- (A) The first pK_a of malonic acid is lower than the pK_a of acetic acid while its second pK_a is higher than the pK_a of acetic acid.
- (B) The first pK_a of malonic acid is higher than the pK_a of acetic acid while its second pK_a is lower than the pK_a of acetic acid.
- (C) Both the first and the second pK_a 's of malonic acid are lower than the pK_a of acetic acid.
- (D) Both the first and the second pK_a 's of malonic acid are higher than the pK_a of acetic acid.

33. The compound(s) that participate(s) in the Diels-Alder reaction with maleic anhydride is/are

${\bf 34. \ Among \ the \ following, \ the \ suitable \ route(s) \ for \ the \ conversion \ of \ benzaldehyde \ to}$ ace to phenone is/are

(A) CH₃COCl, anhydrous AlCl₃

(B) (i)HS(CH₂)₃SH, F₃B-OEt₂, (ii)n-BuLi, (iii)MeI, (iv)HgCl₂, CdCO₃, H₂O

(C) NaNH₂, MeI

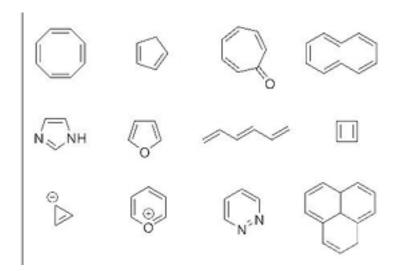
(D) (i)MeMgBr, (ii)aq. acid, (iii)pyridinium chlorochromate (PCC)

35. The reaction involves(s)

(A) migratory insertion

- (B) change in electron count of Rh from 18 to 16
- (C) oxidative addition
- (D) change in electron count of Rh from 16 to 18

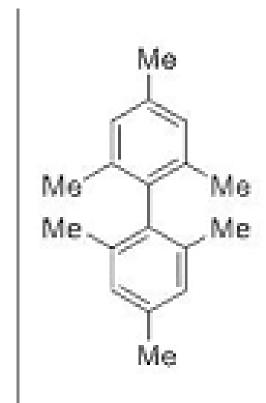
36. The reason(s) for the lower stability of Si_2H_6 compared to C_2H_6 is/are


- (A) silicon is more electronegative than hydrogen
- (B) Si-Si bond is weaker than C-C bond
- (C) Si-H bond is weaker than C-H bond
- (D) the presence of low-lying d-orbitals in silicon

37. For an N-atom nonlinear polyatomic gas, the constant volume molar heat capacity $C_{v,m}$ has the expected value of 3(N-1)R, based on the principle of equipartition of energy. The correct statement(s) about the measured value of $C_{v,m}$ is/are

- (A) The measured $\mathcal{C}_{v,m}$ is independent of temperature.
- (B) The measured $C_{v,m}$ is dependent on temperature.

(D) The measured $C_{v,m}$ is typically higher than the expected value.
38. Zinc containing enzyme(s) is/are
(A) carboxypeptidase
(B) hydrolase
(C) carbonic anhydrase
(D) urease
39. The conversion of ICl to ICl+ involves(s)
(A) the removal of an electron from a π^* molecular orbital of ICl
(B) an increase in the bond order from 1 in ICl to 1.5 in ICl^+
(C) the formation of a paramagnetic species
(D) the removal of an electron from a molecular orbital localized predominantly on Cl
40. The common point defect(s) in a solid is/are
(A) Wadsley defect
(B) Schottky defect
(C) Suzuki defect
(D) Frenkel defect
41. Among the following, the number of aromatic compounds is


(C) The measured $\mathcal{C}_{v,m}$ is typically lower than the expected value.

42. The number of stereoisomers possible for the major product formed in the reaction

is

43. The number of signals observed in the 1H NMR spectrum of the compound

is

44. The reaction of 122 g of benzaldehyde with 108 g of phenylhydrazine gave 157 g of the product.

The yield of the product is ? (round off to the nearest integer)

- **45.** The B-B bond order in B_2 is
- 46. The number of unpaired electrons in $[Co(H_2O)_6]^{2+}$ is
- 47. The number of significant figures in 5.0820×10^2 is
- 48. The d spacing for the first-order X-ray ($\lambda=1.54\,\text{Å}$) diffraction event of metallic iron (fcc) at $2\theta=20.2^\circ$ is (round off to three decimal places)
- 49. The volume fraction for an element in an fcc lattice is (round off to two decimal places)
- 50. A steady current of 1.25 A is passed through an electrochemical cell for 1.5 h using a 12 V battery. The total charge, Q, drawn during this process is (round off to the nearest integer)
- 51. The specific rotation of optically pure (R)-1-phenylethylamine is +40 (neat, 20° C). A synthetic sample of the same compound is shown to contain 4:1 mixture of (S)- and (R)-enantiomers. The specific rotation of the neat sample at 20° C is (round off to the nearest integer)
- **52.** The number of β particles emitted in the nuclear reaction

$$^{238}_{92}$$
U \rightarrow^{206}_{82} Pb

is

53. Iron is extracted from its ore via the reaction

$$\mathbf{Fe}_2\mathbf{O}_3 + 3\mathbf{CO} \rightarrow 2\mathbf{Fe} + 3\mathbf{CO}_2$$

The volume of CO (at STP) required to produce 1 kg of iron is

54. Total degeneracy (number of microstates) for a Ti³⁺ ion in spherical symmetry is

55. A galvanic electrochemical cell made of Zn^{2+}/Zn and Cu^{2+}/Cu half-cells produces 1.10 V at 25°C. The ratio of $[Zn^{2+}]$ to $[Cu^{2+}]$ is maintained at 1.0. The ΔG° for the reaction when 1.0 mol of Zn gets dissolved is (round off to the nearest integer)

56. At constant volume, 1.0 kJ of heat is transferred to 2 moles of an ideal gas at 1 atm and 298 K. The final temperature of the ideal gas is (round off to one decimal place)

57. Two close lying bands in a UV spectrum occur at 274 nm and 269 nm. The magnitude of the energy gap between the two bands is (round off to the nearest integer)

58. The pH of an aqueous buffer prepared using CH₃COOH and CH₃COO⁻ and Na⁺ is 4.80. The quantity

$$\frac{[CH_3COO^-] - [CH_3COOH]}{[CH_3COOH]}$$

is (round off to three decimal places)

59. At constant temperature, 6.40 g of a substance dissolved in 78 g of benzene decreases the vapor pressure of benzene from 0.125 atm to 0.119 atm. The molar mass of the substance is (round off to one decimal place)

60. For a van der Waals gas, the critical temperature is 150 K and the critical pressure is 5×10^6 Pa. The volume occupied by each gas molecule is (round off to two decimal places)