IIT JAM 2023 MS Question Paper PDF

Time Allowed: 1 Hour Maximum Marks :100 Total Questions :60

General Instructions

Read the following instructions very carefully and strictly follow them:

- 1. Please check that this question paper contains 60 questions.
- 2. Please write down the Serial Number of the question in the answer- book at the given place before attempting it.
- 3. This Question Paper has 60 questions. All questions are compulsory.
- 4. Adhere to the prescribed word limit while answering the questions.
- 1. Let $M = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$. If a non-zero vector $X = (x, y, z)^T \in \mathbb{R}^3$ satisfies

 $M^6X = X$, then a subspace of \mathbb{R}^3 that contains the vector X is:

- (1) $\{(x, y, z)^T \in \mathbb{R}^3 : x = 0, y + z = 0\}$
- (2) $\{(x, y, z)^T \in \mathbb{R}^3 : y = 0, x + z = 0\}$
- (3) $\{(x, y, z)^T \in \mathbb{R}^3 : z = 0, x + y = 0\}$ (4) $\{(x, y, z)^T \in \mathbb{R}^3 : x = 0, y z = 0\}$
- 2. Let $M = M_1 M_2$, where M_1 and M_2 are two 3×3 distinct matrices. Consider the following two statements:
 - (I) The rows of M are linear combinations of rows of M_2 .
 - (II) The columns of M are linear combinations of columns of M_1 .

Then:

- (1) Only (I) is TRUE
- (2) Only (II) is TRUE
- (3) Both (I) and (II) are TRUE
- (4) Neither (I) nor (II) is TRUE
- 3. Let $X \sim F_{6,2}$ and $Y \sim F_{2,6}$. If $P(X \le 2) = \frac{216}{343}$ and $P(Y \le \frac{1}{2}) = \alpha$, then 686α equals:

1

- (1) 246
- (2) 254
- (3) 260
- (4) 264

4. Let $Y \sim F_{4,2}$. Then $P(Y \leq 2)$ equals:

- (1) 0.60
- (2) 0.62
- (3) 0.64
- (4) 0.66

5. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables each having U(0,1) distribution. Let Y be a random variable having distribution function G. Suppose that

$$\lim_{n \to \infty} P\left(\frac{X_1 + X_2 + \dots + X_n}{4} \le x\right) = G(x), \quad \forall x \in \mathbb{R}.$$

Then, Var(Y) equals:

- $(1) \frac{1}{12}$
- $(2) \frac{1}{32}$
- $(3) \frac{1}{48}$
- $(4) \frac{1}{64}$

6. Let X_1, X_2, X_3 be a random sample from an $N(\theta, 1)$ distribution, where $\theta \in \mathbb{R}$ is an unknown parameter. Then, which one of the following conditional expectations does NOT depend on θ ?

- (1) $E(X_1 + X_2 X_3 \mid X_1 + X_2)$
- (2) $E(X_1 + X_2 X_3 \mid X_2 + X_3)$
- (3) $E(X_1 + X_2 X_3 \mid X_1 X_3)$
- (4) $E(X_1 + X_2 X_3 \mid X_1 + X_2 + X_3)$

7. For the function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by $f(x,y) = 2x^2 - xy - 3y^2 - 3x + 7y$, the point (1,1) is:

- (1) a point of local maximum
- (2) a point of local minimum

- (3) a saddle point
- (4) NOT a critical point

8. Let E_1, E_2, E_3 be three events such that $P(E_1 \cap E_2) = \frac{1}{4}$, $P(E_1 \cap E_3) = P(E_2 \cap E_3) = \frac{1}{5}$, and $P(E_1 \cap E_2 \cap E_3) = \frac{1}{6}$. Then, among the events E_1, E_2, E_3 , the probability that at least two events occur equals:

- $(1) \frac{17}{60}$
- $(2) \frac{23}{60}$
- $(3) \frac{19}{60}$
- $(4) \frac{29}{60}$

9. Let X be a continuous random variable such that $P(X \ge 0) = 1$ and $Var(X) < \infty$. Then, $E(X^2)$ is:

- (1) $2\int_0^\infty x^2 P(X > x) dx$
- $(2) \int_0^\infty x^2 P(X > x) \, dx$
- $(3) \ 2\int_0^\infty x P(X>x) \, dx$
- $(4) \int_0^\infty x P(X > x) \, dx$

10. Let X be a random variable having probability density function

$$f(x; \theta) = \begin{cases} (3 - \theta)x^{2 - \theta}, & 0 < x < 1, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta \in \{0,1\}$. For testing the null hypothesis $H_0: \theta = 0$ against $H_1: \theta = 1$ at the significance level $\alpha = 0.125$, the power of the most powerful test equals:

- (1) 0.15
- (2) 0.25
- (3) 0.35
- (4) 0.45

11. Let X_1, X_2 be i.i.d. random variables having the common probability density

function

$$f(x) = \begin{cases} e^{-x}, & x \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

Define $X_{(1)} = \min(X_1, X_2)$ and $X_{(2)} = \max(X_1, X_2)$. Then, which one of the following statements is FALSE?

(1)
$$\frac{2X_{(1)}}{X_{(2)} - X_{(1)}} \sim F_{2,2}$$

(2)
$$2(X_{(2)} - X_{(1)}) \sim \chi_2^2$$

(3)
$$E(X_{(1)}) = \frac{1}{2}$$

(4)
$$P(3X_{(1)} < X_{(2)}) = \frac{1}{3}$$

12. Let X and Y be random variables such that $X \sim N(1,2)$ and $P(Y = \frac{X}{2} + 1) = 1$. Let $\alpha = \mathbf{Cov}(X,Y)$, $\beta = E(Y)$, and $\gamma = \mathbf{Var}(Y)$. Then, the value of $\alpha + 2\beta + 4\gamma$ equals:

- $(1)\ 5$
- (2) 6
- (3) 7
- (4) 8

13. A point (a,b) is chosen at random from the rectangular region $[0,2] \times [0,4]$. The probability that the area of the region

$$R = \{(x, y) \in \mathbb{R}^2 : bx + ay \le ab, x, y \ge 0\}$$

is less than 2 equals:

- $(1) \frac{1+\ln 2}{4}$
- $(2) \frac{1+\ln 2}{2}$
- $(3) \frac{2 + \ln 2}{4}$
- $(4) \frac{4}{1+2\ln 2}$

14. Let $X_1, X_2, ...$ be independent random variables such that $P(X_i = i) = \frac{1}{4}$ and $P(X_i = 2i) = \frac{3}{4}$, for i = 1, 2, ... For some real constants c_1, c_2 , suppose that

$$\frac{c_1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i}{i} + c_2 \sqrt{n} \xrightarrow{d} Z \sim N(0,1), \text{ as } n \to \infty.$$

4

Then, the value of $\sqrt{3}(3c_1+c_2)$ equals:

- $(1)\ 2$
- $(2) \ 3$
- (3) 4
- $(4)\ 5$

15. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables such that $P(X_1 = 0) =$ $P(X_1 = 1) = P(X_1 = 2) = \frac{1}{3}$. Let $S_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $T_n = \frac{1}{n} \sum_{i=1}^n X_i^2$. Suppose that

$$\alpha_1 = \lim_{n \to \infty} P\left(\left|S_n - \frac{1}{2}\right| < \frac{3}{4}\right), \quad \alpha_2 = \lim_{n \to \infty} P\left(\left|S_n - \frac{1}{3}\right| < 1\right),$$

$$\alpha_3 = \lim_{n \to \infty} P\left(\left|T_n - \frac{1}{3}\right| < \frac{3}{2}\right), \quad \alpha_4 = \lim_{n \to \infty} P\left(\left|T_n - \frac{2}{3}\right| < \frac{1}{2}\right).$$

Then, the value of $\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4$ equals:

- (1) 6
- $(2)\ 5$
- (3) 4
- $(4) \ 3$

16. For $x \in \mathbb{R}$, the curve $y = x^2$ intersects the curve $y = x \sin x + \cos x$ at exactly n points. Then, n equals:

- (1) 1
- $(2)\ 2$
- (3) 4
- (4) 8

17. Let (X,Y) be a random vector having the joint pdf

$$f(x,y) = \begin{cases} \alpha|x|, & x^2 \le y \le 2x^2, \ -1 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases}$$

where α is a positive constant. Then, P(X > Y) equals:

- $(1) \frac{5}{48} \\ (2) \frac{7}{48} \\ (3) \frac{5}{24}$

$$(4) \frac{7}{24}$$

18. Let X_1, X_2, X_3, X_4 be a random sample of size 4 from $N(\theta, 1)$, where $\theta \in \mathbb{R}$. Let $\bar{X} = \frac{1}{4} \sum_{i=1}^4 X_i$, $g(\theta) = \theta^2 + 2\theta$, and $L(\theta)$ be the Cramér–Rao lower bound on the variance of unbiased estimators of $g(\theta)$. Then, which one of the following statements is FALSE?

- $(1) L(\theta) = (1 + \theta)^2$
- (2) $\bar{X} + e^{\bar{X}}$ is a sufficient statistic for θ
- (3) $(1 + \bar{X})^2$ is the UMVUE of $g(\theta)$
- (4) $Var((1+\bar{X})^2) \ge \frac{(1+\theta)^2}{2}$

19. Let X_1, X_2, \ldots, X_n be a random sample from a population with pdf

$$f(x; \mu) = \begin{cases} \frac{1}{2} e^{-\frac{x-2\mu}{2}}, & x > 2\mu, \\ 0, & \text{otherwise,} \end{cases}$$

where $-\infty < \mu < \infty$. For estimating μ , consider estimators

$$T_1 = \frac{\bar{X} - 2}{2}, \quad T_2 = \frac{nX_{(1)} - 2}{2n},$$

where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $X_{(1)} = \min(X_1, X_2, \dots, X_n)$. Which one of the following statements is TRUE?

- (1) T_1 is consistent but T_2 is NOT consistent
- (2) T_2 is consistent but T_1 is NOT consistent
- (3) Both T_1 and T_2 are consistent
- (4) Neither T_1 nor T_2 is consistent

20. Let X_1, X_2, \ldots, X_n be a random sample from $U(\theta + \frac{\sigma}{\sqrt{3}}, \theta + \sqrt{3}\sigma)$, where $\theta \in \mathbb{R}$ and $\sigma > 0$ are unknown. Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}$. Let $\hat{\theta}$ and $\hat{\sigma}$ be the method of moments estimators of θ and σ , respectively. Which one of the following statements is FALSE?

- $(1) \hat{\theta} + \sqrt{3}\hat{\sigma} = \sqrt{3}\bar{X} 3S$
- $(2) 2\sqrt{3}\hat{\sigma} + \hat{\theta} = \bar{X} 4\sqrt{3}S$
- $(3) \sqrt{3}\hat{\sigma} + \hat{\theta} = \bar{X} + \sqrt{3}S$
- $(4) \hat{\sigma} \sqrt{3}\hat{\theta} = 9S \sqrt{3}\bar{X}$

21. Let (X, Y, Z) be a random vector having the joint pdf

$$f(x, y, z) = \begin{cases} \frac{1}{2xy}, & 0 < z < y < x < 1, \\ \frac{1}{2xz^2}, & 0 < z < x < y < 2x < 2, \\ 0, & \text{otherwise.} \end{cases}$$

Then, which one of the following statements is FALSE?

- (1) $P(Z < Y < X) = \frac{1}{2}$
- (2) P(X < Y < Z) = 0
- (3) $E(\min(X,Y)) = \frac{1}{4}$ (4) $Var(Y \mid X = \frac{1}{2}) = \frac{1}{12}$

22. Let X be a random variable such that its moment generating function exists near 0, and

$$E(X^n) = (-1)^n \frac{2}{5} + \frac{2^{n+1}}{5} + \frac{1}{5}, \quad n = 1, 2, 3, \dots$$

Then, $P(|X - \frac{1}{2}| > 1)$ equals:

- $(1) \frac{1}{5}$
- $(2)^{\frac{2}{5}}$
- $(3) \frac{3}{5}$
- $(4) \frac{4}{5}$

23. Let X be a random variable with pmf p(x), positive for non-negative integers, satisfying

$$p(x+1) = \frac{\ln 3}{x+1}p(x), \quad x = 0, 1, 2, \dots$$

Then, Var(X) equals:

- $(1) \ln 3$
- $(2) \ln 6$
- $(3) \ln 9$
- $(4) \ln 18$

24. Let $\{a_n\}_{n\geq 1}$ be a sequence such that $a_1 = 1$ and $4a_{n+1} = \sqrt{45 + 16a_n}$, for n = 1, 2, ...Then, which one of the following statements is TRUE?

- (1) $\{a_n\}$ is monotonically increasing and converges to $\frac{17}{8}$ (2) $\{a_n\}$ is monotonically increasing and converges to $\frac{9}{4}$
- (3) $\{a_n\}$ is bounded above by $\frac{17}{8}$
- (4) $\sum_{n=1}^{\infty} a_n$ is convergent

25. Let the series S and T be defined by

$$S = \sum_{n=0}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdots (3n+2)}{1 \cdot 5 \cdot 9 \cdots (4n+1)}, \quad T = \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{-n^2}.$$

Then, which one of the following statements is TRUE?

- (1) S is convergent and T is divergent
- (2) S is divergent and T is convergent
- (3) Both S and T are convergent
- (4) Both S and T are divergent

26. The volume of the region

$$R = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 4, \ 0 \le z \le 4 - y\}$$

is:

- $(1) 16\pi 16$
- (2) 16π
- $(3) 8\pi$
- $(4) 16\pi + 4$

27. For real constants α and β , suppose that the system of linear equations

$$x + 2y + 3z = 6$$
, $x + y + \alpha z = 3$, $2y + z = \beta$

has infinitely many solutions. Then, the value of $4\alpha + 3\beta$ equals:

- (1) 18
- (2) 23
- (3) 28
- (4) 32

28. Let x_1, x_2, x_3, x_4 be observed values of a random sample from $N(\theta, \sigma^2)$, where $\theta \in \mathbb{R}, \sigma > 0$. Suppose that

$$\bar{x} = 3.6, \quad \frac{1}{3} \sum_{i=1}^{4} (x_i - \bar{x})^2 = 20.25.$$

For testing $H_0: \theta = 0$ against $H_1: \theta \neq 0$, the p-value of the likelihood ratio test equals:

- (1) 0.712
- (2) 0.208
- (3) 0.104
- (4) 0.052

29. Let X and Y be jointly distributed random variables such that for every fixed $\lambda > 0$, the conditional distribution of $X|Y = \lambda$ is Poisson with mean λ . If $Y \sim \text{Gamma}(2, \frac{1}{2})$, then the value of P(X = 0) + P(X = 1) equals:

- $\begin{array}{c} (1) \ \frac{7}{27} \\ (2) \ \frac{20}{27} \\ (3) \ \frac{8}{27} \\ (4) \ \frac{16}{27} \end{array}$

30. Among all points on the sphere $x^2 + y^2 + z^2 = 24$, the point (α, β, γ) closest to the point (1,2,-1) satisfies what value of $\alpha + \beta + \gamma$?

- (1) 4
- (2) -4
- (3) 2
- (4) -2

31. Let M be a 3×3 real matrix. If $P = M + M^T$ and $Q = M - M^T$, then which of the following statements is/are always TRUE?

- (1) $\det(P^2Q^3) = 0$
- $(2) \operatorname{trace}(Q + Q^2) = 0$
- (3) $X^T Q^2 X = 0, \ \forall X \in \mathbb{R}^3$
- (4) $X^T P X = 2X^T M X, \ \forall X \in \mathbb{R}^3$

32. Let X_1, X_2, X_3 be i.i.d. random variables, each following N(0,1). Then, which of the following statements is/are TRUE?

(1)
$$\frac{\sqrt{2}(X_1 - X_2)}{\sqrt{(X_1 + X_2)^2 + 2X_3^2}} \sim t_1$$
(2)
$$\frac{(X_1 + X_2)^2}{(X_1 - X_2)^2 + 2X_3^2} \sim F_{1,2}$$

(2)
$$\frac{(X_1 + X_2)^2}{(X_1 - X_2)^2 + 2X_3^2} \sim F_{1,2}$$

(3)
$$E\left(\frac{X_1}{X_2^2 + X_3^2}\right) = 0$$

(4)
$$P(X_1 < X_2 + X_3) = \frac{1}{3}$$

33. Let x_1, \ldots, x_{10} be a random sample from $N(\theta, \sigma^2)$. If $\bar{x} = 0$, s = 2, then using Student's t-distribution with 9 degrees of freedom, the 90\% confidence interval for θ is:

- $(1) (-0.8746, \infty)$
- (2) (-0.8746, 0.8746)
- (3) (-1.1587, 1.1587)
- $(4) (-\infty, 0.8746)$

34. Let (X_1, X_2) have pmf

$$f(x_1, x_2) = \begin{cases} \frac{c}{x_1! x_2! (12 - x_1 - x_2)!}, & x_1, x_2 \in \{0, \dots, 12\}, x_1 + x_2 \le 12, \\ 0, & \text{otherwise.} \end{cases}$$

Then, which of the following statements is/are TRUE?

- (1) $E(X_1 + X_2) = 8$
- (2) $Var(X_1 + X_2) = \frac{8}{3}$ (3) $Cov(X_1, X_2) = -\frac{5}{3}$
- (4) $Var(X_1 + 2X_2) = 8$

35. Let P be a 3×3 matrix with eigenvalues 1, 1, and 2. Let $(1,-1,2)^T$ be the only linearly independent eigenvector corresponding to eigenvalue 1. If adjoint of 2P is Q, then which of the following statements is/are TRUE?

- (1) trace(Q) = 20
- (2) $\det(Q) = 64$

(3) $(2, -2, 4)^T$ is an eigenvector of Q(4) $Q^3 = 20Q^2 - 124Q + 256I_3$

36. Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy(x+y)}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Then, which of the following statements is/are TRUE?

(1) f is continuous on $\mathbb{R} \times \mathbb{R}$

(2) The partial derivative of f w.r.t. y exists at (0,0) and is 0

(3) The partial derivative of f w.r.t. x is continuous on $\mathbb{R} \times \mathbb{R}$

(4) f is NOT differentiable at (0,0)

37. Let X,Y be i.i.d. N(0,1). Let $U=\frac{X}{Y}$ and Z=|U|. Then, which of the following statements is/are TRUE?

(1) U has a Cauchy distribution

(2) $E(Z^p) < \infty$, for some $p \ge 1$

(3) $E(e^{tZ})$ does not exist for all $t \in (-\infty, 0)$

(4) $Z^2 \sim F_{1.1}$

38. Which of the following are TRUE?

$$\int_0^1 \int_0^1 e^{\max(x^2,y^2)} \, dx \, dy, \quad \int_0^1 \int_0^1 e^{\min(x^2,y^2)} \, dx \, dy$$

are two given integrals.

 $(1) \int_0^1 \int_0^1 e^{\max(x^2, y^2)} dx \, dy = e - 1$ $(2) \int_0^1 \int_0^1 e^{\min(x^2, y^2)} dx \, dy = \int_0^1 e^{t^2} dt - (e - 1)$ $(3) \int_0^1 \int_0^1 e^{\max(x^2, y^2)} dx \, dy = 2 \int_0^1 \int_0^y e^{y^2} dx \, dy$ $(4) \int_0^1 \int_0^1 e^{\min(x^2, y^2)} dx \, dy = 2 \int_0^1 \int_y^1 e^{x^2} dx \, dy$

39. Let X be a random variable with pdf

$$f(x) = \begin{cases} \frac{5}{x^6}, & x > 1, \\ 0, & \text{otherwise.} \end{cases}$$

11

Then, which of the following statements is/are TRUE?

- (1) The coefficient of variation is $\frac{4}{\sqrt{15}}$
- (2) The first quartile is $\left(\frac{4}{3}\right)^{1/5}$
- (3) The median is $(2)^{1/5}$
- (4) The upper bound by Chebyshev's inequality for $P(X \ge \frac{5}{2})$ is $\frac{1}{15}$

40. Given 10 data points (x_i, y_i) , the regression lines of Y on X and X on Y are 2y-x=8 and y-x=-3, respectively. Let $\bar{x}=\frac{1}{10}\sum x_i$ and $\bar{y}=\frac{1}{10}\sum y_i$. Then, which of the following statements is/are TRUE?

(1)
$$\sum x_i = 140$$

(2) $\sum y_i = 110$
(3) $\frac{\sum (x_i - \bar{x})y_i}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} = -\frac{1}{\sqrt{2}}$
(4) $\frac{\sum (x_i - \bar{x})^2}{\sum (y_i - \bar{y})^2} = 2$

(4)
$$\frac{\sum (x_i - \bar{x})^2}{\sum (y_i - \bar{y})^2} = 2$$

41. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 - x$. Let $g: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that q(x) = 0 has exactly three distinct roots in (0,1). Let h(x) = f(x)g(x), and h''(x) be the second derivative of h. If n is the number of roots of h''(x) = 0 in (0,1), find the minimum possible value of n.

42. Let X_1, X_2, \ldots be i.i.d. with pdf $f(x) = \frac{x^2 e^{-x}}{2}, x \geq 0$. For real constants β, γ, k , suppose

$$\lim_{n \to \infty} P\left(\frac{1}{n} \sum_{i=1}^{n} X_i \le x\right) = \begin{cases} 0, & x < \beta, \\ kx, & \beta \le x \le \gamma, \\ k\gamma, & x > \gamma. \end{cases}$$

Find the value of $2\beta + 3\gamma + 6k$.

43. Let α, β be real constants such that

$$\lim_{x \to 0^+} \frac{\int_0^x \frac{\alpha t^2}{1+t^4} dt}{\beta x - \sin x} = 1.$$

12

Find the value of $\alpha + \beta$.

44. Let X_1, \ldots, X_{10} be a random sample from $N(0, \sigma^2)$. For some real constant c, let

$$Y = \frac{c}{10} \sum_{i=1}^{10} |X_i|$$

be an unbiased estimator of σ . Find c (rounded to two decimal places).

45. Let X have pdf

$$f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2, \\ 0, & \text{otherwise.} \end{cases}$$

Then, find $Var(\ln \frac{2}{X})$.

46. Let X_1, X_2, X_3 be i.i.d. random variables each following N(2,4). If $P(2X_1 - 3X_2 + 6X_3 > 17) = 1 - \Phi(\beta)$, then find β .

47. Let a discrete random variable X have pmf $P(X = n) = \frac{k}{(n-1)^n}$, n = 2, 3, ... If $P(X \ge 17 \mid X \ge 5)$ is required, find its value.

48. Let

$$S_n = \sum_{k=1}^n \frac{1+k2^k}{4^{k-1}}, \quad n = 1, 2, \dots$$

Find $\lim_{n\to\infty} S_n$ (round off to two decimal places).

49. A box contains 80% white, 15% blue, 5% red balls. Among them, white, blue, and red balls have defect rates $\alpha\%, 6\%, 9\%$ respectively. If $P(\text{white} \mid \text{defective}) = 0.4$, find α .

50. Let X_1, X_2 be from pdf $f(x; \theta) = \frac{1}{\theta} e^{-x/\theta}, x > 0$. To test $H_0: \theta = 1$ vs $H_1: \theta \neq 1$, consider test statistic $W = \frac{X_1 + X_2}{2}$. If $X_1 = 0.25, X_2 = 0.75$, find the p-value (round

off to two decimals).

51. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 \sin(x-1) + xe^{(x-1)}$. Then, find

$$\lim_{n\to\infty} n\left(f\left(1+\frac{1}{n}\right)+f\left(1+\frac{2}{n}\right)+\dots+f\left(1+\frac{10}{n}\right)-10\right).$$

- **52.** Let (X_1, X_2) follow a bivariate normal distribution with $E(X_1) = E(X_2) = 1$, $Var(X_1) = 1$, $Var(X_2) = 4$, $Cov(X_1, X_2) = 1$. Find $Var(X_1 + X_2 \mid X_1 = \frac{1}{2})$.
- 53. If $\int_0^\infty 2^{-x^2} dx = \alpha \sqrt{\pi}$, find α (round to two decimals).
- **54.** Let $x_1 = 2.1, x_2 = 4.2, x_3 = 5.8, x_4 = 3.9$ be a sample from pdf $f(x; \theta) = \frac{x}{\theta^2} e^{-x^2/(2\theta)}, x > 0$. Find the MLE of $Var(X_1)$.
- 55. Let $X_i \sim \text{Geometric}(\theta)$ with pmf $f(x;\theta) = \theta(1-\theta)^x, x = 0, 1, 2, \ldots$ If $\hat{\theta}$ is the UMVUE of θ , then find $156 \hat{\theta} = ?$ given sample $x_1 = 2, x_2 = 5, x_3 = 4$.
- **56.** Let X_1, X_2, \ldots, X_5 be i.i.d. Bin $(1, \frac{1}{2})$ random variables. Define $K = X_1 + X_2 + \cdots + X_5$ and

$$U = \begin{cases} 0, & K = 0, \\ X_1 + X_2 + \dots + X_K, & K = 1, 2, \dots, 5. \end{cases}$$

Find E(U).

57. Let $X_1 \sim \text{Gamma}(1,4), X_2 \sim \text{Gamma}(2,2), X_3 \sim \text{Gamma}(3,4)$ be independent. If $Y = X_1 + 2X_2 + X_3$, find $E\left[\left(\frac{Y}{4}\right)^4\right]$.

58. Let $X_1, X_2 \sim U(0, \theta)$ i.i.d., with $\theta > 0$. For testing $H_0 : \theta \in (0, 1] \cup [2, \infty)$ vs $H_1 : \theta \in (1, 2)$, consider the critical region

$$R = \{(x_1, x_2) : \frac{5}{4} < \max(x_1, x_2) < \frac{7}{4}\}.$$

Find the size of the test (probability of Type-I error).

59. Let $X_1, \ldots, X_5 \sim \text{Bin}(1, \theta)$. For $H_0: \theta \leq 0.5$ vs $H_1: \theta > 0.5$, define

$$T_1$$
: Reject H_0 if $\sum X_i = 5$, T_2 : Reject H_0 if $\sum X_i \ge 3$.

If $\theta = \frac{2}{3}$, find $\beta_1 + \beta_2$ where $\beta_i = \text{Type-II}$ error for T_i .

60. Let $X_1 \sim N(2,1)$, $X_2 \sim N(-1,4)$, $X_3 \sim N(0,1)$ be independent. Find the probability that exactly two of them are less than 1 (round off to two decimals).