IIT JAM 2025 Mathematics (MA) Question Paper

Time Allowed :3 Hours | **Maximum Marks :**100 | **Total questions :**60

General Instructions

General Instructions:

- i) All questions are compulsory. Marks allotted to each question are indicated in the margin.
- ii) Answers must be precise and to the point.
- iii) In numerical questions, all steps of calculation should be shown clearly.
- iv) Use of non-programmable scientific calculators is permitted.
- v) Wherever necessary, write balanced chemical equations with proper symbols and units.
- vi) Rough work should be done only in the space provided in the question paper.

Q.1. The sum of the infinite series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \pi^{2n+1}}{2^{2n+1} (2n)!}$$

is equal to

- $(A) \pi$
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{2}$
- (D) $-\frac{\pi}{4}$

Q.2. For which one of the following choices of N(x, y), is the equation

$$(e^x \sin y - 2y \sin x) dx + N(x, y) dy = 0$$

an exact differential equation?

- (A) $N(x, y) = e^x \sin y + 2\cos x$
- (B) $N(x, y) = e^x \cos y + 2 \cos x$
- (C) $N(x,y) = e^x \cos y + 2 \sin x$
- (D) $N(x, y) = e^x \sin y + 2 \sin x$

Q.3. Let $f, g : \mathbb{R} \to \mathbb{R}$ be two functions defined by

$$f(x) = \begin{cases} x|x| \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

and

$$g(x) = \begin{cases} x^2 \sin \frac{1}{x} + x \cos \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

2

- (A) f is differentiable at x = 0, and g is NOT differentiable at x = 0
- (B) f is NOT differentiable at x = 0, and g is differentiable at x = 0

- (C) f is differentiable at x = 0, and g is differentiable at x = 0
- (D) f is NOT differentiable at x = 0, and g is NOT differentiable at x = 0

Q.4. Let $f, g : \mathbb{R} \to \mathbb{R}$ be two functions defined by

$$f(x) = \begin{cases} |x|^{1/8} \sin \frac{1}{|x|} \cos x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

and

$$g(x) = \begin{cases} e^x \cos \frac{1}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$$

Then, which one of the following is TRUE?

- (A) f is continuous at x = 0, and g is NOT continuous at x = 0
- (B) f is NOT continuous at x = 0, and g is continuous at x = 0
- (C) f is continuous at x = 0, and q is continuous at x = 0
- (D) f is NOT continuous at x = 0, and g is NOT continuous at x = 0

Q.5. Which one of the following is the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 16y = 2e^{4x}?$$

- (A) $\alpha_1 e^{4x} + \alpha_2 x e^{4x}$, where $\alpha_1, \alpha_2 \in \mathbb{R}$
- (B) $\alpha_1 e^{4x} + \alpha_2 x e^{4x} + 2x e^{4x}$, where $\alpha_1, \alpha_2 \in \mathbb{R}$
- (C) $\alpha_1 e^{4x} + \alpha_2 e^{4x} + 2xe^{4x}$, where $\alpha_1, \alpha_2 \in \mathbb{R}$
- (D) $\alpha_1 x e^{-4x} + \alpha_2 x^2 e^{4x}$, where $\alpha_1, \alpha_2 \in \mathbb{R}$

Q.6. Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$T(x, y, z) = (x + z, 2x + 3y + 5z, 2y + 2z),$$
 for all $(x, y, z) \in \mathbb{R}^3$

3

- (A) T is one-one and T is NOT onto
- (B) T is NOT one-one and T is onto
- (C) T is one-one and T is onto
- (D) T is NOT one-one and T is NOT onto

Q.7. Let

$$M = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & x \end{pmatrix}$$

for some real number x. If 0 is an eigenvalue of M, then $(M^4 + M) \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ is equal to

- $(A) \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- $(B) \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$
- $(C) \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}$
- $\text{(D)} \begin{pmatrix} 17 \\ 0 \\ 17 \end{pmatrix}$

Q.8. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation defined by

$$T(p(x)) = p(x+1), \text{ for all } p(x) \in P_2(\mathbb{R})$$

4

If M is the matrix representation of T with respect to the ordered basis $\{1, x, x^2\}$ of $P_2(\mathbb{R})$, then which one of the following is TRUE?

- (A) The determinant of M is 2
- (B) The rank of M is 2
- (C) 1 is the only eigenvalue of M
- (D) The nullity of M is 2

Q.9. Let G be a finite abelian group of order 10. Let x_0 be an element of order 2 in G. If $X = \{x \in G : x^3 = x_0\}$, then which one of the following is TRUE?

- (A) X has exactly one element
- (B) X has exactly two elements
- (C) X has exactly three elements
- (D) X is an empty set

Q.10. The value of

$$\int_0^1 \left(\int_0^{\sqrt{y}} 3e^{x^3} \, dx \right) dy$$

is equal to

- (A) e 1
- (B) $\frac{e-1}{2}$
- (C) $\sqrt{e} 1$
- (D) $\frac{\sqrt{e}-1}{2}$

Q.11. Let C denote the family of curves described by $yx^2 = \lambda$, for $\lambda \in (0, \infty)$ and lying in the first quadrant of the xy-plane. Let O denote the family of orthogonal trajectories of C. Which one of the following curves is a member of O, and passes through the point (2,1)?

(A)
$$y = \frac{x^2}{4}, x > 0, y > 0$$

- (B) $x^2 2y^2 = 2$, x > 0, y > 0
- (C) x y = 1, x > 0, y > 0
- (D) $2x y^2 = 3$, x > 0, y > 0

Q.12. Let $\varphi:(0,\infty)\to\mathbb{R}$ be the solution of the differential equation

$$x\frac{dy}{dx} = (\ln y - \ln x) y,$$

satisfying $\varphi(1) = e^2$. Then, the value of $\varphi(2)$ is equal to:

- (A) e^2
- (B) $2e^3$
- (C) $3e^2$
- (D) $6e^{3}$

Q.13. Let $X = \{x \in S_4 : x^3 = id\}$ and $Y = \{x \in S_4 : x^2 \neq id\}$. If m and n denote the number of elements in X and Y, respectively, then which one of the following is TRUE?

- (A) m is even and n is even
- (B) m is odd and n is even
- (C) m is even and n is odd
- (D) m is odd and n is odd

Q.14. Let $\varphi:\mathbb{R}\to\mathbb{R}$ be the solution of the differential equation

$$x\frac{dy}{dx} = (y-1)(y-3),$$

satisfying $\varphi(0) = 2$. Then, which one of the following is TRUE?

- (A) $\lim_{x\to\infty} \varphi(x) = 0$
- (B) $\lim_{x\to \ln\sqrt{2}}\varphi(x)=1$
- (C) $\lim_{x\to-\infty} \varphi(x) = 3$

(D)
$$\lim_{x \to \ln \frac{1}{\sqrt{2}}} \varphi(x) = 6$$

Q.15. Let

$$M = \begin{pmatrix} 6 & 2 & -6 & 8 \\ 5 & 3 & -9 & 8 \\ 3 & 1 & -2 & 4 \end{pmatrix}$$

Consider the system S of linear equations given by:

$$6x_1 + 2x_2 - 6x_3 + 8x_4 = 8$$

$$5x_1 + 3x_2 - 9x_3 + 8x_4 = 16$$

$$3x_1 + x_2 - 2x_3 + 4x_4 = 32$$

where x_1, x_2, x_3, x_4 are unknowns. Then, which one of the following is TRUE?

- (A) The rank of M is 3, and the system S has a solution
- (B) The rank of M is 3, and the system S does NOT have a solution
- (C) The rank of M is 2, and the system S has a solution
- (D) The rank of M is 2, and the system S does NOT have a solution

Q.16. Let

$$M = \begin{pmatrix} 3 & -2 & 0 \\ 2 & 3 & 3 \\ 4 & -1 & x \end{pmatrix}$$

for some real number x. Suppose that -2 and 3 are eigenvalues of M. If $M^3 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 125 \\ 125 \end{pmatrix}$,

7

- (A) x = 5, and the matrix $M^2 + M$ is invertible
- (B) $x \neq 5$, and the matrix $M^2 + M$ is invertible
- (C) x = 5, and the matrix $M^2 + M$ is NOT invertible

(D) $x \neq 5$, and the matrix $M^2 + M$ is NOT invertible

Q.17. Let $f(x) = 10x^2 + e^x - \sin(2x) - \cos x$, $x \in \mathbb{R}$. The number of points at which the function f has a local minimum is:

- (A) 0
- (B) 1
- (C) 2
- (D) greater than or equal to 3

Q.18. For $n \in \mathbb{N}$, define x_n and y_n by

$$x_n = (-1)^n \cos \frac{1}{n}$$
 and $y_n = \sum_{k=1}^n \frac{1}{n+k}$.

Then, which one of the following is TRUE?

- (A) $\sum_{n=1}^{\infty} x_n$ converges, and $\sum_{n=1}^{\infty} y_n$ does NOT converge
- (B) $\sum_{n=1}^{\infty} x_n$ does NOT converge, and $\sum_{n=1}^{\infty} y_n$ converges
- (C) $\sum_{n=1}^{\infty} x_n$ converges, and $\sum_{n=1}^{\infty} y_n$ converges
- (D) $\sum_{n=1}^{\infty} x_n$ does NOT converge, and $\sum_{n=1}^{\infty} y_n$ does NOT converge

Q.19. Let $x_1 = \frac{5}{2}$ and for $n \in \mathbb{N}$, define

$$x_{n+1} = \frac{1}{5} \left(x_n^2 + 6 \right).$$

- (A) (x_n) is an increasing sequence, and (x_n) is NOT a bounded sequence
- (B) (x_n) is NOT an increasing sequence, and (x_n) is NOT a bounded sequence
- (C) (x_n) is NOT a decreasing sequence, and (x_n) is a bounded sequence
- (D) (x_n) is a decreasing sequence, and (x_n) is a bounded sequence

Q.20. Let $x_1 = 2$ and $x_{n+1} = 2 + \frac{1}{2x_n}$ for all $n \in \mathbb{N}$. Then, which one of the following is TRUE?

- (A) $x_{n+1} \ge \frac{4}{x_n}$ for all $n \in \mathbb{N}$, and (x_n) is a Cauchy sequence
- (B) $x_{n+1} = \frac{4}{x_n}$ for some $n \in \mathbb{N}$, and (x_n) is a Cauchy sequence
- (C) $x_{n+1} = \frac{4}{x_n}$ for all $n \in \mathbb{N}$, and (x_n) is NOT a Cauchy sequence
- (D) $x_{n+1} \leq \frac{4}{x_n}$ for some $n \in \mathbb{N}$, and (x_n) is NOT a Cauchy sequence

Q.21. For $n \in \mathbb{N}$, define x_n and y_n by

$$x_n = (-1)^n \frac{3n}{n^3}$$
 and $y_n = (4n^3 + (-1)^n 3n^3)^{1/n}$.

Then, which one of the following is TRUE?

- (A) (x_n) has a convergent subsequence, and NO subsequence of (y_n) is convergent.
- (B) NO subsequence of (x_n) is convergent, and (y_n) has a convergent subsequence.
- (C) (x_n) has a convergent subsequence, and (y_n) has a convergent subsequence.
- (D) NO subsequence of (x_n) is convergent, and NO subsequence of (y_n) is convergent.

Q.22. Let $M = (m_{ij})$ be a 3×3 real, invertible matrix and $\sigma \in S_3$ be the permutation defined by $\sigma(1) = 2$, $\sigma(2) = 3$ and $\sigma(3) = 1$. The matrix M_{σ} is defined by $n_{ij} = m_{i\sigma(j)}$ for all $i, j \in \{1, 2, 3\}$. Then, which one of the following is TRUE?

- (A) $det(M) = det(M_{\sigma})$, and the nullity of the matrix $M M_{\sigma}$ is 0
- (B) $det(M) = -det(M_{\sigma})$, and the nullity of the matrix $M M_{\sigma}$ is 1
- (C) $det(M) = det(M_{\sigma})$, and the nullity of the matrix $M M_{\sigma}$ is 1
- (D) $det(M) = -det(M_{\sigma})$, and the nullity of the matrix $M M_{\sigma}$ is 0

Q.23. Let \mathbb{R}/\mathbb{Z} denote the quotient group, where \mathbb{Z} is considered as a subgroup of the additive group of real numbers \mathbb{R} .

Let m denote the number of injective (one-one) group homomorphisms from \mathbb{Z}_3 to \mathbb{R}/\mathbb{Z} and n denote the number of group homomorphisms from \mathbb{R}/\mathbb{Z} to \mathbb{Z}_3 .

Then, which one of the following is TRUE?

- (A) m = 2 and n = 1
- (B) m = 3 and n = 3
- (C) m = 2 and n = 3
- (D) m = 1 and n = 1

Q.24. Let f_1, f_2, f_3 be nonzero linear transformations from \mathbb{R}^4 to \mathbb{R} and

$$\ker(f_1) \subset \ker(f_2) \cap \ker(f_3).$$

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by

$$T(v) = (f_1(v), f_2(v), f_3(v))$$
 for all $v \in \mathbb{R}^4$.

Then, the nullity of *T* is equal to:

- (A) 1
- (B) 2
- (C)3
- (D) 4

Q.25. Let $x_1 = 1$. For $n \in \mathbb{N}$, define

$$x_{n+1} = \left(\frac{1}{2} + \frac{\sin^2 n}{n}\right) x_n.$$

- (A) $\sum_{n=1}^{\infty} x_n$ converges
- (B) $\sum_{n=1}^{\infty} x_n$ does NOT converge
- (C) $\sum_{n=1}^{\infty} x_n^2$ does NOT converge
- (D) $\sum_{n=1}^{\infty} x_n x_{n+1}$ does NOT converge

Q.26. Let $x_1 > 0$. For $n \in \mathbb{N}$, define

$$x_{n+1} = x_n + 4.$$

If

$$\lim_{n \to \infty} \left(\frac{1}{x_1 x_2 x_3} + \frac{1}{x_2 x_3 x_4} + \dots + \frac{1}{x_{n+1} x_{n+2} x_{n+3}} \right) = \frac{1}{24},$$

then the value of x_1 is equal to:

- (A) 1
- (B) 2
- (C) 3
- (D) 8

Q.27. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = e^y(x^2 + y^2)$$
 for all $(x,y) \in \mathbb{R}^2$.

Then, which one of the following is TRUE?

- (A) The number of points at which f has a local minimum is 2
- (B) The number of points at which f has a local maximum is 2
- (C) The number of points at which f has a local minimum is 1
- (D) The number of points at which f has a local maximum is 1

Q.28. Let Ω be the bounded region in \mathbb{R}^3 lying in the first octant $(x \ge 0, y \ge 0, z \ge 0)$, and bounded by the surfaces $z = x^2 + y^2$, z = 4, x = 0 and y = 0. Then, the volume of Ω is equal to:

- (A) π
- (B) 2π
- (C) 3π
- (D) 4π

Q.25. Let $x_1 = 1$. For $n \in \mathbb{N}$, define

$$x_{n+1} = \left(\frac{1}{2} + \frac{\sin^2 n}{n}\right) x_n.$$

Then, which one of the following is TRUE?

- (A) $\sum_{n=1}^{\infty} x_n$ converges
- (B) $\sum_{n=1}^{\infty} x_n$ does NOT converge
- (C) $\sum_{n=1}^{\infty} x_n^2$ does NOT converge
- (D) $\sum_{n=1}^{\infty} x_n x_{n+1}$ does NOT converge

Q.30. The number of elements in the set

$${x \in \mathbb{R} : 8x^2 + x^4 + x^8 = \cos x}$$

is equal to:

- (A) 0
- (B) 1
- (C) 2
- (D) greater than or equal to 3

Q.31. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^2 + y^5}{x^2 + y^4} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

12

- (A) The iterated limits $\lim_{x\to 0} (\lim_{y\to 0} f(x,y))$ and $\lim_{y\to 0} (\lim_{x\to 0} f(x,y))$ exist.
- (B) Exactly one of the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exists at (0,0).
- (C) Both the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (0,0).
- (D) f is NOT differentiable at (0,0).

Q.32. If $M, N, \mu, w : \mathbb{R}^2 \to \mathbb{R}$ are differentiable functions with continuous partial derivatives, satisfying

$$\mu(x,y)M(x,y) dx + \mu(x,y)N(x,y) dy = dw,$$

then which one of the following is TRUE?

- (A) μw is an integrating factor for M(x, y) dx + N(x, y) dy = 0
- (B) μw^2 is an integrating factor for M(x,y) dx + N(x,y) dy = 0

(C)
$$w(x,y) = w(0,0) + \int_0^x \mu M(s) \, ds + \int_0^y \mu N(t) \, dt$$
, for all $(x,y) \in \mathbb{R}^2$

(D)
$$w(x,y) = w(0,0) + \int_0^x \mu M(s,y) \, ds + \int_0^y \mu N(x,t) \, dt$$
, for all $(x,y) \in \mathbb{R}^2$

Q.33. Let $\varphi:(-1,\infty)\to(0,\infty)$ be the solution of the differential equation

$$\frac{dy}{dx} = 2ye^x = 2e^x\sqrt{y},$$

satisfying $\varphi(0) = 1$. Then, which of the following is/are TRUE?

- (A) φ is an unbounded function.
- (B) $\lim_{x\to \ln 2} \varphi(x) = (2e-1)^2$.
- (C) $\lim_{x \to \ln 2} \varphi(x) = \sqrt{2e 1}$.
- (D) φ is a strictly increasing function on the interval $(0, \infty)$.

Q.34. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{(x^2 + \sin xy)^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (A) $\lim_{(x,y)\to(0,0)} f(x,y)$ exists and $\lim_{(x,y)\to(0,0)} f(x,y) = 1$.
- (B) $\lim_{(x,y)\to(0,0)} f(x,y)$ exists and $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.
- (C) f is differentiable at (0,0).
- (D) f is NOT differentiable at (0,0).

Q.35. Let $u_1 = (1, 0, 0, -1)$, $u_2 = (2, 0, 0, -1)$, $u_3 = (0, 0, 1, -1)$, $u_4 = (0, 0, 0, 1)$ be elements in the real vector space \mathbb{R}^4 . Then, which of the following is/are TRUE?

- (A) $\{u_1, u_2, u_3, u_4\}$ is a linearly independent set in \mathbb{R}^4 .
- (B) $\{u_1 u_2, u_3 u_4, u_4 u_1\}$ is NOT a linearly independent set in \mathbb{R}^4 .
- (C) $\{u_1, -u_2, u_3, -u_4\}$ is NOT a linearly independent set in \mathbb{R}^4 .
- (D) $\{u_1 + u_2, u_2 + u_3, u_3 + u_4, u_4 + u_1\}$ is a linearly independent set in \mathbb{R}^4 .

Q.36. For $n \in \mathbb{N}$, let

$$x_n = \sum_{k=1}^n \frac{k}{n^2 + k}.$$

Then, which of the following is/are TRUE?

- (A) The sequence (x_n) converges.
- (B) The series $\sum_{n=1}^{\infty} x_n$ converges.
- (C) The series $\sum_{n=1}^{\infty} x_n$ does NOT converge.
- (D) The series $\sum_{n=1}^{\infty} x_n^n$ converges.

Q.37. Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that

$$f(0) = 0, f'(0) = 2, f(1) = -3.$$

Then, which of the following is/are TRUE?

- (A) $|f'(x)| \le 2$ for all $x \in [0, 1]$.
- (B) $|f'(x_1)| > 2$ for some $x_1 \in [0, 1]$.
- (C) |f''(x)| < 10 for all $x \in [0, 1]$.
- (D) $|f''(x_2)| \ge 10$ for some $x_2 \in [0, 1]$.

Q.38. Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that

$$f(0) = 4$$
, $f(1) = -2$, $f(2) = 8$, $f(3) = 2$.

Then, which of the following is/are TRUE?

- (A) |f'(x)| < 5 for all $x \in [0, 1]$.
- (B) $|f'(x_1)| \ge 5$ for some $x_1 \in [0, 1]$.
- (C) $f'(x_2) = 0$ for some $x_2 \in [0, 3]$.
- (D) $f''(x_3) = 0$ for some $x_3 \in [0, 3]$.

Q.39. For $n \in \mathbb{N}$, consider the set $U(n) = \{x \in \mathbb{Z}_n : \gcd(x, n) = 1\}$ as a group under multiplication modulo n. Then, which of the following is/are TRUE?

- (A) U(8) is a cyclic group.
- (B) U(5) is a cyclic group.
- (C) U(12) is a cyclic group.
- (D) U(9) is a cyclic group.

Q.40. Consider the following subspaces of the real vector space \mathbb{R}^3 :

$$V_1 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}, \quad V_2 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}, \quad V_3 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}, \quad V_4 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} \right\},$$

Then, which of the following is/are TRUE?

- (A) $V_1 \cup V_2$ is a subspace of \mathbb{R}^3 .
- (B) $V_1 \cup V_3$ is a subspace of \mathbb{R}^3 .
- (C) $V_1 \cup V_4$ is a subspace of \mathbb{R}^3 .
- (D) $V_1 \cup V_5$ is a subspace of \mathbb{R}^3 .

Q.41. The radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(x + \frac{1}{4})^n}{(-2)^n n^2}$$

about $x=-\frac{1}{4}$ is equal to (rounded off to two decimal places).

Q.42. The value of

$$\lim_{n \to \infty} 8n \left(\left(e^{\frac{1}{2n}} - 1 \right) \left(\sin \frac{1}{2n} + \cos \frac{1}{2n} \right) \right)$$

is equal to (rounded off to two decimal places).

Q.43. Let α be the real number such that

$$\lim_{x \to 0} \frac{(1 - \cos x)(22x^2 + x - 4)}{x^3} = \alpha \ln 2.$$

Then, the value of α is equal to (rounded off to two decimal places).

Q.44. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be the solution of the differential equation

$$4\frac{d^2y}{dx^2} + 16\frac{dy}{dx} + 25y = 0$$

satisfying $\varphi(0) = 1$ and $\varphi'(0) = -\frac{1}{2}$. Then, the value of $\lim_{x\to\infty} e^{2x}\varphi(x)$ is equal to (rounded off to two decimal places).

Q.45. Let S be the surface area of the portion of the plane z = x + y + 3, which lies inside the cylinder $x^2 + y^2 = 1$. Then, the value of $\left(\frac{S}{\pi}\right)^2$ is equal to (rounded off to two decimal places).

Q.46. Consider the following subspaces of \mathbb{R}^4 :

$$V_1 = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + 2w = 0\}, \quad V_2 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_3 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_3 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_4 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_5 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_6 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_7 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + z + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{R}^4 : 2y + w = 0\}, \quad V_8 = \{(x, y, z, w) \in \mathbb{$$

Then, the dimension of the subspace $V_1 \cap V_2 \cap V_3$ is equal to (rounded off to two decimal places).

Q.47. Consider the real vector space \mathbb{R}^3 . Let $T: \mathbb{R}^3 \to \mathbb{R}$ be a linear transformation such that

$$T(1,1,1) = 0$$
, $T(1,-1,1) = 0$, $T(0,0,1) = 16$.

Then, the value of $T\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}\right)$ is equal to (rounded off to two decimal places).

Q.48. Let T denote the triangle in the xy-plane bounded by the x-axis and the lines y=x and x=1. The value of the double integral (over T)

$$\iint_T (5-y) \, dx \, dy$$

is equal to (rounded off to two decimal places).

Q.49. Let $T, S : P_4(\mathbb{R}) \to P_4(\mathbb{R})$ be the linear transformations defined by

$$T(p(x)) = xp'(x), \quad S(p(x)) = (x+1)p'(x)$$

for all $p(x) \in P_4(\mathbb{R})$. Then, the nullity of the composition $S \circ T$ is

Q.50. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{(x^2 - y^2)^2 xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Then, the value of $\frac{\partial f}{\partial y}(0,0)$ and $\frac{\partial f}{\partial x}(0,0)$ is equal to (rounded off to two decimal places).

Q.51. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying

$$\int_0^{\frac{\pi}{4}} \left(\sin(x) f(x) + \cos(x) \int_0^x f(t) dt \right) dx = \sqrt{2}.$$

Then, the value of

$$\int_0^{\frac{\pi}{4}} f(x) \, dx$$

is equal to (rounded off to two decimal places).

Q.52. Let $\sigma \in S_4$ be the permutation defined by $\sigma(1) = 2$, $\sigma(2) = 3$, $\sigma(3) = 1$, and $\sigma(4) = 4$. The number of elements in the set

$$\{\tau \in S_4 : \tau \circ \sigma^{-1} = \sigma\}$$

is equal to

Q.53. Let $f(x) = 2x - \sin(x)$, for all $x \in \mathbb{R}$. Let $k \in \mathbb{N}$ be such that

$$\lim_{x \to 0} \left(\frac{1}{x} \sum_{i=1}^{k} i^2 f\left(\frac{x}{i}\right) \right) = 45.$$

Then, the value of k is equal to

Q.54. The value of the infinite series

$$\sum_{n=1}^{\infty} n \left(\frac{3}{4}\right)^{2n-1}$$

is equal to (rounded off to two decimal places).

Q.55. Let $\varphi:(0,\infty)\to\mathbb{R}$ be the solution of the differential equation

$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 6x \ln x,$$

satisfying $\varphi(1) = -3$ and $\varphi(e) = 0$. Then, the value of $\varphi'(1)$ is equal to (rounded off to two decimal places).

Q.56. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be the solution of the differential equation

$$\frac{dy}{dx} + 2xy = 2 + 4x^2,$$

satisfying $\varphi(0) = 0$. Then, the value of $\varphi(2)$ is equal to (rounded off to two decimal places).

Q.57. Let Ω be the solid bounded by the planes $z=0,\,y=0,\,x=\frac{1}{2},\,2y=x$ and 2x+y+z=4. If V is the volume of Ω , then the value of 64V is equal to (rounded off to two decimal places).

Q.58. Let the subspace H of $P_3(\mathbb{R})$ be defined as

$$H = \{ p(x) \in P_3(\mathbb{R}) : xp'(x) = 3p(x) \}.$$

Then, the dimension of H is equal to

Q.59. Let G be an abelian group of order 35. Let m denote the number of elements of order 5 in G, and let n denote the number of elements of order 7 in G. Then, the value of m + n is equal to

Q.60. The number of surjective (onto) group homomorphisms from S_4 to \mathbb{Z}_6 is equal to