
IIT JAM Mathematical Statistics - 2025 Question Paper with
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General Instructions

Read the following instructions very carefully and strictly follow them:

1. The examination is of 3 hours duration. There are a total of 60 questions carrying
100 marks. The entire paper is divided into three sections, A, B and C. All
sections are compulsory. Questions in each section are of different types.

2. Section A contains a total of 30 Multiple Choice Questions (MCQ). Each MCQ
type question has four choices out of which only one choice is the correct answer.
Questions Q.1 – Q.30 belong to this section and carry a total of 50 marks. Q.1 –
Q.10 carry 1 mark each and Questions Q.11 – Q.30 carry 2 marks each.

3. Section B contains a total of 10 Multiple Select Questions (MSQ). Each MSQ type
question is similar to MCQ but with a difference that there will be one or more
than one choices that are correct out of the four given choices. The candidate gets
full credit if he/she selects all the correct answers only and no wrong answers.
Questions Q.31 – Q.40 belong to this section and carry 2 marks each with a total
of 20 marks.

4. Section C contains a total of 20 Numerical Answer Type (NAT) questions. For
these NAT type questions, the answer is a real number which needs to be entered
using the virtual keyboard on the monitor. No choices will be shown for these type
of questions. Questions Q.41 – Q.60 belong to this section and carry a total of 30
marks. Q.41 – Q.50 carry 1 mark each and Questions Q.51 – Q.60 carry 2 marks
each.

5. In all sections, questions not attempted will result in zero marks. In Section A
(MCQ), wrong answer will result in NEGATIVE marks. For all 1-mark questions,
1/3 marks will be deducted for each wrong answer. For all 2-mark questions, 2/3
marks will be deducted for each wrong answer. In Section B (MSQ), there is NO
NEGATIVE and NO PARTIAL marking provisions. There is NO NEGATIVE
marking in Section C (NAT) as well.

6. Only Virtual Scientific Calculator is allowed. Charts, graph sheets, tables, cellular
phone or other electronic gadgets are NOT allowed in the examination hall.

7. A Scribble Pad will be provided for rough work.
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Section - A

1. Let {an}n≥1 and {bn}n≥1 be sequences given by

an =

⌊
n2

n+ 1

⌋
and bn =

n2

n+ 1
− an .

Then

(A) {an}n≥1 converges and {bn}n≥1 diverges
(B) {an}n≥1 diverges and {bn}n≥1 converges
(C) Both {an}n≥1 and {bn}n≥1 diverge
(D) Both {an}n≥1 and {bn}n≥1 converge

Correct Answer: (B) {an}n≥1 diverges and {bn}n≥1 converges

Solution:

Step 1: Understanding the Concept:
To determine the convergence or divergence of the sequences, we need to find their explicit
formulas and then evaluate their limits as n → ∞. A sequence converges if its limit is a finite
real number; otherwise, it diverges.

Step 2: Analyzing the sequence {an}:
First, we simplify the expression inside the floor function for an. We use polynomial division
or algebraic manipulation:

n2

n+ 1
=

n2 − 1 + 1

n+ 1
=

(n− 1)(n+ 1) + 1

n+ 1
= (n− 1) +

1

n+ 1
Now, we can write an as:

an =
⌊
(n− 1) +

1

n+ 1

⌋
For n ≥ 1, we know that n− 1 is an integer. Also, 0 < 1

n+1 ≤ 1
2 .

The floor of an integer plus a small positive fraction (less than 1) is the integer itself.
Therefore, an = n− 1.
To check for convergence, we take the limit as n → ∞:

lim
n→∞

an = lim
n→∞

(n− 1) = ∞

Since the limit is not finite, the sequence {an} diverges.

Step 3: Analyzing the sequence {bn}:
The sequence {bn} is defined as bn = n2

n+1 − an.

Using the results from Step 2, we substitute the expressions for n2

n+1 and an:

bn =
(
(n− 1) +

1

n+ 1

)
− (n− 1)
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bn =
1

n+ 1

To check for convergence, we take the limit as n → ∞:

lim
n→∞

bn = lim
n→∞

1

n+ 1
= 0

Since the limit is a finite number (0), the sequence {bn} converges.

Step 4: Final Answer:
The sequence {an} diverges, and the sequence {bn} converges. This corresponds to option (B).

Quick Tip

When dealing with a floor function of a rational expression, polynomial long division is
a powerful tool to separate the integer part from the fractional part. The fractional part
of a number x is given by x− ⌊x⌋. Here, bn is precisely the fractional part of n2

n+1 .

2. Let a, b, c be real numbers with b ̸= c. Define the matrix

M =

a b c
c a b
b c a


Then the number of characteristic roots of M that are real is

(A) 3
(B) 2
(C) 1
(D) 0

Correct Answer: (C) 1

Solution:

Step 1: Understanding the Concept:
The characteristic roots (or eigenvalues) of a matrix M are the solutions λ to the characteristic
equation det(M −λI) = 0. For a real matrix like M , the characteristic polynomial is a polyno-
mial with real coefficients. Its roots can be real or complex. Complex roots of a real polynomial
must occur in conjugate pairs. Since M is a 3×3 matrix, its characteristic polynomial is cubic,
which must have at least one real root. Thus, the number of real roots can be 1 or 3.

Step 2: Key Formula or Approach:
The given matrix M is a circulant matrix. The eigenvalues of a 3 × 3 circulant matrix of the
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form

C =

c0 c1 c2
c2 c0 c1
c1 c2 c0


are given by the formula λk = c0 + c1ω

k + c2ω
2k for k = 0, 1, 2, where ω = ei2π/3 is a primitive

cube root of unity.

The cube roots of unity are 1, ω = −1
2 + i

√
3
2 , and ω2 = −1

2 − i
√
3
2 .

Step 3: Detailed Explanation:
For our matrix M , we have c0 = a, c1 = b, c2 = c. Let’s find the three eigenvalues:

• For k = 0:
λ0 = a+ bω0 + cω0 = a+ b(1) + c(1) = a+ b+ c.
Since a, b, c are real, λ0 is a real eigenvalue.

• For k = 1:
λ1 = a+ bω1 + cω2 = a+ b

(
−1

2 + i
√
3
2

)
+ c
(
−1

2 − i
√
3
2

)
.

λ1 =
(
a− b

2 −
c
2

)
+ i
(
b
√
3

2 − c
√
3

2

)
=
(
a− b+c

2

)
+ i

√
3
2 (b− c).

• For k = 2:
λ2 = a+ bω2 + cω4 = a+ bω2 + cω. (Since ω3 = 1)

λ2 = a+ b
(
−1

2 − i
√
3
2

)
+ c
(
−1

2 + i
√
3
2

)
.

λ2 =
(
a− b+c

2

)
− i

√
3
2 (b− c).

The eigenvalues λ1 and λ2 are complex conjugates. They are real if and only if their imaginary

part is zero. The imaginary part of λ1 is
√
3
2 (b− c).

This imaginary part is zero only if b− c = 0, i.e., b = c.
However, the problem states that b ̸= c. Therefore, b− c ̸= 0, which means the imaginary part
is non-zero.
Thus, λ1 and λ2 are non-real complex eigenvalues.

Step 4: Final Answer:
The matrix M has one real eigenvalue (λ0) and two non-real complex conjugate eigenvalues
(λ1, λ2). Therefore, the number of real characteristic roots is exactly 1.
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Quick Tip

An alternative method is to check if v = (1, 1, 1)T is an eigenvector.

Mv =

a b c
c a b
b c a

1
1
1

 =

a+ b+ c
c+ a+ b
b+ c+ a

 = (a+ b+ c)

1
1
1


This confirms that a+ b+ c is a real eigenvalue. This quickly establishes that there is at
least one real root.

3. Let f : R → R be a continuous odd function that is not identically zero. Further,
suppose that f is a periodic function. Define

g(x) =

ˆ x

0

f(t) dt .

Then

(A) g is odd and not periodic
(B) g is odd and periodic
(C) g is even and not periodic
(D) g is even and periodic

Correct Answer: (D) g is even and periodic

Solution:

Step 1: Understanding the Concept:
We need to determine the properties (even/odd and periodic) of the function g(x), which is
defined as the integral of another function f(x) with known properties.

• An even function satisfies g(−x) = g(x).

• An odd function satisfies g(−x) = −g(x).

• A periodic function with period T satisfies g(x+ T ) = g(x) for some T > 0.

Step 2: Checking if g is Even or Odd:
We evaluate g(−x) using its definition:

g(−x) =

ˆ −x

0

f(t) dt

Let’s use the substitution u = −t, which means t = −u and dt = −du. The limits of integration
change as follows: when t = 0, u = 0; when t = −x, u = x.

g(−x) =

ˆ x

0

f(−u) (−du) = −
ˆ x

0

f(−u) du
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We are given that f is an odd function, so f(−u) = −f(u).

g(−x) = −
ˆ x

0

(−f(u)) du =

ˆ x

0

f(u) du

By definition,
´ x
0
f(u) du = g(x). Therefore, g(−x) = g(x), which means that g is an even

function.

Step 3: Checking if g is Periodic:
Let T > 0 be the period of f , so f(t+T ) = f(t) for all t. We need to check if g(x+T ) = g(x).

g(x+ T ) =

ˆ x+T

0

f(t) dt =

ˆ x

0

f(t) dt+

ˆ x+T

x

f(t) dt

g(x+ T ) = g(x) +

ˆ x+T

x

f(t) dt

For g to be periodic with period T , the integral term must be zero for all x. The integral of a
periodic function over any interval of length equal to its period is constant. So,

ˆ x+T

x

f(t) dt =

ˆ T

0

f(t) dt

Now we need to evaluate
´ T
0
f(t) dt. We use the property

´ a
0
h(t) dt =

´ a
0
h(a − t) dt. Let

I =
´ T
0
f(t) dt. Then,

I =

ˆ T

0

f(T − t) dt

Since f is periodic with period T , f(T − t) = f(−t).

I =

ˆ T

0

f(−t) dt

Since f is an odd function, f(−t) = −f(t).

I =

ˆ T

0

−f(t) dt = −
ˆ T

0

f(t) dt = −I

So, we have I = −I, which implies 2I = 0, and thus I = 0. Since
´ T
0
f(t) dt = 0, we have

g(x+ T ) = g(x) + 0 = g(x). This means that g is a periodic function.

Step 4: Final Answer:
We have shown that g(x) is both an even function and a periodic function. This corresponds
to option (D).
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Quick Tip

Remember these general rules:

• The definite integral of an odd function over a symmetric interval [−a, a] is always
zero.

• The integral of an odd periodic function over one full period is always zero.

• The integral of an odd function from 0 to x results in an even function.

• The integral of an even function from 0 to x results in an odd function.

4. Suppose Z1, Z2, . . . , Z128 are i.i.d. Bin(1, 0.5) random variables. Define

X = (Z1, Z2, . . . , Z64)
T and Y = (Z65, Z66, . . . , Z128)

T .

Then the value of Var(XTY) is

(A) 4
(B) 8
(C) 12
(D) 16

Correct Answer: (C) 12

Solution:

Step 1: Understanding the Concept:
We need to find the variance of the scalar product S = XTY. The variables Zi are i.i.d.
Bernoulli variables with p = 0.5, since Bin(1, p) is the Bernoulli(p) distribution. For each Zi:

• Expected value: E[Zi] = p = 0.5

• Variance: V ar(Zi) = p(1− p) = 0.5(0.5) = 0.25

The scalar product is given by:

S = XTY =

64∑
i=1

ZiZ64+i

Step 2: Key Formula or Approach:
Let Wi = ZiZ64+i. Then S =

∑64
i=1Wi. The indices used for each Wi (i.e., {i, 64 + i}) are

disjoint from the indices for any other Wj (where j ̸= i). Since all Zk are i.i.d., the random
variables Wi are also i.i.d. Therefore, the variance of the sum is the sum of the variances:

Var(S) = Var

(
64∑
i=1

Wi

)
=

64∑
i=1

Var(Wi) = 64 · Var(W1)
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To find Var(S), we first need to find the variance of a single term W1 = Z1Z65.

Step 3: Detailed Explanation:
First, let’s analyze the variable Wi = ZiZ64+i. Since Zi and Z64+i can only take values 0 or 1,
their product Wi can also only be 0 or 1. This means Wi is also a Bernoulli random variable.
Let’s find its parameter pW .

pW = P (Wi = 1) = P (Zi = 1 and Z64+i = 1)

Because Zi and Z64+i are independent:

pW = P (Zi = 1) · P (Z64+i = 1) = (0.5) · (0.5) = 0.25

So, each Wi is a Bernoulli(0.25) random variable. The variance of Wi is:

Var(Wi) = pW (1− pW ) = 0.25(1− 0.25) = 0.25× 0.75 =
1

4
× 3

4
=

3

16

Now we can calculate the variance of S:

Var(S) = 64 · Var(W1) = 64× 3

16
= 4× 3 = 12

Step 4: Alternative Method (Law of Total Variance):
Var(S) = E[Var(S|X)] + Var(E[S|X]).

• E[S|X] = E[
∑

ZiZ64+i|X] =
∑

ZiE[Z64+i] =
∑

Zi(0.5) = 0.5
∑

Zi. LetK =
∑64

i=1 Zi ∼
Bin(64, 0.5). So E[S|X] = 0.5K.

• Var(E[S|X]) = Var(0.5K) = 0.25 · Var(K) = 0.25 · (64× 0.5× 0.5) = 0.25 · 16 = 4.

• Var(S|X) = Var(
∑

ZiZ64+i|X) =
∑

Var(ZiZ64+i|X) =
∑

Z2
i Var(Z64+i). Since Zi ∈

{0, 1}, Z2
i = Zi.

• Var(S|X) =
∑

Zi · Var(Z64+i) =
∑

Zi · (0.25) = 0.25K.

• E[Var(S|X)] = E[0.25K] = 0.25 · E[K] = 0.25 · (64× 0.5) = 0.25 · 32 = 8.

Var(S) = 8 + 4 = 12.
Both methods confirm the answer is 12.

Quick Tip

If the question were to ask for Var(XTX), the calculation would be different. In that

case, S′ = XTX =
∑64

i=1 Z
2
i . Since Zi is a Bernoulli variable, Z2

i = Zi. Thus, S′ =∑64
i=1 Zi, which follows a Binomial(64, 0.5) distribution. The variance would then be

np(1 − p) = 64 × 0.5 × 0.5 = 16. Given the options, it’s possible this was the intended
question. However, based on the literal text, the answer is 12.

5. Let X1, X2, X3 be i.i.d. Bin(1, θ) random variables. Consider the problem of
testing the null hypothesis H0 : θ = 1

2 against the alternative hypothesis H1 : θ = 1
4
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based on X1, X2, X3. Then the power of the most powerful test of size 0.125 is

(A) 0
(B) 1

64
(C) 27

64
(D) 7

8

Correct Answer: (C) 27
64

Solution:

Step 1: Understanding the Concept:
We need to find the power of the Most Powerful (MP) test for a simple null hypothesis against
a simple alternative. The Neyman-Pearson Lemma provides the form of the MP test. The test
statistic is the likelihood ratio. Let L(θ;x) be the likelihood function. The MP test rejects H0

if the likelihood ratio
L(θ1;x)
L(θ0;x)

> k for some constant k. Here, θ0 = 1/2 and θ1 = 1/4.

Step 2: Constructing the Most Powerful Test:
The random variables are Xi ∼ Bernoulli(θ). The likelihood function is:

L(θ; x1, x2, x3) =

3∏
i=1

θxi(1− θ)1−xi = θ
∑

xi(1− θ)3−
∑

xi

Let S =
∑3

i=1Xi. Under both H0 and H1, S is a sufficient statistic for θ, and S ∼ Bin(3, θ).
The test can be based on S. The likelihood ratio is:

L(θ1 =
1
4 ;S)

L(θ0 =
1
2 ;S)

=
(14)

S(1− 1
4)

3−S

(12)
S(1− 1

2)
3−S

=
(14)

S(34)
3−S

(12)
S(12)

3−S
=

33−S

43
· 2

3

1
=

33−S

8

The MP test rejects H0 if 33−S

8 > k, or equivalently 33−S > 8k. Since 33−S is a decreasing
function of S, this is equivalent to rejecting H0 if S < c for some constant c. The critical region
of the MP test is of the form C = {x : S < c}.

Step 3: Determining the Critical Region using the Size:
The size of the test is the probability of Type I error, α = P (Reject H0|H0 is true). We are
given α = 0.125 = 1/8. Under H0, θ = 1/2, so S ∼ Bin(3, 1/2). The possible values for S are
0, 1, 2, 3. The probability mass function under H0 is P (S = s) =

(
3
s

)
(12)

s(12)
3−s =

(
3
s

)
1
8 .

• P (S = 0|H0) =
(
3
0

)
1
8 = 1

8

• P (S = 1|H0) =
(
3
1

)
1
8 = 3

8

• P (S = 2|H0) =
(
3
2

)
1
8 = 3

8

• P (S = 3|H0) =
(
3
3

)
1
8 = 1

8

The critical region is of the form S < c. We need to find c such that the size is 0.125. Let’s
test possible values for c: If the critical region is S = 0, the size is P (S = 0|H0) = 1/8 = 0.125.
This matches the given size. So, the critical region is C = {x : S = 0}. The MP test is to
reject H0 if and only if S = X1 +X2 +X3 = 0.
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Step 4: Calculating the Power of the Test:
The power of the test is the probability of correctly rejectingH0, which is P (Reject H0|H1 is true).
Power = P (S ∈ C|H1) = P (S = 0|θ = 1/4). Under H1, θ = 1/4, so S ∼ Bin(3, 1/4). The
probability is:

P (S = 0|θ = 1/4) =

(
3

0

)(
1

4

)0 (
1− 1

4

)3−0

= 1 · 1 ·
(
3

4

)3
=

27

64

So, the power of the test is 27/64.

Quick Tip

The Neyman-Pearson Lemma is fundamental for finding the Most Powerful test between
two simple hypotheses. The key is to form the likelihood ratio, which often simplifies
to a condition on a sufficient statistic. The size of the test determines the exact critical
region, and the power is the probability of this region under the alternative hypothesis.

6. Suppose X is a Poisson(λ) random variable. Define Y = (−1)X . Then the ex-
pected value of Y is

(A) −λe−2λ

(B) −e−2λ

(C) λe−2λ

(D) λ

Correct Answer: (A) −λe−2λ

Solution:

Step 1: Understanding the Concept:
We need to find the expected value of a function of a discrete random variable. For a discrete
random variable X with probability mass function (PMF) P (X = k), the expected value of a
function g(X) is given by E[g(X)] =

∑
k g(k)P (X = k).

Step 2: Key Formula or Approach:

Here, X ∼ Poisson(λ), so its PMF is P (X = k) = e−λλk

k! for k = 0, 1, 2, . . .. The function is
g(X) = Y = (−1)X . The expected value is:

E[Y ] = E[(−1)X ] =

∞∑
k=0

(−1)kP (X = k) =

∞∑
k=0

(−1)k
e−λλk

k!

Step 3: Detailed Explanation:
We can factor out the constant e−λ from the summation:

E[Y ] = e−λ
∞∑
k=0

(−1)kλk

k!
= e−λ

∞∑
k=0

(−λ)k

k!
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The summation is the Taylor series expansion for ez evaluated at z = −λ:

∞∑
k=0

(−λ)k

k!
= e−λ

Substituting this back into the expression for E[Y ]:

E[Y ] = e−λ · (e−λ) = e−2λ

Thus, the expected value of Y is e−2λ.

Step 4: Final Answer:
The calculated expected value is e−2λ.

Quick Tip

This is a standard problem related to the moment generating function (MGF) or proba-
bility generating function (PGF). The PGF of a Poisson(λ) is GX(z) = E[zX ] = eλ(z−1).
The expected value we want is E[(−1)X ], which is simply the PGF evaluated at z = −1.
E[Y ] = GX(−1) = eλ(−1−1) = e−2λ.

7. Let {Yn}n≥1 be a sequence of i.i.d. Bin(1, p) random variables, where 0 < p < 1
is an unknown parameter. Let p̂n be the maximum likelihood estimator of p based
on Y1, Y2, . . . , Yn. It is claimed that:

p̂n − p√
p(1−p)

n

d−→ N(0, 1) as n → ∞ (I)

p̂n − p√
p̂n(1−p̂n)

n

d−→ N(0, 1) as n → ∞ (II)

Which of the following statements is correct?

(A) (I) is correct and (II) is incorrect
(B) (I) is incorrect and (II) is correct
(C) Both (I) and (II) are correct
(D) Both (I) and (II) are incorrect

Correct Answer: (C) Both (I) and (II) are correct

Solution:

Step 1: Understanding the Concept:
This question deals with the asymptotic properties of the Maximum Likelihood Estimator
(MLE) for the parameter of a Bernoulli distribution. We need to identify the correct forms of
the Central Limit Theorem (CLT) and its practical application using Slutsky’s Theorem.
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Step 2: Finding the MLE and Analyzing Statement (I):
The likelihood function for n Bernoulli trials is L(p) = p

∑
yi(1 − p)n−

∑
yi . The MLE for p is

the sample mean:

p̂n =
1

n

n∑
i=1

Yi = Ȳn

The Yi are i.i.d. with mean E[Yi] = p and variance V ar(Yi) = p(1 − p). By the classical
Central Limit Theorem (Lindeberg-Lévy CLT), the sample mean Ȳn is asymptotically normally
distributed. Specifically,

Ȳn − E[Ȳn]√
V ar(Ȳn)

d−→ N(0, 1)

Here, E[Ȳn] = p and V ar(Ȳn) =
V ar(Yi)

n =
p(1−p)

n . Substituting p̂n for Ȳn, we get:

p̂n − p√
p(1−p)

n

d−→ N(0, 1)

This matches statement (I). Therefore, (I) is correct.

Step 3: Analyzing Statement (II):
Statement (II) replaces the true variance p(1−p) in the denominator with its consistent estimate
p̂n(1− p̂n). We need to determine if this replacement preserves the convergence in distribution.
By the Weak Law of Large Numbers (WLLN), the sample mean converges in probability to the
true mean.

p̂n = Ȳn
p−→ p

Since the function g(x) = x(1 − x) is a continuous function, by the Continuous Mapping
Theorem,

p̂n(1− p̂n)
p−→ p(1− p)

Now we apply Slutsky’s Theorem. We have two convergences:

• Xn =
√
n(p̂n − p)

d−→ N(0, p(1− p)), which is equivalent to p̂n−p√
p(1−p)/n

d−→ N(0, 1)

• Yn =
√

p(1−p)
p̂n(1−p̂n)

p−→ 1

Slutsky’s Theorem states that if Xn
d−→ X and Yn

p−→ c, then XnYn
d−→ cX. Here, c = 1, so the

product of our two sequences converges in distribution to N(0, 1)× 1 = N(0, 1). p̂n − p√
p(1−p)

n

 ·
(√

p(1− p)

p̂n(1− p̂n)

)
=

p̂n − p√
p̂n(1−p̂n)

n

d−→ N(0, 1)

This matches statement (II). Therefore, (II) is correct.

Step 4: Final Answer:
Both statements (I) and (II) are correct statements about the asymptotic distribution of the
MLE for a Bernoulli parameter. (I) is a direct result of the CLT, and (II) follows from the CLT
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combined with Slutsky’s Theorem.

Quick Tip

Statement (I) is the direct result of the Central Limit Theorem. Statement (II) is the
”practical” version of the CLT, used for constructing confidence intervals and hypothesis
tests when the true parameter p is unknown and must be estimated from the data. The
justification for this replacement is Slutsky’s Theorem.

8. Let X be a continuous random variable with probability density function f(x).
Consider the problem of testing the null hypothesis

H0 : f(x) =

{
1 if 0 < x < 1,

0 otherwise,

against the alternative hypothesis

H1 : f(x) =

{
2x if 0 < x < 1,

0 otherwise.

Then the power of the most powerful size α test, where 0 < α < 1, based on a single
sample, is

(A) α(1− α)
(B) α(2− α)
(C) 1− α
(D) α

Correct Answer: (B) α(2− α)

Solution:

Step 1: Understanding the Concept:
We need to find the power of the Most Powerful (MP) test of size α. The Neyman-Pearson
Lemma provides the form of the MP test. The test is based on a single observation X. The

test rejects H0 if the likelihood ratio
f1(x)
f0(x)

> k for some constant k.

Step 2: Constructing the Most Powerful Test:
The likelihood ratio based on a single observation x (where 0 < x < 1) is:

Λ(x) =
f1(x)

f0(x)
=

2x

1
= 2x

The MP test rejects H0 if Λ(x) = 2x > k, which is equivalent to rejecting H0 if x > k/2. Let
c = k/2. The critical region (rejection region) is of the form C = {x : x > c} for some constant
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c ∈ (0, 1).

Step 3: Determining the Critical Region using the Size α:
The size of the test is the probability of Type I error: α = P (Reject H0|H0 is true). Under H0,
X ∼ U(0, 1) (Uniform distribution on (0,1)).

α = P (X ∈ C|H0) = P (X > c|H0) =

ˆ 1

c

f0(x) dx =

ˆ 1

c

1 dx = [x]1c = 1− c

So, we have α = 1− c, which implies c = 1− α. The critical region for the MP test of size α is
C = {x : x > 1− α}.

Step 4: Calculating the Power of the Test:
The power of the test is the probability of correctly rejectingH0: Power = P (Reject H0|H1 is true).
Under H1, the pdf of X is f1(x) = 2x for 0 < x < 1.

Power = P (X ∈ C|H1) = P (X > 1− α|H1) =

ˆ 1

1−α

f1(x) dx

Power =

ˆ 1

1−α

2x dx = [x2]11−α = 12 − (1− α)2

Power = 1− (1− 2α+ α2) = 1− 1 + 2α− α2 = 2α− α2 = α(2− α)

Thus, the power of the most powerful size α test is α(2− α).

Quick Tip

For the Neyman-Pearson test, the critical region is always determined by the likelihood
ratio. First, find the general form of the rejection region. Second, use the given size α
to find the specific critical value. Finally, calculate the probability of this critical region
under the alternative hypothesis to find the power.

9. Suppose X ∼ N(0, 4) and Y ∼ N(0, 9) are independent random variables. Then
the value of P (9X2 + 4Y 2 < 6) is

(A) 1− e−1/4

(B) 1− e−1/12

(C) 1− e−1/6

(D) 1− e−1/9

Correct Answer: (B) 1− e−1/12

Solution:
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Step 1: Understanding the Concept:
We need to find the probability of an inequality involving the squares of two independent nor-
mal random variables. This suggests transforming the variables into standard normal variables
and identifying the resulting distribution.
Recall that if Z ∼ N(0, 1), then Z2 ∼ χ2(1), which is the chi-squared distribution with 1 degree
of freedom. A χ2(1) distribution is also a Gamma(α = 1/2, β = 1/2) distribution. The sum of
independent chi-squared variables is also a chi-squared variable.

Step 2: Standardizing the Variables:
Given X ∼ N(0, 4), the standard deviation is σX =

√
4 = 2. Let Z1 =

X
2 . Then Z1 ∼ N(0, 1).

Given Y ∼ N(0, 9), the standard deviation is σY =
√
9 = 3. Let Z2 = Y

3 . Then Z2 ∼ N(0, 1).
From these, we have X = 2Z1 and Y = 3Z2.

Step 3: Transforming the Inequality and Identifying the Distribution:
Substitute X and Y in the inequality:

P (9X2 + 4Y 2 < 6) = P (9(2Z1)
2 + 4(3Z2)

2 < 6)

= P (9(4Z2
1) + 4(9Z2

2) < 6)

= P (36Z2
1 + 36Z2

2 < 6)

= P
(
Z2
1 + Z2

2 <
6

36

)
= P

(
Z2
1 + Z2

2 <
1

6

)
Since Z1 and Z2 are independent standard normal variables, the sum of their squares, W =
Z2
1 +Z2

2 , follows a chi-squared distribution with 1 + 1 = 2 degrees of freedom, i.e., W ∼ χ2(2).
A χ2(2) distribution is equivalent to an Exponential distribution with rate λ = 1/2, or mean
β = 2. Let’s use the rate parameter λ = 1/2. The PDF of W is f(w) = 1

2e
−w/2 for w > 0. The

CDF is F (w) = P (W ≤ w) = 1− e−w/2.

Step 4: Calculating the Probability:
We need to calculate P (W < 1/6). Using the CDF of the Exponential(rate=1/2) distribution:

P
(
W <

1

6

)
= F

(
1

6

)
= 1− e−( 1

6
)/2 = 1− e−1/12

Quick Tip

The sum of squares of n independent standard normal variables follows a chi-squared
distribution with n degrees of freedom, χ2(n). Remember that a χ2(2) distribution is
a special case and is identical to an Exponential distribution with mean 2. This can
simplify probability calculations significantly.
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10. Let X be a single sample from a continuous distribution with probability density
function

f(x; θ) =

{
2(θ−x)

θ2 if 0 < x < θ,

0 otherwise,

where θ > 0 is an unknown parameter. For 0 < α < 0.05, a 100(1 − α)% confidence
interval for θ based on X is

(A)

[
X

1−
√

α/2
, X

1−
√

1−α/2

]
(B)

(
X

1−
√
α
, X
1−

√
1−α

)
(C)

((
1−
√

1− α
2

)
X,
(
1−
√

α
2

)
X
)

(D)
(
α
2X,

(
1− α

2

)
X
)

Correct Answer: (A)

[
X

1−
√

α/2
, X

1−
√

1−α/2

]
Solution:

Step 1: Understanding the Concept:
We need to construct a confidence interval for the parameter θ using the pivotal quantity
method. A pivotal quantity is a function of the sample and the parameter whose distribution
does not depend on the parameter.

Step 2: Finding a Pivotal Quantity:
First, let’s find the cumulative distribution function (CDF) of X. For 0 < x < θ:

F (x; θ) = P (X ≤ x) =

ˆ x

0

2(θ − t)

θ2
dt =

2

θ2

[
θt− t2

2

]x
0

=
2

θ2

(
θx− x2

2

)
=

2x

θ
− x2

θ2

Let’s check if there is a simpler way. Let Y = X/θ. We find the distribution of Y. For 0 < y < 1,
the CDF of Y is:

FY (y) = P (Y ≤ y) = P (X/θ ≤ y) = P (X ≤ yθ) = FX(yθ)

FY (y) =
2(yθ)

θ
− (yθ)2

θ2
= 2y − y2

Since the CDF FY (y) = 2y − y2 for 0 < y < 1 is free of θ, the random variable Q = X/θ is a
pivotal quantity.

Step 3: Constructing the Confidence Interval:
For a 100(1− α)% confidence interval, we need to find constants c1 and c2 such that:

P (c1 < Q < c2) = 1− α

where Q = X/θ. A standard way is to choose an equal-tailed interval, meaning: P (Q ≤ c1) =
α/2 and P (Q ≥ c2) = α/2, which implies P (Q ≤ c2) = 1− α/2. We use the CDF of Q, which
is FQ(q) = 2q − q2.
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• Find c1: FQ(c1) = α/2 =⇒ 2c1 − c21 = α/2. This is a quadratic equation for c1:

c21 − 2c1 + α/2 = 0. Using the quadratic formula, c1 =
2±
√

4−4(α/2)
2 = 1 ±

√
1− α/2.

Since c1 must be between 0 and 1, we choose the minus sign: c1 = 1−
√

1− α/2.

• Find c2: FQ(c2) = 1 − α/2 =⇒ 2c2 − c22 = 1 − α/2. This gives the equation c22 − 2c2 +

(1 − α/2) = 0. Factoring this, we get (c2 − 1)2 − (
√

α/2)2 = 0? No. Let’s rewrite it as

c22−2c2+1 = α/2 =⇒ (c2−1)2 = α/2. So, c2−1 = ±
√

α/2. This gives c2 = 1±
√

α/2.

Since c2 must be between 0 and 1, we choose the minus sign: c2 = 1−
√

α/2.

So, we have the probability statement:

P

(
1−
√

1− α/2 <
X

θ
< 1−

√
α/2

)
= 1− α

Step 4: Inverting the Inequality to find the Interval for θ:
We need to isolate θ in the middle of the inequality. The left inequality: 1 −

√
1− α/2 <

X/θ =⇒ θ < X

1−
√

1−α/2
. The right inequality: X/θ < 1 −

√
α/2 =⇒ θ > X

1−
√

α/2
.

Combining these, we get:
X

1−
√

α/2
< θ <

X

1−
√

1− α/2

The 100(1− α)% confidence interval for θ is:(
X

1−
√

α/2
,

X

1−
√

1− α/2

)

Quick Tip

The pivotal quantity method is a standard technique for constructing confidence intervals.
The key steps are: 1. Find the CDF of the random variable X. 2. Define a pivotal
quantity Q = g(X, θ) whose distribution is independent of θ. Often, Q = F (X; θ) which
is U(0, 1), or a simple transformation like X/θ. 3. Find quantiles c1, c2 for the pivotal
quantity’s distribution. 4. Invert the probability statement P (c1 < Q < c2) = 1 − α to
get an interval for θ.

11. Let f : R → R be given by f(x) = x + π cos x. Then the number of solutions of
the equation f(x) = 0 is

(A) 1
(B) 2
(C) 3
(D) 4

Correct Answer: (C) 3
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Solution:

Step 1: Understanding the Concept:
We need to find the number of roots of the equation x + π cosx = 0, which is equivalent to
finding the number of intersection points between the graphs of y = x and y = −π cos x. A
more robust method is to analyze the function f(x) using calculus.

Step 2: Analyzing the function f(x) using its derivative:
Let’s find the derivative of f(x) to understand its increasing/decreasing nature.

f(x) = x+ π cos x

f ′(x) = 1− π sin x

The critical points occur when f ′(x) = 0, which means 1 − π sinx = 0, or sinx = 1/π. Since
π ≈ 3.14, we have 0 < 1/π < 1. This means the equation sin x = 1/π has infinitely many
solutions. These solutions correspond to the local maxima and minima of f(x).

Step 3: Finding the intervals of increase/decrease and evaluating f(x) at critical
points:
- f ′(x) > 0 when 1 − π sin x > 0 =⇒ sin x < 1/π. In these intervals, f(x) is increasing. -
f ′(x) < 0 when 1− π sin x < 0 =⇒ sinx > 1/π. In these intervals, f(x) is decreasing.
Let’s evaluate f(x) at some key points to locate the roots.

• f(0) = 0 + π cos(0) = π > 0

• f(π/2) = π/2 + π cos(π/2) = π/2 > 0

• f(−π/2) = −π/2+π cos(−π/2) = −π/2 < 0. Since f is continuous and f(−π/2) < 0 and
f(0) > 0, by the Intermediate Value Theorem (IVT), there must be at least one root in
(−π/2, 0).

• f(π) = π + π cos(π) = π − π = 0. So, x = π is a root.

• f(−π) = −π + π cos(−π) = −π − π = −2π < 0.

• f(−3π/2) = −3π/2 + π cos(−3π/2) = −3π/2 < 0.

Let’s summarize the roots found so far: 1. One root in (−π/2, 0). 2. One root at x = π. 3.
One root in (π/2, x0) ⊂ (π/2, π).
Let’s check the interval [−π,−π/2]. f(−π) = −2π < 0. f(−π/2) = −π/2 < 0. Let’s
analyze f ′(x) in this interval. sin x goes from 0 to -1. So sin x is always negative, which means
sin x < 1/π. Therefore, f ′(x) = 1 − π sinx > 0 for all x ∈ (−π,−π/2). This means f(x) is
strictly increasing from f(−π) = −2π to f(−π/2) = −π/2. Since the function values remain
negative, there are no roots in this interval.
So, we have found exactly three roots in the interval [−π, π]. Since any root must be in this
interval, there are a total of 3 solutions.
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Quick Tip

To find the number of roots of an equation g(x) = h(x), it is often effective to define
a function f(x) = g(x) − h(x) and analyze its properties. Use the derivative f ′(x) to
find intervals of increase/decrease and local extrema. Then use the Intermediate Value
Theorem by evaluating f(x) at the endpoints of these intervals and at the extrema to
count the number of times f(x) crosses the x-axis.

12. A fair die is thrown three times independently. The probability that 4 is the
maximum value that appears among these throws is equal to

(A) 8
27

(B) 1
216

(C) 37
216

(D) 1
2

Correct Answer: (C) 37
216

Solution:

Step 1: Understanding the Concept:
Let X1, X2, X3 be the outcomes of the three throws. We want to find the probability that the
maximum of these three values is exactly 4. Let M = max(X1, X2, X3). We want to calculate
P (M = 4).

Step 2: Key Formula or Approach:
The event {M = 4} is difficult to count directly. A standard technique is to use the complemen-
tary event or a related event. The event {M = 4} can be expressed as the difference between two
events: {All outcomes are less than or equal to 4}MINUS {All outcomes are less than or equal to 3}.
In symbols: P (M = 4) = P (M ≤ 4)− P (M ≤ 3).

Step 3: Detailed Explanation:
The total number of possible outcomes for three throws is 6× 6× 6 = 216.

• Calculate P (M ≤ 4):
The event M ≤ 4 means that for each throw, the outcome must be in the set {1, 2, 3, 4}.
The probability of getting a number ≤ 4 in a single throw is P (Xi ≤ 4) = 4/6 = 2/3.
Since the throws are independent, the probability that all three throws are ≤ 4 is:

P (M ≤ 4) = P (X1 ≤ 4 and X2 ≤ 4 and X3 ≤ 4) =
(
4

6

)3
=
(
2

3

)3
=

8

27

• Calculate P (M ≤ 3):
The event M ≤ 3 means that for each throw, the outcome must be in the set {1, 2, 3}.
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The probability of getting a number ≤ 3 in a single throw is P (Xi ≤ 3) = 3/6 = 1/2.
Since the throws are independent, the probability that all three throws are ≤ 3 is:

P (M ≤ 3) = P (X1 ≤ 3 and X2 ≤ 3 and X3 ≤ 3) =
(
3

6

)3
=
(
1

2

)3
=

1

8

Now, we can find P (M = 4):

P (M = 4) = P (M ≤ 4)− P (M ≤ 3) =
8

27
− 1

8

To subtract the fractions, we find a common denominator, which is 27× 8 = 216.

P (M = 4) =
8× 8

27× 8
− 1× 27

8× 27
=

64

216
− 27

216
=

64− 27

216
=

37

216

Step 4: Final Answer:
The probability that 4 is the maximum value is 37/216.

Quick Tip

For problems involving the maximum (or minimum) of several independent random vari-
ables, the CDF approach is often the easiest. The probability P (max(Xi) ≤ k) is equal
to P (all Xi ≤ k), which, by independence, is

∏
P (Xi ≤ k). Then, P (max(Xi) = k) =

P (max(Xi) ≤ k)− P (max(Xi) ≤ k − 1).

13. Let A be an n×n matrix. Which of the following statements is NOT necessarily
true?

(A) If rank(A5) = rank(A6), then rank(A6) = rank(A7)
(B) If rank(A) = n, then it is possible to obtain a singular matrix by suitably changing a single
entry of A
(C) If rank(A) = n, then rank(A+AT ) ≥ n

2
(D) If rank(A) < n, then it is possible to obtain a nonsingular matrix by suitably changing
n− rank(A) entries of A

Correct Answer: (C) If rank(A) = n, then rank(A+AT ) ≥ n
2

Solution:
We analyze each statement to determine its validity. We are looking for the statement that is
not always true.
Step 1: Analyzing Statement (A):
This statement concerns the sequence of ranks of powers of a matrix. The column space
(image) of Ak+1 is a subspace of the column space of Ak, i.e., Im(Ak+1) ⊆ Im(Ak). This
implies the sequence of ranks is non-increasing: rank(A) ≥ rank(A2) ≥ . . .. Once the
rank stabilizes, i.e., rank(Ak) = rank(Ak+1) for some k, it implies the corresponding sub-
spaces are equal: Im(Ak) = Im(Ak+1). Applying the linear transformation A to both sides
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gives A(Im(Ak)) = A(Im(Ak+1)), which means Im(Ak+1) = Im(Ak+2). This shows that
rank(Ak+1) = rank(Ak+2). This stability continues for all higher powers. Therefore, if
rank(A5) = rank(A6), the sequence has stabilized, and it must be that rank(A6) = rank(A7).
Statement (A) is necessarily true.

Step 2: Analyzing Statement (B):
If rank(A) = n, the matrix is nonsingular, and its determinant det(A) is non-zero. The
determinant can be expressed using cofactor expansion along any row or column. For in-
stance, along the i-th row: det(A) =

∑n
j=1 aijCij , where Cij is the (i, j)-cofactor. If we

change a single entry aij to a variable x, the new determinant becomes a linear function of
x: det(A(x)) = xCij + (terms not involving aij). Since A is nonsingular, at least one cofactor
must be non-zero. Thus, det(A(x)) is a non-constant linear function of x, which has exactly
one root. By choosing x to be this root, we can make the determinant zero, and the matrix
becomes singular. Statement (B) is necessarily true.

Step 3: Analyzing Statement (C):
If rank(A) = n, the matrix A is invertible. We need to check if rank(A + AT ) ≥ n

2 must
hold. Let’s look for a counterexample. Consider the case where A is a skew-symmetric matrix
(AT = −A). For a skew-symmetric matrix to be nonsingular, its dimension nmust be even. Let

n = 2 and consider the matrix A =

(
0 1
−1 0

)
. det(A) = 0−(−1) = 1 ̸= 0, so rank(A) = 2 = n.

Now, let’s compute A+AT :

A+AT =

(
0 1
−1 0

)
+

(
0 −1
1 0

)
=

(
0 0
0 0

)
= 0

The rank of the zero matrix is 0. The statement requires rank(A +AT ) ≥ n/2, which for our
example is 0 ≥ 2/2 = 1. This is false. Since we have found a valid counterexample, statement
(C) is NOT necessarily true.

Step 4: Analyzing Statement (D):
This statement claims that a singular matrix of rank r can be made nonsingular by changing
n− r entries. This is a known result from matrix theory. The rank deficiency is d = n− r. It is
possible to increase the rank of a matrix by 1 by changing a single, suitably chosen entry. By
repeating this process d times, we can increase the rank from r to r+ d = n. Thus, it is always
possible to make the matrix nonsingular by changing d = n − r entries. Statement (D) is
necessarily true.

Final Answer:
Statements (A), (B), and (D) are necessarily true. Statement (C) is not necessarily true, as
demonstrated by the counterexample of a nonsingular skew-symmetric matrix.
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Quick Tip

When asked to find a statement that is ”not necessarily true” in linear algebra, actively
search for counterexamples. Special types of matrices like symmetric, skew-symmetric,
diagonal, or nilpotent matrices are often good candidates for constructing these coun-
terexamples.

14. Let V be a subspace of R10. Suppose A is a 10 × 10 matrix with real entries.
Let Ak(V ) = {Akx : x ∈ V } for k ≥ 1 and A(V ) = A1(V ). Which one of the following
statements is NOT true?

(A) If A is nonsingular, then dim(V ) = dim(A(V )) necessarily holds
(B) It is possible that A is singular and dim(V ) = dim(A(V ))
(C) If rank(A) = 8, then dim(A(V )) ≥ dim(V )− 2 necessarily holds
(D) If dim(V ) = dim(A(V )) = dim(A2(V )) = · · · = dim(A5(V )), then dim(A6(V )) = dim(V )
necessarily holds

Correct Answer: (D) If dim(V ) = dim(A(V )) = dim(A2(V )) = · · · = dim(A5(V )), then
dim(A6(V )) = dim(V ) necessarily holds

Solution:
Let T : R10 → R10 be the linear transformation given by T (x) = Ax. Let TV be the restriction
of T to the subspace V . The image of this restricted map is A(V ).
(A) If A is nonsingular, then dim(V ) = dim(A(V )) necessarily holds. IfA is nonsingular,
then ker(A) = {0}. The kernel of the restricted map TV is ker(TV ) = {x ∈ V : Ax = 0} =
V ∩ ker(A) = V ∩ {0} = {0}. By the Rank-Nullity Theorem for TV , we have dim(V ) =
dim(ker(TV )) + dim(Im(TV )). This gives dim(V ) = 0 + dim(A(V )). Thus, the statement is
true.
(B) It is possible that A is singular and dim(V ) = dim(A(V )). For dim(V ) = dim(A(V ))
to hold, we need dim(ker(TV )) = 0, which means V ∩ ker(A) = {0}. Since A is singular,
ker(A) is a non-trivial subspace. We can choose a subspace V that is complementary to a
subspace containing ker(A) or simply has a trivial intersection with it. For example, in R2,

let A =

(
1 0
0 0

)
. ker(A) is the y-axis. Let V be the x-axis. Then V ∩ ker(A) = {0}, and

dim(V ) = 1. A(V ) is also the x-axis, so dim(A(V )) = 1. Thus, the statement is true.
(C) If rank(A) = 8, then dim(A(V )) ≥ dim(V )− 2 necessarily holds.
By the Rank-Nullity Theorem for A, dim(R10) = rank(A) + dim(ker(A)), so 10 = 8 +
dim(ker(A)), which implies dim(ker(A)) = 2.
For the restricted map TV , dim(A(V )) = dim(V )−dim(ker(TV )) = dim(V )−dim(V ∩ker(A)).
Since dim(V ∩ ker(A)) ≤ dim(ker(A)), we have dim(V ∩ ker(A)) ≤ 2.
Therefore, dim(A(V )) ≥ dim(V )− 2. The statement is true.
(D) If dim(V ) = dim(A(V )) = · · · = dim(A5(V )), then dim(A6(V )) = dim(V )) necessarily
holds. The general relation is dim(Ak+1(V )) ≤ dim(Ak(V )). The given condition implies that
the dimension is constant for k = 0 to k = 5. Let’s construct a counterexample.
Consider R10 with the standard basis {e1, . . . , e10}. Define a linear transformation A as the
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nilpotent shift operator: Aei = ei−1 for i = 2, . . . , 10 and Ae1 = 0.
The kernel of A is ker(A) = span{e1}. Let V be the one-dimensional subspace spanned by e10,
i.e., V = span{e10}. dim(V ) = 1.
Let’s compute the dimensions of the images:

• A(V ) = A(span{e10}) = span{e9}. So dim(A(V )) = 1.

• A2(V ) = A(span{e9}) = span{e8}. So dim(A2(V )) = 1.

• ...

• A5(V ) = span{e5}. So dim(A5(V )) = 1.

The premise of the statement holds: dim(V ) = dim(A(V )) = · · · = dim(A5(V )) = 1.
Now let’s check the conclusion: A6(V ) = span{e4}, so dim(A6(V )) = 1. Wait, my coun-
terexample needs to be more careful. The shift operator is Akei = ei−k. Let V = span{e7}.
dim(V ) = 1. dim(A(V )) = dim(span{e6}) = 1.
... dim(A5(V )) = dim(span{e2}) = 1. The premise dim(V ) = · · · = dim(A5(V )) = 1 is sat-
isfied. Now, dim(A6(V )) = dim(span{e1}) = 1. The conclusion dim(A6(V )) = dim(V ) holds
here. But what about dim(A7(V ))? A7(V ) = A(span{e1}) = {0}, so dim(A7(V )) = 0.
The statement only asks about A6(V ). Let’s re-examine my first counterexample. Let V =
span{e6} in R10. dim(V ) = 1. dim(A(V )) = dim(span{e5}) = 1.
dim(A2(V )) = dim(span{e4}) = 1.
dim(A3(V )) = dim(span{e3}) = 1.
dim(A4(V )) = dim(span{e2}) = 1.
dim(A5(V )) = dim(span{e1}) = 1.
The premise is satisfied. Now for the conclusion: A6(V ) = A(A5(V )) = A(span{e1}) =
span{Ae1} = span{0} = {0}.
So, dim(A6(V )) = 0.
However, dim(V ) = 1.
Therefore, dim(A6(V )) ̸= dim(V ). The statement does not necessarily hold. This statement is
NOT true.

Quick Tip

When analyzing properties of linear transformations and subspaces, the Rank-Nullity
Theorem (dim(W ) = dim(ker(TW )) + dim(Im(TW ))) is a fundamental tool. For state-
ments about sequences of transformations, like powers of a matrix, nilpotent matrices
(like the shift operator) are excellent sources of counterexamples.

15. A function f : (0, 1) → R is said to have property I if, for any 0 < x1 < x2 < 1
and for any c between f(x1) and f(x2), there exists y ∈ [x1, x2] such that f(y) = c.
Consider the following statements:

(I) If g : (0, 1) → R satisfies property I, then g is necessarily continuous.

(II) If h : (0, 1) → R is differentiable, then h′ necessarily satisfies property I.
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Then

(A) (I) is correct and (II) is incorrect
(B) (I) is incorrect and (II) is correct
(C) Both (I) and (II) are correct
(D) Both (I) and (II) are incorrect

Correct Answer: (B) (I) is incorrect and (II) is correct

Solution:

Step 1: Understanding Property I:
Property I is the Intermediate Value Property (IVP). The Intermediate Value Theorem states
that all continuous functions have this property. The question here is about the converse and
about whether derivatives have this property.

Step 2: Analyzing Statement (I):
This statement claims that if a function has the Intermediate Value Property, then it must be
continuous. This is a well-known false statement in real analysis. A function can satisfy the
IVP without being continuous. A classic counterexample is the derivative of certain functions.
For instance, consider the function H(x) = x2 sin(1/x) for x ̸= 0 and H(0) = 0. This function
is differentiable on R. Its derivative is:

H ′(x) =

{
2x sin(1/x)− cos(1/x) if x ̸= 0

0 if x = 0

The derivative H ′(x) is not continuous at x = 0 because cos(1/x) oscillates and does not ap-
proach a limit as x → 0. However, by Darboux’s Theorem (see Statement II), H ′(x) must
have the Intermediate Value Property. If we consider the function g(x) = H ′(x) on the interval
(0, 1), this function g is not continuous (it has discontinuities at points 1/(kπ) if we extend it,
but more importantly it demonstrates the principle). The key point is that a function can have
the IVP without being continuous. Therefore, Statement (I) is incorrect.

Step 3: Analyzing Statement (II):
This statement claims that the derivative of any differentiable function necessarily satisfies
property I. This is the statement of Darboux’s Theorem. Darboux’s Theorem states that
if a function h is differentiable on an interval [a, b], then its derivative h′ has the Intermediate
Value Property on [a, b]. This means that for any value c between h′(a) and h′(b), there exists
some y ∈ (a, b) such that h′(y) = c. This theorem extends to any subinterval of the domain of
differentiability. Therefore, Statement (II) is correct.

Step 4: Final Answer:
Statement (I) is incorrect, and Statement (II) is correct. This corresponds to option (B).

24



Quick Tip

Remember the relationship between continuity, differentiability, and the Intermediate
Value Property (IVP):

• Continuity =⇒ IVP (Intermediate Value Theorem)

• IVP ̸ =⇒ Continuity (e.g., derivative of x2 sin(1/x))

• Differentiability of h =⇒ IVP for h′ (Darboux’s Theorem)

16. Suppose f is a polynomial of degree n with real coefficients, and A is an n× n
matrix with real entries satisfying f(A) = 0. Consider the following statements:

(I) If f(0) ̸= 0, then A is necessarily nonsingular.

(II) If f(0) = 0, then A is necessarily singular.

Then

(A) (I) is correct and (II) is incorrect
(B) (I) is incorrect and (II) is correct
(C) Both (I) and (II) are correct
(D) Both (I) and (II) are incorrect

Correct Answer: (A) (I) is correct and (II) is incorrect

Solution:

Step 1: Understanding the Concept:
The equation f(A) = 0 means that A is a root of the polynomial f(x). This implies that
the minimal polynomial of A, denoted mA(x), must divide f(x). A matrix A is nonsingular
(invertible) if and only if 0 is not an eigenvalue of A. The eigenvalues of A are roots of its
minimal polynomial.

Step 2: Analyzing Statement (I):
We are given f(0) ̸= 0. Let the polynomial be f(x) = cnx

n+ · · ·+c1x+c0. Then f(0) = c0 ̸= 0.
The condition f(A) = 0 means cnAn+ · · ·+ c1A+ c0I = 0, where I is the identity matrix. We
can rearrange this equation:

cnAn + · · ·+ c1A = −c0I

A(cnAn−1 + · · ·+ c1I) = −c0I

Since c0 ̸= 0, we can divide by −c0:

A
(
− 1

c0
(cnAn−1 + · · ·+ c1I)

)
= I

This shows that A has a right inverse. For a square matrix, having a right inverse implies
it is invertible (nonsingular). Alternatively, assume A is singular. Then it has an eigenvalue

25



λ = 0. Let v ̸= 0 be a corresponding eigenvector, so Av = 0v = 0. Applying f(A) to v:
f(A)v = (cnAn + · · ·+ c1A+ c0I)v = cnAnv + · · ·+ c1Av + c0Iv. Since Akv = 0 for k ≥ 1,
this simplifies to f(A)v = c0v. We are given f(A) = 0, so 0 · v = 0. This gives c0v = 0. Since
v ̸= 0, we must have c0 = 0, i.e., f(0) = 0. This contradicts the given condition f(0) ̸= 0.
Therefore, the assumption that A is singular must be false. Thus, Statement (I) is correct.

Step 3: Analyzing Statement (II):
We are given f(0) = 0. This means the constant term of f(x) is zero, so x is a factor of f(x).
We can write f(x) = x · g(x) for some polynomial g(x). The condition f(A) = 0 becomes
A · g(A) = 0. Taking the determinant of both sides: det(A · g(A)) = det(0), which means
det(A) · det(g(A)) = 0. This implies that either det(A) = 0 or det(g(A)) = 0. The statement
says A is *necessarily* singular, which means det(A) must be 0. Is it possible for A to be
nonsingular? If A is nonsingular, then det(A) ̸= 0, which would force det(g(A)) = 0. Let’s
construct a counterexample. We need a nonsingular matrix A and a polynomial f(x) of degree

n such that f(0) = 0 and f(A) = 0. Let n = 2 and let A = I2 =

(
1 0
0 1

)
. This matrix is

nonsingular. We need a polynomial f(x) of degree 2 such that f(0) = 0 and f(I2) = 0. The
minimal polynomial of I2 is m(x) = x− 1. Since f(I2) = 0, m(x) must divide f(x). So, (x− 1)
must be a factor of f(x). The condition f(0) = 0 means x must be a factor of f(x). Let’s
choose f(x) = x(x − 1) = x2 − x. This polynomial has degree n = 2. It satisfies f(0) = 0. It
also satisfies f(A) = f(I2) = I22 − I2 = I2 − I2 = 0. So, we have found a nonsingular matrix
A = I2 that satisfies the conditions of the statement. This means A is not necessarily singular.
Therefore, Statement (II) is incorrect.

Step 4: Final Answer:
Statement (I) is correct and Statement (II) is incorrect. This corresponds to option (A).

Quick Tip

A matrix A is singular if and only if 0 is one of its eigenvalues. The eigenvalues of A
are roots of its minimal polynomial mA(x). Since f(A) = 0, mA(x) must divide f(x).
Therefore, all eigenvalues of A must be roots of f(x). (I) If f(0) ̸= 0, then 0 is not a root
of f(x), so 0 cannot be an eigenvalue of A. Thus A is nonsingular. (II) If f(0) = 0, then
0 is a root of f(x). This allows for the possibility that 0 is an eigenvalue, but does not
require it, because the minimal polynomial mA(x) might be a factor of f(x) that does
not include the factor x.

17. Let X1 and X2 be i.i.d. N(0, σ2) random variables. Define Z1 = X1 + X2 and
Z2 = X1 −X2. Then which one of the following statements is NOT correct?

(A) Z1 and Z2 are independently distributed
(B) Z1 and Z2 are identically distributed
(C) P

(∣∣Z1

Z2

∣∣ < 1
)
= 0.5
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(D) Z1

Z2
and Z2

1 + Z2
2 are independently distributed

Correct Answer: (C) P
(∣∣Z1

Z2

∣∣ < 1
)
= 0.5

Solution:
Let’s analyze the properties of Z1 and Z2. This is a linear transformation of a bivariate normal
vector (X1, X2).
Step 1: Find the distribution of (Z1, Z2).
Since X1 and X2 are independent normal variables, the vector X = (X1, X2)

T has a bivariate

normal distribution with mean vector µ = (0, 0)T and covariance matrix Σ =

(
σ2 0
0 σ2

)
. The

transformation is Z =

(
Z1

Z2

)
=

(
1 1
1 −1

)(
X1

X2

)
= AX. Since this is a linear transformation

of a normal vector, Z is also bivariate normal. The mean of Z is E[Z] = AE[X] = Aµ = 0.
The covariance matrix of Z is ΣZ = AΣAT .

ΣZ =

(
1 1
1 −1

)(
σ2 0
0 σ2

)(
1 1
1 −1

)T

= σ2
(
1 1
1 −1

)(
1 0
0 1

)(
1 1
1 −1

)
ΣZ = σ2

(
1 1
1 −1

)(
1 1
1 −1

)
= σ2

(
1 + 1 1− 1
1− 1 1 + 1

)
= σ2

(
2 0
0 2

)
=

(
2σ2 0
0 2σ2

)
From this covariance matrix, we can see:

• Var(Z1) = 2σ2

• Var(Z2) = 2σ2

• Cov(Z1, Z2) = 0

So, Z1 ∼ N(0, 2σ2) and Z2 ∼ N(0, 2σ2).
Step 2: Evaluate the statements.
(A) Z1 and Z2 are independently distributed. Since (Z1, Z2) have a bivariate normal
distribution and their covariance is 0, they are independent. This statement is correct.
(B) Z1 and Z2 are identically distributed. Both Z1 and Z2 follow the same distribution,
N(0, 2σ2). So they are identically distributed. This statement is correct.
(C) P

(∣∣Z1

Z2

∣∣ < 1
)
= 0.5. Let U = Z1/

√
2σ2 and V = Z2/

√
2σ2. Then U, V are i.i.d. N(0, 1).

The ratio Z1/Z2 = U/V follows a standard Cauchy distribution. Let T = Z1/Z2. The condition
is |T | < 1, which means −1 < T < 1. The CDF of a standard Cauchy distribution is F (t) =
1
π arctan(t) + 1

2 .

P (−1 < T < 1) = F (1)− F (−1) =
(
1

π
arctan(1) +

1

2

)
−
(
1

π
arctan(−1) +

1

2

)
=

1

π

(
π

4

)
− 1

π

(
−π

4

)
=

1

4
−
(
−1

4

)
=

1

2
= 0.5
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Quick Tip

When dealing with linear combinations of independent normal variables, the result is also
normal. Its mean and variance can be calculated using standard formulas. For two such
variables, if their covariance is zero, they are independent. This is a special property of
the multivariate normal distribution.

18. Consider a circle C with unit radius and center at A = (0, 0). Let B = (1, 0).
Suppose Θ ∼ U(0, π) and D = (cosΘ, sinΘ). Note that the angle ∠DAB = Θ. Then
the expected area of the triangle ABD is

(A) 1
π

(B) 2
π

(C) 1
2π

(D) 1

Correct Answer: (A) 1
π

Solution:

Step 1: Understanding the Concept:
We need to find the expected value of the area of a triangle whose geometry depends on a
random variable Θ. First, we express the area of the triangle as a function of Θ, and then we
compute its expected value using the distribution of Θ.

Step 2: Finding the Area of the Triangle as a Function of Θ:
The vertices of the triangle ABD are A = (0, 0), B = (1, 0), and D = (cosΘ, sinΘ). We can
use the formula for the area of a triangle with one vertex at the origin: Area = 1

2 |x1y2 − x2y1|.
Here, let A be the origin, B = (x1, y1) = (1, 0), and D = (x2, y2) = (cosΘ, sinΘ).

Area(Θ) =
1

2
|1 · sinΘ− cosΘ · 0| = 1

2
| sinΘ|

Since Θ ∼ U(0, π), the angle Θ is in the first or second quadrant, where sinΘ ≥ 0. Therefore,
| sinΘ| = sinΘ. The area of the triangle is a random variable given by Area = 1

2 sinΘ.
Alternatively, using the formula Area = 1

2ab sinC. The sides adjacent to angle A are AB and
AD. The length of AB is the distance from (0,0) to (1,0), which is 1. The length of AD is the

distance from (0,0) to (cosΘ, sinΘ), which is
√

cos2Θ+ sin2Θ = 1 (since D is on the unit
circle). The angle between these sides is ∠DAB = Θ.

Area =
1

2
|AB| · |AD| sin(∠DAB) =

1

2
(1)(1) sinΘ =

1

2
sinΘ

Step 3: Calculating the Expected Area:
The expected value of a function g(Θ) of a continuous random variable Θ with PDF f(θ) is
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E[g(Θ)] =
´
g(θ)f(θ) dθ. Here, Θ ∼ U(0, π), so its PDF is f(θ) = 1

π−0 = 1
π for 0 < θ < π, and

0 otherwise. The function is g(Θ) = Area = 1
2 sinΘ. The expected area is:

E[Area] =

ˆ π

0

(
1

2
sin θ

)
1

π
dθ =

1

2π

ˆ π

0

sin θ dθ

=
1

2π
[− cos θ]π0 =

1

2π
(− cos(π)− (− cos(0)))

=
1

2π
(−(−1)− (−1)) =

1

2π
(1 + 1) =

2

2π
=

1

π

Step 4: Final Answer:
The expected area of the triangle ABD is 1

π .

Quick Tip

When dealing with geometric probability, the first step is always to express the quantity
of interest (like area, length, etc.) as a function of the random variable(s). Then, calculate
the expectation of this function using the standard integral definition. Visualizing the
setup can be very helpful.

19. Suppose Y ∼ U(0, 1) and the conditional distribution of X given Y = y is Bin(6,
y), for 0 < y < 1. Then the probability that (X + 1) is an even number is

(A) 3
7

(B) 1
2

(C) 4
7

(D) 5
14

Correct Answer: (A) 3
7

Solution:

Step 1: Understanding the Concept:
We need to find the unconditional probability of an event involving X. We can do this using the
law of total probability, by first finding the conditional probability of the event given Y = y, and
then integrating (or ”averaging”) this conditional probability over all possible values of y. The
event is {(X + 1) is an even number}. This is equivalent to the event {X is an odd number}.
So, we need to calculate P (X is odd).

Step 2: Finding the Conditional Probability:
Let’s find P (X is odd|Y = y). Given Y = y, we have X ∼ Bin(n = 6, p = y). The possible
values of X are {0, 1, 2, 3, 4, 5, 6}. We want the probability that X is odd, i.e., X ∈ {1, 3, 5}.

P (X is odd|Y = y) = P (X = 1|Y = y) + P (X = 3|Y = y) + P (X = 5|Y = y)
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The PMF for Bin(n, p) is P (X = k) =
(
n
k

)
pk(1 − p)n−k. Here n = 6 and p = y. A useful

identity for binomial probabilities is:∑
k is odd

(
n

k

)
pk(1− p)n−k =

1

2
[1− (1− 2p)n]

Let’s verify this. Consider the expansion of (q + p)n and (q − p)n, where q = 1− p. (q + p)n =∑(
n
k

)
pkqn−k (q − p)n =

∑(
n
k

)
(−p)kqn−k =

∑(
n
k

)
(−1)kpkqn−k Subtracting the second from

the first: (q+p)n−(q−p)n = 2
∑

k is odd

(
n
k

)
pkqn−k Since q+p = 1 and q−p = 1−p−p = 1−2p,

we have:
1n − (1− 2p)n = 2P (X is odd)

P (X is odd) =
1− (1− 2p)n

2

In our case, n = 6 and p = y. So,

P (X is odd|Y = y) =
1− (1− 2y)6

2

Step 3: Calculating the Unconditional Probability:
The function (1− 2y)6 is symmetric around y = 1/2 on [0, 1].´ 1
0
(1− 2y)6dy =

´ 1/2
0

(1− 2y)6dy +
´ 1
1/2

(1− 2y)6dy.´ 1
0
(1 − 2y)6dy = [

(1−2y)7

7·(−2)
]10 = − 1

14 [(1 − 2)7 − (1 − 0)7] = − 1
14 [(−1)7 − 17] = − 1

14 [−1 − 1] =

−−2
14 = 1

7 . Correct.
So, putting it all together:

P (X is odd) =
1

2

[
1− 1

7

]
=

1

2

[
6

7

]
=

3

7

So the answer is 3/7.

Quick Tip

This is a classic example of a Beta-Binomial model. When the prior distribution for the
success probability p of a binomial distribution is a Beta(α, β) distribution, the marginal
(unconditional) distribution of the number of successes is a Beta-Binomial distribution.
A special case is when the prior is U(0,1), which is Beta(1,1). This leads to a simple
discrete uniform distribution for the marginal of X.

20. Let X be an Exp(λ) random variable. Suppose Y = min{X, 2}. Let FX and
FY denote the distribution functions of X and Y respectively. Then which of the
following statements is true?

(A) FY is a continuous function
(B) FY (y) is discontinuous at y = 2
(C) FY (t) ≤ FX(t) for all t ∈ R
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(D) E(Y ) > E(X)

Correct Answer: (B) FY (y) is discontinuous at y = 2

Solution:

Step 1: Understanding the Concept:
We are dealing with a transformation of a random variable. Specifically, Y is a ”censored” or
”capped” version of X. When a continuous random variable is capped, it often introduces a
discrete component into the distribution of the new variable. We need to find the cumulative
distribution function (CDF) of Y and analyze its properties.
The CDF of X ∼ Exp(λ) is FX(x) = 1− e−λx for x ≥ 0. The mean is E[X] = 1/λ.

Step 2: Finding the CDF of Y:
Let’s find FY (y) = P (Y ≤ y). The support of Y is (0, 2]. For y < 0, FY (y) = 0. For 0 ≤ y < 2:

FY (y) = P (Y ≤ y) = P (min{X, 2} ≤ y)

Since y < 2, the condition min{X, 2} ≤ y is equivalent to X ≤ y.

FY (y) = P (X ≤ y) = FX(y) = 1− e−λy

At y = 2: The variable Y can take the value 2. This happens whenever X ≥ 2.

P (Y = 2) = P (min{X, 2} = 2) = P (X ≥ 2) = 1− FX(2) = 1− (1− e−2λ) = e−2λ

Since there is a positive probability mass at the point y = 2, the random variable Y is not
purely continuous. It is a mixed random variable. For y ≥ 2:

FY (y) = P (Y ≤ y) = 1

Because the maximum value Y can take is 2, for any y ≥ 2, the event Y ≤ y is certain. So, the
CDF of Y is:

FY (y) =


0 if y < 0

1− e−λy if 0 ≤ y < 2

1 if y ≥ 2

Step 3: Analyzing the Statements:
(A) FY is a continuous function. Let’s check for continuity at y = 2. The limit from the left
is limy→2− FY (y) = limy→2−(1−e−λy) = 1−e−2λ. The value at y = 2 is FY (2) = P (Y ≤ 2) = 1.
Since 1− e−2λ ̸= 1 (as λ > 0), the function is not continuous at y = 2. So, (A) is false.
(B) FY (y) is discontinuous at y = 2. As shown above, the left-hand limit at y = 2 is 1−e−2λ

while the value of the function is FY (2) = 1. The limit does not equal the function value, so
the CDF is discontinuous at y = 2. This statement is true.
(C) FY (t) ≤ FX(t) for all t ∈ R. Let’s check this. Y = min{X, 2} implies that Y ≤ X

always. If one random variable is always less than or equal to another (Y ≤ X), then their
CDFs must satisfy FY (t) ≥ FX(t) for all t. This is because the event {X ≤ t} is a subset of
the event {Y ≤ t}. So, P (X ≤ t) ≤ P (Y ≤ t). Thus, FX(t) ≤ FY (t). The statement in the
option is the reverse inequality. So, (C) is false.
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(D) E(Y ) > E(X). Since Y = min{X, 2}, we always have Y ≤ X. This implies that
E[Y ] ≤ E[X]. The inequality can be strict if P (X > 2) > 0, which is true for any exponential
distribution. Therefore, E[Y ] < E[X]. The statement says the opposite. So, (D) is false.

Step 4: Final Answer:
The only true statement is (B).

Quick Tip

When a continuous random variable X is transformed by Y = min(X, c) or Y =
max(X, c) for some constant c, the resulting variable Y is a mixed random variable.
It has a continuous part inherited from X and a discrete part (a point mass) at y = c.
This point mass will cause a jump discontinuity in the CDF at y = c.

21. Let X1, X2, . . . , Xn be i.i.d. N(0, σ2) random variables. Suppose c is such that

E

c
√√√√ n∑

i=1

X2
i

 = σ.

Then the value of c is

(A)
√

9π
128

(B)
√

9π
64

(C)
√

9
128π

(D)
√

3
64π

Correct Answer: (A)
√

9π
128

Solution:

Step 1: Understanding the Concept:
The problem asks to find a constant c that satisfies a given expectation equation involving the
square root of the sum of squares of i.i.d. normal random variables. This sum is related to the
chi-squared distribution, and its square root is related to the chi distribution.

Step 2: Key Formula or Approach:
1. Standardize the random variables: If Xi ∼ N(0, σ2), then Zi = Xi/σ ∼ N(0, 1).
2. The sum of squares of n standard normal variables follows a chi-squared distribution with
n degrees of freedom:

∑n
i=1 Z

2
i ∼ χ2

n.
3. The square root of a χ2

n variable is a chi-distributed variable, χn.
4. The expectation of a chi-distributed random variable with n degrees of freedom is given by:

E[χn] =
√
2
Γ((n+ 1)/2)

Γ(n/2)
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where Γ(z) is the gamma function.

Step 3: Detailed Explanation:

The given equation is E
[
c
√∑n

i=1X
2
i

]
= σ.

We can rewrite the term inside the expectation using the standardized variables Zi = Xi/σ:

n∑
i=1

X2
i =

n∑
i=1

(σZi)
2 = σ2

n∑
i=1

Z2
i

Substituting this into the equation:

E

c
√√√√σ2

n∑
i=1

Z2
i

 = σ

E

cσ
√√√√ n∑

i=1

Z2
i

 = σ

Since c and σ are constants, we can take them out of the expectation:

cσE

√√√√ n∑
i=1

Z2
i

 = σ

Assuming σ > 0, we can divide both sides by σ:

cE
[√

χ2
n

]
= 1

cE[χn] = 1 =⇒ c =
1

E[χn]

Using the formula for the expectation of a chi-distributed variable:

c =
1

√
2
Γ((n+1)/2)

Γ(n/2)

=
1√
2

Γ(n/2)

Γ((n+ 1)/2)

The value of c depends on n. The question text has a typo (”X,”), which should be Xn. Since
the options are constants, n must be a specific integer. We can deduce n by testing which value
gives one of the options. Let’s test small values of n.
Try n = 5:

c =
1√
2

Γ(5/2)

Γ(6/2)
=

1√
2

Γ(2.5)

Γ(3)

We know Γ(3) = 2! = 2 and Γ(z + 1) = zΓ(z).

Γ(2.5) = Γ(3/2 + 1) =
3

2
Γ(3/2) =

3

2
· 1
2
Γ(1/2) =

3

4

√
π

Substituting these values:

c =
1√
2

(3/4)
√
π

2
=

3
√
π

8
√
2

33



To match this with the options, let’s simplify the square root in option (A):√
9π

128
=

√
9π√
128

=
3
√
π√

64 · 2
=

3
√
π

8
√
2

The calculated value for c with n = 5 matches option (A). Thus, the number of random vari-
ables is implicitly n = 5.

Step 4: Final Answer:

The constant c is 3
√
π

8
√
2
, which is equal to

√
9π
128 .

Quick Tip

In problems where a parameter like n seems to be missing but the answers are numerical,
it’s often implicitly defined. Test small integer values for n to see if one matches the given
options. The properties of the Gamma function, especially Γ(n) = (n− 1)! for integer n
and Γ(x+ 1) = xΓ(x), are essential here.

22. Let X1, X2, . . . , Xn be a random sample from a continuous distribution with
probability density function

f(x; θ) =
1

2θ
e−|x|/θ, x ∈ R,

where θ > 0 is an unknown parameter. The critical region for the uniformly most
powerful test for testing the null hypothesis H0 : θ = 2 against the alternative hy-
pothesis H1 : θ > 2 at level α, where 0 < α < 1, is

(A)
{
(x1, . . . , xn) ∈ Rn : 2

∑n
i=1 |xi| < χ2

2n,1−α

}
(B)

{
(x1, . . . , xn) ∈ Rn : 2

∑n
i=1 |xi| > χ2

2n,α

}
(C)

{
(x1, . . . , xn) ∈ Rn :

∑n
i=1 |xi| < χ2

2n,1−α

}
(D)

{
(x1, . . . , xn) ∈ Rn :

∑n
i=1 |xi| > χ2

2n,α

}
Correct Answer: (D)

{
(x1, . . . , xn) ∈ Rn :

∑n
i=1 |xi| > χ2

2n,α

}
Solution:

Step 1: Understanding the Concept:
This problem requires finding the Uniformly Most Powerful (UMP) test for a one-sided hypoth-
esis about the parameter θ of a Laplace (double exponential) distribution. The Karlin-Rubin
theorem is the key tool, which applies to distributions with a Monotone Likelihood Ratio
(MLR).

Step 2: Key Formula or Approach:
1. Write down the likelihood function L(θ;x).
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2. Check if the family of distributions has the MLR property in some statistic T (x). For
θ2 > θ1, the ratio L(θ2;x)/L(θ1;x) should be a non-decreasing function of T (x).
3. Apply the Karlin-Rubin theorem: For testing H0 : θ = θ0 vs H1 : θ > θ0, the UMP test
rejects H0 for large values of T (x), i.e., T (x) > k.
4. Determine the distribution of the test statistic T (x) under H0 to find the critical value k for
a given significance level α.

Step 3: Detailed Explanation:
The likelihood function for the random sample x = (x1, . . . , xn) is:

L(θ;x) =

n∏
i=1

f(xi; θ) =

n∏
i=1

1

2θ
e−|xi|/θ =

(
1

2θ

)n
exp

(
−1

θ

n∑
i=1

|xi|

)
To check for MLR, let θ2 > θ1. The likelihood ratio is:

L(θ2;x)

L(θ1;x)
=

(1/(2θ2))
n exp(− 1

θ2

∑
|xi|)

(1/(2θ1))n exp(− 1
θ1

∑
|xi|)

=

(
θ1
θ2

)n

exp

[(
1

θ1
− 1

θ2

) n∑
i=1

|xi|

]
Since θ2 > θ1 > 0, the term ( 1

θ1
− 1

θ2
) is positive. Therefore, the likelihood ratio is an increasing

function of T (x) =
∑n

i=1 |xi|. The family of distributions has MLR in T (x).
By the Karlin-Rubin theorem, the UMP test for H0 : θ = 2 vs H1 : θ > 2 rejects H0 for large
values of T (x). The critical region is of the form

{
x :
∑n

i=1 |xi| > k
}
.

To find k, we need the distribution of T (x) under H0. Let Yi = |Xi|. The PDF of Yi for yi > 0
is fYi

(yi) = 2 · fX(yi) = 2 1
2θe

−yi/θ = 1
θe

−yi/θ, which is an exponential distribution with mean θ.
The sum of n i.i.d. Exponential(rate = λ) variables follows a Gamma(n, rate = λ) distribution.
Here the rate is λ = 1/θ, so

∑
|Xi| ∼ Gamma(n, scale = θ).

We know that if W ∼ Gamma(shape = α, scale = β), then 2W/β ∼ χ2
2α.

Here, T =
∑

|Xi|, α = n, β = θ. So, 2T/θ =
2
∑

|Xi|
θ ∼ χ2

2n.

Under H0, we have θ = 2. The test statistic becomes
2
∑

|Xi|
2 =

∑
|Xi|. Thus, under H0,∑n

i=1 |Xi| ∼ χ2
2n.

The critical value k is determined by the level α:

PH0

(
n∑

i=1

|Xi| > k

)
= α

Since
∑

|Xi| follows a χ2
2n distribution under H0, k is the upper α-quantile of this distribution,

denoted as χ2
2n,α.

Step 4: Final Answer:
The critical region for the UMP test is

{
(x1, . . . , xn) ∈ Rn :

∑n
i=1 |xi| > χ2

2n,α

}
, which matches

option (D).
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Quick Tip

For one-sided hypothesis tests involving a single parameter, the Karlin-Rubin theorem is
your go-to tool. The main steps are to check for the Monotone Likelihood Ratio (MLR)
property and then identify the distribution of the resulting test statistic under the null
hypothesis to find the critical value.

23. Let (X, Y ) have the N2(0, 0, 1, 1, 0.25) distribution. Then the correlation coeffi-
cient between eX and e2Y is

(A) e3−e5/2

(e5(e−1)(e4−1))1/2

(B) e3−e5/2

(e4(e−1)(e8−1))1/2

(C) e2−e5/2

(e5(e−1)(e4−1))1/2

(D) e3/2−e5/2

(e5(e2−1)(e4−1))1/2

Correct Answer: (A) e3−e5/2

(e5(e−1)(e4−1))1/2

Solution:

Step 1: Understanding the Concept:
The problem asks for the correlation coefficient between two functions of random variables that
follow a bivariate normal distribution. This requires calculating their covariance and variances.
The key tool is the moment generating function (MGF) of normal and bivariate normal distri-
butions.

Step 2: Key Formula or Approach:

1. Correlation coefficient: Corr(U, V ) =
Cov(U,V )√
Var(U)Var(V )

.

2. Covariance: Cov(U, V ) = E[UV ]− E[U ]E[V ].
3. Variance: Var(U) = E[U2]− (E[U ])2.

4. MGF of a normal variable Z ∼ N(µ, σ2): MZ(t) = E[etZ ] = etµ+t2σ2/2.
5. If (X,Y ) are bivariate normal, then any linear combination W = aX + bY is also normal.
E[W ] = aE[X] + bE[Y ].
Var(W ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y ).

Step 3: Detailed Explanation:
Given (X, Y ) ∼ N2(0, 0, 1, 1, 0.25), we have µX = 0, µY = 0, σ2X = 1, σ2Y = 1, ρ = 0.25. Thus,
X ∼ N(0, 1) and Y ∼ N(0, 1). Let U = eX and V = e2Y .

Calculate moments for U = eX : E[U ] = E[eX ] = MX(1) = e1·0+12·1/2 = e1/2.

E[U2] = E[e2X ] = MX(2) = e2·0+22·1/2 = e2.
Var(U) = E[U2]− (E[U ])2 = e2 − (e1/2)2 = e2 − e = e(e− 1).

Calculate moments for V = e2Y : E[V ] = E[e2Y ] = MY (2) = e2·0+22·1/2 = e2.

E[V 2] = E[(e2Y )2] = E[e4Y ] = MY (4) = e4·0+42·1/2 = e8.
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Var(V ) = E[V 2]− (E[V ])2 = e8 − (e2)2 = e8 − e4 = e4(e4 − 1).

Calculate E[UV ]: E[UV ] = E[eXe2Y ] = E[eX+2Y ]. Let W = X + 2Y . Since (X,Y ) is
bivariate normal, W is normal. E[W ] = E[X] + 2E[Y ] = 0 + 2(0) = 0.
Cov(X, Y ) = ρσXσY = 0.25 · 1 · 1 = 0.25.
Var(W ) = Var(X) + 4Var(Y ) + 2 · 1 · 2 · Cov(X,Y ) = 1 + 4(1) + 4(0.25) = 1 + 4 + 1 = 6.

So, W ∼ N(0, 6). E[eX+2Y ] = E[eW ] = MW (1) = e1·0+12·6/2 = e3.

Calculate Covariance and Correlation: Cov(U, V ) = E[UV ]−E[U ]E[V ] = e3−(e1/2)(e2) =
e3 − e5/2.
Corr(U, V ) = e3−e5/2√

Var(U)Var(V )
= e3−e5/2√

e(e−1)·e4(e4−1)
= e3−e5/2√

e5(e−1)(e4−1)
.

Step 4: Final Answer:

The correlation coefficient is e3−e5/2

(e5(e−1)(e4−1))1/2
, which corresponds to option (A).

Quick Tip

When dealing with expectations of exponential functions of normal random variables,
remember that you are essentially calculating values of the Moment Generating Func-
tion (MGF). For a linear combination like aX + bY , first find the distribution of the
combination (which will be normal) and then use its MGF.

24. Let {Xk}k≥1 be a sequence of i.i.d. U(-1,1) random variables. Suppose

Yn =
√
3n

∑n
i=1Xi∑n
i=1X

4
i

.

Then {Yn}n≥1 converges in distribution as n → ∞ to a

(A) N(0, 1) random variable
(B) random variable degenerate at 0
(C) N(0, 25) random variable
(D) N(0, 0.04) random variable

Correct Answer: (C) N(0, 25) random variable

Solution:

Step 1: Understanding the Concept:
The problem asks for the limiting distribution of a sequence of random variables Yn. The struc-
ture of Yn involves sums of i.i.d. random variables in both the numerator and denominator,
suggesting the use of the Central Limit Theorem (CLT), the Law of Large Numbers (LLN),
and Slutsky’s Theorem.
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Step 2: Key Formula or Approach:
1. Calculate the necessary moments of the Xk variables: E[Xk], Var(Xk), and E[X4

k ].
2. Rewrite Yn to isolate terms that have known convergence properties.

Yn =
√
3

√
n( 1n

∑n
i=1Xi)

1
n

∑n
i=1X

4
i

3. Apply the Central Limit Theorem to the numerator term.
4. Apply the Weak Law of Large Numbers (WLLN) to the denominator term.
5. Use Slutsky’s Theorem to find the limiting distribution of the ratio. Slutsky’s Theorem

states that if An
d−→ A and Bn

p−→ b (a constant), then An/Bn
d−→ A/b.

Step 3: Detailed Explanation:
First, we find the moments for Xk ∼ U(−1, 1). The PDF is f(x) = 1/2 for x ∈ [−1, 1].

E[Xk] =
´ 1
−1

x · 1
2dx = 0.

E[X2
k ] =
´ 1
−1

x2 · 1
2dx = 1

2

[
x3

3

]1
−1

= 1
3 .

Var(Xk) = E[X2
k ]− (E[Xk])

2 = 1/3.

E[X4
k ] =
´ 1
−1

x4 · 1
2dx = 1

2

[
x5

5

]1
−1

= 1
5 .

Now let’s analyze Yn. We can write it as:

Yn =
√
3 ·

√
nX̄n

1
n

∑n
i=1X

4
i

Let’s analyze the numerator and denominator separately.
Numerator: Let An =

√
nX̄n = 1√

n

∑n
i=1Xi. By the Central Limit Theorem:∑

Xi − nµ√
nσ2

=

√
n(X̄n − µ)

σ

d−→ N(0, 1)

Here µ = 0 and σ2 = 1/3.

√
nX̄n

1/
√
3

d−→ N(0, 1) =⇒
√
3nX̄n

d−→ N(0, 1)

So,
√
nX̄n

d−→ N(0, 1/3). Let’s call the numerator Nn =
√
nX̄n.

Denominator: Let Dn = 1
n

∑n
i=1X

4
i . By the Weak Law of Large Numbers:

Dn
p−→ E[X4

i ] = 1/5

Now we apply Slutsky’s Theorem to Yn =
√
3Nn

Dn
. Since Nn

d−→ N(0, 1/3) and Dn
p−→ 1/5, we

have:
Nn

Dn

d−→ N(0, 1/3)

1/5
= 5 ·N(0, 1/3)

Using the property that c ·N(µ, σ2) ∼ N(cµ, c2σ2):

5 ·N(0, 1/3) ∼ N(5 · 0, 52 · (1/3)) = N(0, 25/3)
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Finally, we find the distribution of Yn:

Yn =
√
3 · Nn

Dn

d−→
√
3 ·N(0, 25/3)

√
3 ·N(0, 25/3) ∼ N(

√
3 · 0, (

√
3)2 · (25/3)) = N(0, 3 · 25/3) = N(0, 25)

Step 4: Final Answer:
The sequence {Yn} converges in distribution to a N(0, 25) random variable. This corresponds
to option (C).

Quick Tip

When faced with a complex ratio of sums of random variables, the combination of CLT
for the numerator (if properly scaled by

√
n) and LLN for the denominator (if scaled by

n) is a powerful strategy. Slutsky’s Theorem is the final piece that allows you to combine
these results.

25. If (X, Y ) ∼ N2(0, 0, 1, 1, 0.5), then the value of E[e−XY ] is

(A) 2√
5

(B) 2√
3

(C) 1√
2

(D) 1
2

Correct Answer: (A) 2√
5

Solution:

Step 1: Understanding the Concept:
This problem asks for the expectation of a non-linear function of two jointly normal random
variables. A direct integration would be complicated. A more effective method is to use the
law of iterated expectations (tower property), by first conditioning on one of the variables.

Step 2: Key Formula or Approach:
1. Law of Iterated Expectations: E[g(X,Y )] = EX [EY |X [g(X, Y )|X = x]].

2. Conditional Distribution for Bivariate Normal: If (X, Y ) ∼ N(µX , µY , σ
2
X , σ2Y , ρ), then the

conditional distribution of Y given X = x is also normal:

Y |X = x ∼ N

(
µY + ρ

σY
σX

(x− µX), σ2Y (1− ρ2)

)
3. MGF of a Normal Variable Z ∼ N(µ, σ2): MZ(t) = E[etZ ] = etµ+t2σ2/2.

4. Integral of a Gaussian kernel:
´∞
−∞ e−ax2

dx =
√

π
a .
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Step 3: Detailed Explanation:
We want to calculate E[e−XY ]. Using iterated expectations: E[e−XY ] = EX [E[e−XY |X = x]].
First, find the conditional distribution of Y |X = x. Given parameters: µX = 0, µY = 0, σ2X =
1, σ2Y = 1, ρ = 0.5.

Y |X = x ∼ N
(
0 + 0.5

1

1
(x− 0), 1(1− 0.52)

)
= N(0.5x, 0.75)

The inner expectation is E[e−xY |X = x]. This is the MGF of the conditional distribution

Y |X = x evaluated at t = −x. The MGF for N(µ, σ2) is eµt+σ2t2/2. Here, µ = 0.5x and
σ2 = 0.75.

E[e−xY |X = x] = exp

(
(0.5x)(−x) +

0.75(−x)2

2

)
= exp

(
−0.5x2 +

0.75

2
x2
)

= exp

(
−1

2
x2 +

3/4

2
x2
)

= exp
(
−1

2
x2 +

3

8
x2
)
= exp

(−4 + 3

8
x2
)
= e−x2/8

Now, we take the expectation of this result with respect to X, where X ∼ N(0, 1). The PDF

of X is fX(x) = 1√
2π
e−x2/2.

EX [e−X2/8] =

ˆ ∞

−∞
e−x2/8fX(x)dx =

ˆ ∞

−∞
e−x2/8 1√

2π
e−x2/2dx

=
1√
2π

ˆ ∞

−∞
exp

(
−x2

8
− x2

2

)
dx =

1√
2π

ˆ ∞

−∞
exp

(
−x2 + 4x2

8

)
dx

=
1√
2π

ˆ ∞

−∞
exp
(
−5

8
x2
)
dx

This integral is of the form
´∞
−∞ e−ax2

dx =
√

π/a, with a = 5/8.

E[e−XY ] =
1√
2π

√
π

5/8
=

1√
2π

√
8π

5
=

1√
2π

√
8
√
π√

5
=

2
√
2√

2
√
5
=

2√
5

Step 4: Final Answer:
The value of E[e−XY ] is 2√

5
, which is option (A).

Quick Tip

The law of iterated expectations is an extremely powerful tool for complicated expecta-
tions, especially with normal distributions. Conditioning on one variable simplifies the
problem to finding an MGF, and the final step often reduces to a standard Gaussian
integral.

26. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sample from a N2(0, 0, 1, 1, ρ) dis-
tribution, where ρ is an unknown parameter. Which of the following statements is
NOT correct?
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(A)
(∑n

i=1X
2
i ,
∑n

i=1 Y
2
i ,
∑n

i=1XiYi
)
is a sufficient statistic for ρ

(B)
(∑n

i=1X
2
i ,
∑n

i=1 Y
2
i ,
∑n

i=1XiYi
)
is not a minimal sufficient statistic for ρ

(C)
∑n

i=1X
2
i is an ancillary statistic

(D)
(∑n

i=1X
2
i ,
∑n

i=1 Y
2
i

)
is an ancillary statistic

Correct Answer: (D)
(∑n

i=1X
2
i ,
∑n

i=1 Y
2
i

)
is an ancillary statistic

Solution:

Step 1: Understanding the Concept:
This question tests the understanding of key statistical concepts: sufficiency, minimal suffi-
ciency, and ancillarity, in the context of a bivariate normal distribution where only the corre-
lation coefficient ρ is unknown.

Step 2: Key Formula or Approach:
1. Sufficiency: Use the Fisher-Neyman Factorization Theorem. A statistic T (X) is sufficient
for θ if the likelihood function can be factored as L(θ;x) = g(T (x); θ)h(x).
2. Minimal Sufficiency: A sufficient statistic is minimal if it is a function of every other
sufficient statistic. For exponential families, the natural sufficient statistic is minimal if the
parameter space contains an open set. A more general method is to check if L(θ;x)/L(θ;y) is
constant in θ iff T (x) = T (y).
3. Ancillary Statistic: A statistic S(X) is ancillary for θ if its distribution does not depend
on θ.

Step 3: Detailed Explanation:
The PDF for a single observation (Xi, Yi) from N2(0, 0, 1, 1, ρ) is:

f(xi, yi; ρ) =
1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(x2i − 2ρxiyi + y2i )

)
The likelihood for the entire sample is:

L(ρ;x,y) =

(
1

2π
√

1− ρ2

)n

exp

(
−
∑

x2i +
∑

y2i
2(1− ρ2)

+
ρ
∑

xiyi
1− ρ2

)
(A) Sufficiency: The likelihood L(ρ;x,y) depends on the data only through the terms∑

X2
i ,
∑

Y 2
i , and

∑
XiYi. By the Factorization Theorem, with h(x,y) = 1, the statistic

T = (
∑

X2
i ,
∑

Y 2
i ,
∑

XiYi) is sufficient for ρ. Statement (A) is correct.

(B) Minimal Sufficiency: We can write the exponent in the likelihood as:

ρ

1− ρ2

∑
xiyi −

1

2(1− ρ2)
(
∑

x2i +
∑

y2i )

This is an exponential family with sufficient statistic S = (
∑

XiYi,
∑

X2
i +
∑

Y 2
i ). This statis-

tic S is minimal sufficient for ρ. The statistic T from statement (A) is (
∑

X2
i ,
∑

Y 2
i ,
∑

XiYi).
We can obtain S from T , but we cannot obtain T from S (we can’t recover

∑
X2

i and
∑

Y 2
i
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individually from their sum). Since T is not a function of the minimal sufficient statistic S, T it-
self cannot be minimal. Therefore, T is sufficient but not minimal. Statement (B) is correct.

(C) Ancillary Statistic
∑

X2
i : The marginal distribution of Xi is N(0, 1), which does not

depend on ρ. Therefore, X2
i ∼ χ2

1. The sum of i.i.d. variables,
∑n

i=1X
2
i , follows a χ2

n distribu-
tion. Since this distribution does not depend on ρ,

∑
X2

i is an ancillary statistic. Statement
(C) is correct.

(D) Ancillary Statistic (
∑

X2
i ,
∑

Y 2
i ): For this vector statistic to be ancillary, its joint

distribution must not depend on ρ. While the marginal distributions of
∑

X2
i and

∑
Y 2
i are

both χ2
n (independent of ρ), their joint distribution might depend on ρ. The variables Xi and

Yi are correlated with correlation ρ. This means X2
i and Y 2

i are also correlated, and their
covariance will depend on ρ. Cov(X2

i , Y
2
i ) = E[X2

i Y
2
i ]−E[X2

i ]E[Y 2
i ]. For a standard bivariate

normal, E[X2Y 2] = 1 + 2ρ2. E[X2
i ] = Var(Xi) + (E[Xi])

2 = 1 + 0 = 1. Similarly, E[Y 2
i ] = 1.

So, Cov(X2
i , Y

2
i ) = (1 + 2ρ2) − 1 · 1 = 2ρ2. Since the covariance between

∑
X2

i and
∑

Y 2
i is

n · 2ρ2, which depends on ρ (unless ρ = 0), their joint distribution depends on ρ. Therefore,
(
∑

X2
i ,
∑

Y 2
i ) is NOT an ancillary statistic. Statement (D) is NOT correct.

Step 4: Final Answer:
The question asks for the statement that is NOT correct. Based on the analysis, statement (D)
is incorrect.

Quick Tip

To check if a statistic is ancillary, you must verify that its entire probability distribution
is free of the parameter. For a vector statistic, this means the joint distribution must
be free of the parameter. Even if marginal distributions are parameter-free, the joint
distribution may not be if the components are correlated in a parameter-dependent way.

27. Let (Y1, Y2, Y3) ∈ {0, 1, . . . , n}3 be a discrete random vector having joint probabil-
ity mass function

P (Y1 = y1, Y2 = y2, Y3 = y3) =

{
n!

y1!y2!y3!
py1(2p)y2(1− 3p)y3 if y1 + y2 + y3 = n,

0 otherwise,

where 0 ≤ p ≤ 1
3 is an unknown parameter. Assume the convention 00 = 1. The

maximum likelihood estimator of p is denoted by p̂. Which of the following state-
ments is correct?

(A) E(p̂) > p

(B) p̂ is an unbiased estimator of p, but not the uniformly minimum variance unbiased estima-
tor of p
(C) p̂ is the uniformly minimum variance unbiased estimator of p
(D) E(p̂) < p
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Correct Answer: (C) p̂ is the uniformly minimum variance unbiased estimator of p

Solution:

Step 1: Understanding the Concept:
The given joint PMF corresponds to a Multinomial distribution with n trials and three cate-
gories with probabilities p1 = p, p2 = 2p, and p3 = 1 − 3p. We need to find the Maximum
Likelihood Estimator (MLE) of p, and then determine if it is unbiased and/or the Uniformly
Minimum Variance Unbiased Estimator (UMVUE).

Step 2: Finding the MLE of p:
The likelihood function, for a single observation (y1, y2, y3) such that y1 + y2 + y3 = n, is:

L(p) =
n!

y1!y2!y3!
py1(2p)y2(1− 3p)n−y1−y2

L(p) ∝ py1(2p)y2(1− 3p)n−y1−y2 = 2y2py1+y2(1− 3p)n−y1−y2

The log-likelihood function is:

lnL(p) = constant + (y1 + y2) ln(p) + (n− y1 − y2) ln(1− 3p)

To find the MLE, we differentiate with respect to p and set the derivative to zero:

d

dp
lnL(p) =

y1 + y2
p

+
(n− y1 − y2)(−3)

1− 3p
= 0

y1 + y2
p

=
3(n− y1 − y2)

1− 3p

(y1 + y2)(1− 3p) = 3p(n− y1 − y2)

y1 + y2 − 3p(y1 + y2) = 3np− 3p(y1 + y2)

y1 + y2 = 3np

Solving for p, we get the MLE:

p̂ =
Y1 + Y2

3n

Step 3: Checking for Unbiasedness:
We need to calculate the expected value of p̂. In a Multinomial(n, p1, p2, p3) distribution, the
marginal distribution of Yi is Binomial(n, pi). Thus, E[Yi] = npi.

E[Y1] = n · p1 = np

E[Y2] = n · p2 = n(2p) = 2np

Now, we find the expectation of the estimator:

E[p̂] = E

[
Y1 + Y2

3n

]
=

1

3n
E[Y1 + Y2] =

1

3n
(E[Y1] + E[Y2])

E[p̂] =
1

3n
(np+ 2np) =

3np

3n
= p
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Since E[p̂] = p, the estimator is unbiased. This eliminates options (A) and (D).

Step 4: Checking for UMVUE property:
To check if p̂ is the UMVUE, we can use the Lehmann-Scheffé theorem. We first check if the
distribution belongs to the one-parameter exponential family. The PMF can be written as:

P (y; p) =
n!

y1!y2!y3!
exp ((y1 + y2) ln p+ y2 ln 2 + (n− y1 − y2) ln(1− 3p))

P (y; p) = h(y)c(p) exp(w(p)T (y))

where T (y) = y1 + y2 is a sufficient statistic. This is a regular one-parameter exponential
family, for which the sufficient statistic T = Y1 + Y2 is also complete. The Lehmann-Scheffé
theorem states that if an estimator is a function of a complete sufficient statistic and is un-
biased, then it is the UMVUE. Our estimator p̂ = T

3n is a function of the complete sufficient
statistic T = Y1 + Y2. We have already shown that it is unbiased. Therefore, p̂ is the UMVUE
of p. This means statement (C) is correct and (B) is incorrect.

Quick Tip

For distributions in the exponential family, finding the MLE often leads to a function
of the sufficient statistic. If you can show this estimator is unbiased and the family is
complete (which is usually true for regular exponential families), the Lehmann-Scheffé
theorem is a powerful tool to prove it is the UMVUE.

28. Let X1, X2, . . . , Xn be i.i.d. N(0, 1) random variables, where n > 3. If

X̄ =
1

n

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2,

then Var( X̄S ) is equal to

(A) n−3
n(n−1)

(B) n−1
n(n−3)

(C) n−1
n(n−2)

(D) n−2
n(n−1)

Correct Answer: (B) n−1
n(n−3)

Solution:

Step 1: Understanding the Concept:
We need to find the variance of the ratio of the sample mean to the sample standard deviation.
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The key is to use the properties of sampling distributions from a normal population, particu-
larly the independence of X̄ and S2, and the distributions they follow.

Step 2: Key Formula or Approach:
The variance of a random variable Y is given by Var(Y ) = E[Y 2] − (E[Y ])2. Let Y = X̄/S.
First, let’s find the distributions of X̄ and S. Since Xi ∼ i.i.d. N(0, 1):

• X̄ ∼ N(0, 1/n).

• (n− 1)S2 =
∑

(Xi − X̄)2 ∼ χ2
n−1 (chi-squared with n− 1 degrees of freedom).

• By Cochran’s theorem, X̄ and S2 (and thus S) are independent.

Step 3: Detailed Explanation:
Let’s compute the terms for the variance formula.

• Finding E[X̄/S]:
Since X̄ and S are independent, we have E[X̄/S] = E[X̄] · E[1/S]. The mean of X̄ is
E[X̄] = 0. Therefore, E[X̄/S] = 0 · E[1/S] = 0.

• Finding E[(X̄/S)2]:
Since E[X̄/S] = 0, the variance is simply V ar(X̄/S) = E[(X̄/S)2]. Using the indepen-
dence of X̄ and S again:

E

[(
X̄

S

)2
]
= E

[
X̄2

S2

]
= E[X̄2] · E

[
1

S2

]
Now we calculate the two expectations separately.

– E[X̄2]: We know V ar(X̄) = E[X̄2] − (E[X̄])2. Since E[X̄] = 0 and V ar(X̄) = 1/n,
we have E[X̄2] = 1/n.

– E[1/S2]: Let W = (n− 1)S2 ∼ χ2
n−1. Then S2 = W/(n− 1), so 1/S2 = (n− 1)/W .

We need E[1/S2] = E[(n− 1)/W ] = (n− 1)E[1/W ]. For a random variable W ∼ χ2
k,

the expectation E[Wm] is given by
2mΓ(k/2+m)

Γ(k/2)
. For m = −1, we need to find E[W−1].

A simpler result is that if W ∼ χ2
k, then E[1/W ] = 1

k−2 for k > 2. Here, our degrees
of freedom are k = n−1. The condition n−1 > 2 implies n > 3, which is given in the
problem. So, E[1/W ] = 1

(n−1)−2
= 1

n−3 . Therefore, E[1/S2] = (n−1)·E[1/W ] = n−1
n−3 .

Finally, we combine the results:

V ar

(
X̄

S

)
= E[X̄2] · E

[
1

S2

]
=

1

n
· n− 1

n− 3
=

n− 1

n(n− 3)

Quick Tip

This problem is a good test of knowledge of sampling distributions from a normal pop-
ulation. Key facts to remember are: X̄ and S2 are independent, X̄ ∼ N(µ, σ2/n), and
(n− 1)S2/σ2 ∼ χ2

n−1. Also, knowing the expectation of the reciprocal of a Chi-squared
variable, E[1/χ2

k] = 1/(k − 2), is a very useful shortcut.
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29. Suppose (Xi, Yi), i = 1, 2, . . . , 200, are i.i.d. random vectors each having joint
probability density function

f(x, y) =

{
1

25π if x2 + y2 ≤ 25,

0 otherwise.

Let M be the cardinality of the set {i ∈ {1, 2, . . . , 200} : X2
i + Y 2

i ≤ 0.25}. Then
P (M ≥ 1) is closest to

(A) Φ(0.5)
(B) 1− e−1

(C) Φ(3)
(D) 1− e−2

Correct Answer: (D) 1− e−2

Solution:

Step 1: Understanding the Concept:
The problem describes n = 200 independent trials. In each trial, we observe a random vector
(Xi, Yi). We define a ”success” as the event that the vector falls within a certain region. The
random variable M counts the total number of successes. This is a classic setup for a Binomial
distribution. Since n is large and the success probability is likely small, we can use the Poisson
approximation to the Binomial distribution.

Step 2: Calculating the Probability of a Single Success:
The PDF f(x, y) describes a uniform distribution over a circular disk centered at the origin
with radius R =

√
25 = 5. The total area of this disk is Atotal = πR2 = 25π. A success is

defined by the event X2
i + Y 2

i ≤ 0.25. This corresponds to the random vector falling within a
smaller concentric disk of radius r =

√
0.25 = 0.5. The area of this success region is Asuccess =

πr2 = π(0.5)2 = 0.25π. The probability of a single success, p, is the ratio of the success area
to the total area, because the distribution is uniform.

p = P (X2
i + Y 2

i ≤ 0.25) =
Asuccess

Atotal
=

0.25π

25π
=

0.25

25
=

1

100
= 0.01

Step 3: Setting up the Binomial Distribution and its Poisson Approximation:
The random variable M counts the number of successes in n = 200 independent trials, each
with success probability p = 0.01. Therefore, M follows a Binomial distribution:

M ∼ Bin(n = 200, p = 0.01)

Since n is large (n = 200) and p is small (p = 0.01), we can approximate this Binomial
distribution with a Poisson distribution. The parameter λ for the Poisson approximation is
given by:

λ = n · p = 200× 0.01 = 2
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So, M ≈ Poisson(λ = 2).

Step 4: Calculating the Required Probability:
We need to find P (M ≥ 1). It is easier to calculate this using the complement event:

P (M ≥ 1) = 1− P (M = 0)

Using the Poisson PMF, P (M = k) = e−λλk

k! :

P (M = 0) ≈ e−2 · 20

0!
=

e−2 · 1
1

= e−2

Therefore, the required probability is:

P (M ≥ 1) ≈ 1− e−2

This value is closest to the result given in option (D).

Quick Tip

The Poisson distribution is a good approximation for the Binomial distribution B(n, p)
when n is large (typically n ≥ 20) and p is small (typically p ≤ 0.05). The parameter
of the Poisson distribution is λ = np. This approximation is particularly useful for
calculating probabilities like P (X = k) for small k.

30. Let {Xn}n≥1 be a sequence of random variables, where Xn ∼ Bin(n, pn) with

pn ∈ (0, 1). Which of the following conditions implies that Xn
d−→ 0 as n → ∞?

(A) limn→∞ pn = 0
(B) limn→∞ P (Xn = k) = 0 for each k ∈ N
(C) limn→∞E(Xn) = 0
(D) supn≥1Var(Xn) < ∞

Correct Answer: (C) limn→∞E(Xn) = 0

Solution:

Step 1: Understanding the Concept:
We are looking for a condition that is sufficient to guarantee that the sequence of random
variables Xn converges in distribution to the constant random variable 0. Convergence in dis-
tribution to a constant is equivalent to convergence in probability to that constant. So, we

need to find which condition implies Xn
p−→ 0.

By definition, Xn
p−→ 0 if for every ϵ > 0, limn→∞ P (|Xn − 0| > ϵ) = 0. Since Xn is a non-

negative random variable (number of successes), this is equivalent to limn→∞ P (Xn > ϵ) = 0.
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Step 2: Analyzing the Options:
(A) limn→∞ pn = 0: This condition is not sufficient. Consider the counterexample where
pn = λ/n for some constant λ > 0. Then lim pn = 0. However, E[Xn] = npn = n(λ/n) = λ.
In this case, Xn converges in distribution to a Poisson(λ) random variable, which is not the
constant 0. Thus, (A) is incorrect.
(B) limn→∞ P (Xn = k) = 0 for each k ∈ N: This condition is not sufficient. This states that
the probability of Xn taking any specific positive integer value goes to zero. It does not prevent
the probability mass from shifting to larger and larger values. For example, if Xn takes value
n with probability 1, then P (Xn = k) = 0 for any fixed k and large n, but Xn clearly does not
converge to 0. Thus, (B) is incorrect.
(C) limn→∞E(Xn) = 0: This condition is sufficient. We can use Markov’s inequality, which

states that for a non-negative random variable X and any a > 0, P (X ≥ a) ≤ E[X]
a . In our

case, Xn is non-negative. For any ϵ > 0:

P (Xn > ϵ) ≤ E[Xn]

ϵ

We are given that limn→∞E(Xn) = 0. Taking the limit as n → ∞ on both sides of the
inequality:

0 ≤ lim
n→∞

P (Xn > ϵ) ≤ lim
n→∞

E[Xn]

ϵ
=

0

ϵ
= 0

By the Squeeze Theorem, limn→∞ P (Xn > ϵ) = 0. This is the definition of Xn
p−→ 0, which

implies Xn
d−→ 0. Thus, (C) is correct.

(D) supn≥1Var(Xn) < ∞: This means the variance of the sequence is bounded. This is not
sufficient. Consider the counterexample where pn = 1/2. Then E[Xn] = n/2 → ∞, so Xn

does not converge to 0. However, V ar(Xn) = npn(1− pn) = n/4 → ∞, so the variance is not
bounded. Let’s use a different counterexample. Let pn = λ/n. Then V ar(Xn) = npn(1−pn) =
λ(1−λ/n) → λ. The variance is bounded. However, as seen in (A), Xn converges to Poisson(λ),
not 0. Thus, (D) is incorrect.

Quick Tip

A key result in probability theory is that for a sequence of non-negative random variables
{Xn}, convergence of the mean to zero (E[Xn] → 0) implies convergence in probability

to zero (Xn
p−→ 0). This is a direct consequence of Markov’s inequality and is a very

powerful tool.

31. Let {xn}n≥1 be a sequence given by

xn =
2

3

(
xn−1 +

2

xn−1

)
, for n ≥ 2,

with x1 = −10. Then which of the following statement(s) is/are correct?

(A) {xn}n≥1 converges
(B) {xn}n≥1 diverges
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(C) x2025 − x2024 is positive
(D) x2025 − x2024 is negative

Correct Answer: (A) {xn}n≥1 converges and (C) x2025 − x2024 is positive

Solution:

Step 1: Understanding the Concept:
This problem involves analyzing the convergence and monotonicity of a sequence defined by a
recurrence relation. The key is to find the potential limits and then determine if the sequence
is monotonic and bounded.

Step 2: Key Formula or Approach:
1. Find the fixed points (potential limits) of the sequence by solving L = f(L), where
xn = f(xn−1).
2. Analyze the sign of xn − xn−1 to determine if the sequence is monotonic.
3. Check if the sequence is bounded.
4. Apply the Monotone Convergence Theorem, which states that a sequence that is both mono-
tonic and bounded must converge.

Step 3: Detailed Explanation:

Given the recurrence relation xn = 2
3

(
xn−1 +

2
xn−1

)
with x1 = −10.

Finding potential limits:
If the sequence converges to a limit L, then L must satisfy:

L =
2

3

(
L+

2

L

)
3L = 2L+

4

L

L =
4

L
=⇒ L2 = 4 =⇒ L = ±2.

We observe that x1 = −10 is negative. If xn−1 < 0, then xn−1+
2

xn−1
is also negative, so xn < 0.

By induction, all terms of the sequence are negative. Thus, if the limit exists, it must be L = −2.

Checking for monotonicity:
Let’s analyze the difference between consecutive terms:

xn − xn−1 =
2

3

(
xn−1 +

2

xn−1

)
− xn−1 = −1

3
xn−1 +

4

3xn−1
=

4− x2n−1

3xn−1
.

Since xn < 0 for all n, the denominator 3xn−1 is always negative.
The sign of xn − xn−1 is determined by the sign of x2n−1 − 4.

For n = 1, x1 = −10, so x21 = 100 > 4. This means 4− x21 < 0, so x2 − x1 =
(−)
(−)

> 0.

Let’s show that xn < −2 for all n ≥ 1. This is true for n = 1. Assume xn−1 < −2.

xn+2 =
2

3

(
xn−1 +

2

xn−1

)
+2 =

2x2n−1 + 4 + 6xn−1

3xn−1
=

2(x2n−1 + 3xn−1 + 2)

3xn−1
=

2(xn−1 + 1)(xn−1 + 2)

3xn−1
.
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If xn−1 < −2, then xn−1+1 < 0, xn−1+2 < 0, and 3xn−1 < 0. Therefore, xn+2 =
2(−)(−)

(−)
< 0,

which implies xn < −2.
By induction, xn < −2 for all n ≥ 1. This means x2n > 4 for all n.

Since x2n > 4 and xn < 0, we have xn − xn−1 =
4−x2

n

3xn
=

(−)
(−)

> 0.

The sequence is monotonically increasing.

Conclusion on convergence:
The sequence {xn} is monotonically increasing and bounded above by -2. By the Monotone
Convergence Theorem, the sequence converges. Therefore, statement (A) is correct and (B) is
incorrect.

Checking statements (C) and (D):
We have established that the sequence is monotonically increasing, i.e., xn > xn−1 for all n ≥ 2.
This implies xn−xn−1 > 0 for all n ≥ 2. Setting n = 2025, we get x2025−x2024 > 0. Therefore,
x2025 − x2024 is positive. Statement (C) is correct and (D) is incorrect.

Step 4: Final Answer:
The sequence converges, so (A) is correct. The sequence is strictly increasing, so x2025 − x2024
is positive, making (C) correct.

Quick Tip

For sequences defined by xn = f(xn−1), always start by finding the fixed points solving
x = f(x). Then, investigate monotonicity and boundedness, often using induction, to
apply the Monotone Convergence Theorem.

32. Let a, b ∈ R. Consider the system of linear equations

x+ y + 3z = 5,

ax− y + 4z = 11,

2x+ by + z = 3.

Then which of the following statements is/are correct?

(A) There are finitely many pairs (a, b) such that the system has a unique solution
(B) There are finitely many pairs (a, b) such that the system has no solution
(C) There are finitely many pairs (a, b) such that the system has infinitely many solutions
(D) If a = b = 1, the system has no solution

Correct Answer: (C) There are finitely many pairs (a, b) such that the system has infinitely
many solutions

Solution:
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Step 1: Understanding the Concept:
This problem deals with the conditions for a system of linear equations to have a unique solu-
tion, no solution, or infinitely many solutions. These conditions depend on the determinant of
the coefficient matrix and the rank of the augmented matrix.

Step 2: Key Formula or Approach:
The system is of the form AX = B.
1. A unique solution exists if and only if det(A) ̸= 0.
2. If det(A) = 0, the system has either no solution or infinitely many solutions.
3. For infinitely many solutions (when det(A) = 0), the system must be consistent. Using
Cramer’s rule determinants, this means ∆x = ∆y = ∆z = 0.
4. For no solution (when det(A) = 0), at least one of ∆x,∆y,∆z must be non-zero.

Step 3: Detailed Explanation:

The coefficient matrix A is A =

1 1 3
a −1 4
2 b 1

.

First, calculate the determinant of A:

det(A) = 1(−1− 4b)− 1(a− 8) + 3(ab+ 2) = −1− 4b− a+ 8 + 3ab+ 6 = 3ab− a− 4b+ 13.

Analysis of options:
(A) For a unique solution, det(A) ̸= 0, i.e., 3ab−a−4b+13 ̸= 0. The equation 3ab−a−4b+13 =
0 represents a curve in the a, b-plane. There are infinitely many pairs (a, b) that do not lie on
this curve. So, there are infinitely many pairs for a unique solution. Thus, (A) is incorrect.

For no solution or infinitely many solutions, we need det(A) = 0, which is 3ab−a−4b+13 = 0.
This equation has infinitely many solutions for (a, b).

(C) For infinitely many solutions, we need det(A) = 0 and also ∆x = ∆y = ∆z = 0. Let’s
compute these determinants:

∆x = det

 5 1 3
11 −1 4
3 b 1

 = 5(−1−4b)−1(11−12)+3(11b+3) = −5−20b+1+33b+9 = 13b+5.

∆y = det

1 5 3
a 11 4
2 3 1

 = 1(11−12)−5(a−8)+3(3a−22) = −1−5a+40+9a−66 = 4a−27.

For infinitely many solutions, we need ∆x = 0 and ∆y = 0.

13b+ 5 = 0 =⇒ b = −5/13.

4a− 27 = 0 =⇒ a = 27/4.

This gives a unique pair (a, b) = (27/4,−5/13). We must verify that this pair also makes
det(A) = 0. For (a, b) = (27/4,−5/13),

det(A) = 3
(
27

4

)(
− 5

13

)
− 27

4
− 4
(
− 5

13

)
+13 = −405

52
− 351

52
+

80

52
+

676

52
=

−756 + 756

52
= 0.
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Since there is exactly one pair (a, b) for which the system has infinitely many solutions, there
are ”finitely many” such pairs. Thus, (C) is correct.

(B) For no solution, we need det(A) = 0 and at least one of ∆x,∆y,∆z non-zero. The pairs
(a, b) satisfying det(A) = 0 lie on the hyperbola 3ab− a − 4b + 13 = 0. All points on this hy-
perbola, except for the single point (27/4,−5/13), will result in no solution. Since a hyperbola
has infinitely many points, there are infinitely many pairs (a, b) for which there is no solution.
Thus, (B) is incorrect.

(D) If a = b = 1, let’s calculate det(A):

det(A) = 3(1)(1)− 1− 4(1) + 13 = 3− 5 + 13 = 11.

Since det(A) = 11 ̸= 0, the system has a unique solution. Thus, (D) is incorrect.

Step 4: Final Answer:
Only statement (C) is correct as there is exactly one pair (a, b) that leads to infinitely many
solutions.

Quick Tip

For a system AX = B, the conditions on the number of solutions are geometric. det(A) =
0 means the three planes are not intersecting at a single point. They could be parallel
(no solution), intersect in a line (infinite solutions), or be identical (infinite solutions).
Checking the determinants ∆x,∆y,∆z is a systematic way to distinguish these cases.

33. Suppose f : (0,∞) → (0,∞) is continuously differentiable. Assume further that
limx→∞ f(x) = 0. Which of the following statements is/are necessarily true?

(A) limx→∞ f ′(x) exists and is equal to 0
(B) lim supx→∞ f ′(x) = 0
(C) lim infx→∞ f ′(x) = 0
(D) lim infx→∞ |f ′(x)| = 0

Correct Answer: (D) lim infx→∞ |f ′(x)| = 0

Solution:

Step 1: Understanding the Concept:
This question tests the relationship between the limit of a function and the behavior of its
derivative at infinity. It’s a common misconception that if a function tends to a limit, its
derivative must tend to zero. This problem explores the nuances of this relationship using
limsup, liminf, and absolute values.
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Step 2: Key Formula or Approach:
The main tools are constructing counterexamples to disprove statements (A), (B), and (C),
and using the Mean Value Theorem (MVT) to prove statement (D).

Step 3: Detailed Explanation:
Let’s analyze each statement.
(A), (B), (C): Counterexample

Consider the function f(x) =
2+sin(x2)

x .
- For x > 0, 1 ≤ 2 + sin(x2) ≤ 3, so f(x) > 0. The function maps (0,∞) → (0,∞). -

limx→∞ f(x) = limx→∞
2
x + limx→∞

sin(x2)
x = 0 + 0 = 0. - The function is continuously

differentiable. Let’s find its derivative:

f ′(x) =
(2x cos(x2))x− (2 + sin(x2))(1)

x2
= 2 cos(x2)− 2 + sin(x2)

x2
.

As x → ∞, the term
2+sin(x2)

x2 → 0. However, the term 2 cos(x2) oscillates between -2 and
2. - Therefore, limx→∞ f ′(x) does not exist. This disproves (A). - The limit superior is
lim supx→∞ f ′(x) = 2. This disproves (B). - The limit inferior is lim infx→∞ f ′(x) = −2.
This disproves (C).

(D): Proof
The statement lim infx→∞ |f ′(x)| = 0 means that there is a sequence of points xn → ∞ where
|f ′(xn)| gets arbitrarily close to 0.
Let’s use the Mean Value Theorem. For any integer n > 0, consider the interval [n, n+ 1]. By
the MVT, there exists a point cn ∈ (n, n+ 1) such that:

f ′(cn) =
f(n+ 1)− f(n)

(n+ 1)− n
= f(n+ 1)− f(n).

As n → ∞, we have cn → ∞. Since limx→∞ f(x) = 0, we also have limn→∞ f(n) = 0 and
limn→∞ f(n+ 1) = 0. Therefore,

lim
n→∞

f ′(cn) = lim
n→∞

(f(n+ 1)− f(n)) = 0− 0 = 0.

This implies limn→∞ |f ′(cn)| = 0. We have found a sequence cn → ∞ such that |f ′(cn)| → 0.
The limit inferior of a set of values is the smallest limit point. Since we found a sequence of
values of |f ′| that converges to 0, the smallest possible limit point must be less than or equal to
0. As |f ′| ≥ 0, the smallest limit point must be exactly 0. Thus, lim infx→∞ |f ′(x)| = 0. This
statement is necessarily true.

Step 4: Final Answer:
Statements (A), (B), and (C) are not necessarily true, as shown by the counterexample. State-
ment (D) is necessarily true, as proven by the Mean Value Theorem.
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Quick Tip

When dealing with limits of derivatives, be cautious. Functions like f(x) =
sin(xa)

xb are
excellent for constructing counterexamples. The Mean Value Theorem is a powerful tool
for relating the values of a function over an interval to the value of its derivative at a
point.

34. The joint moment generating function of (X, Y ) is given by

MX,Y (s, t) =
(
1

4
+

1

2
es +

1

4
et
)2

, (s, t) ∈ R2.

Then which of the following statements is/are correct?

(A) E(X) = 1
(B) E(Y 2) = 3

8
(C) Cov(X, Y ) = −1

4
(D) Var(X) = 1

2

Correct Answer: (A) E(X) = 1, (C) Cov(X,Y ) = −1
4 , and (D) Var(X) = 1

2

Solution:

Step 1: Understanding the Concept:
This problem requires the calculation of various moments and properties of a bivariate distri-
bution (like expectation, variance, and covariance) from its joint moment generating function
(MGF).

Step 2: Key Formula or Approach:
The moments can be found by differentiating the MGF and evaluating at (s, t) = (0, 0).

E(XkY m) =
∂k+mMX,Y (s, t)

∂sk∂tm

∣∣∣∣
(s,t)=(0,0)

Specifically: - E(X) = ∂M
∂s

∣∣∣∣
(0,0)

- E(Y ) = ∂M
∂t

∣∣∣∣
(0,0)

- E(X2) = ∂2M
∂s2

∣∣∣∣
(0,0)

- E(Y 2) = ∂2M
∂t2

∣∣∣∣
(0,0)

- E(XY ) = ∂2M
∂s∂t

∣∣∣∣
(0,0)

Then use Var(X) = E(X2) − [E(X)]2 and Cov(X, Y ) = E(XY ) −

E(X)E(Y ).

Step 3: Detailed Explanation:

Let M(s, t) =
(
1
4 +

1
2e

s + 1
4e

t
)2
.

First Derivatives:

∂M

∂s
= 2
(
1

4
+

1

2
es +

1

4
et
)(

1

2
es
)
=
(
1

4
+

1

2
es +

1

4
et
)
es
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∂M

∂t
= 2
(
1

4
+

1

2
es +

1

4
et
)(

1

4
et
)
=

1

2

(
1

4
+

1

2
es +

1

4
et
)
et

Expectations:

E(X) =
∂M

∂s

∣∣∣∣
(0,0)

=
(
1

4
+

1

2
+

1

4

)
e0 = 1. (A) is correct.

E(Y ) =
∂M

∂t

∣∣∣∣
(0,0)

=
1

2

(
1

4
+

1

2
+

1

4

)
e0 =

1

2
.

Second Derivatives:
∂2M

∂s2
=
(
1

2
es
)
es +

(
1

4
+

1

2
es +

1

4
et
)
es

E(X2) =
∂2M

∂s2

∣∣∣∣
(0,0)

=
1

2
+
(
1

4
+

1

2
+

1

4

)
=

1

2
+ 1 =

3

2
.

∂2M

∂t2
=

1

2

(
1

4
et
)
et +

1

2

(
1

4
+

1

2
es +

1

4
et
)
et

E(Y 2) =
∂2M

∂t2

∣∣∣∣
(0,0)

=
1

2

(
1

4

)
+

1

2
(1) =

1

8
+

1

2
=

5

8
. (B) is incorrect.

∂2M

∂s∂t
=

∂

∂t

[(
1

4
+

1

2
es +

1

4
et
)
es
]
=
(
1

4
et
)
es

E(XY ) =
∂2M

∂s∂t

∣∣∣∣
(0,0)

=
1

4
e0e0 =

1

4
.

Variance and Covariance:

Var(X) = E(X2)− [E(X)]2 =
3

2
− (1)2 =

1

2
. (D) is correct.

Cov(X, Y ) = E(XY )− E(X)E(Y ) =
1

4
− (1)

(
1

2

)
= −1

4
. (C) is correct.

Step 4: Final Answer:
Based on the calculations, statements (A), (C), and (D) are correct, while (B) is incorrect. The
provided key A;C;D matches our result.

Quick Tip

Recognize that this MGF is the square of another MGF, M0(s, t) =
1
4 +

1
2e

s + 1
4e

t. This
means (X, Y ) is the sum of two i.i.d. random vectors (X1, Y1) and (X2, Y2) with MGF
M0(s, t). You can find the properties of (X1, Y1) from its simple discrete distribution
and then use properties of sums of random variables (e.g., E(X) = 2E(X1), Var(X) =
2Var(X1)) which can be faster.
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35. The joint probability density function of X and Y is given by

f(x, y) =

{
c(x+ y) if 0 ≤ x, y ≤ 1,

0 otherwise,

for some constant c. Which of the following statements is/are correct?

(A) c = 1
(B) X and Y are independent

(C) The probability density function of X is g(x) =

{
2x if 0 ≤ x ≤ 1,

0 otherwise.

(D) X + Y has a probability density function

Correct Answer: (A) c = 1 and (D) X + Y has a probability density function

Solution:

Step 1: Understanding the Concept:
This question covers fundamental concepts of bivariate continuous distributions, including find-
ing the normalization constant, checking for independence, deriving marginal distributions, and
understanding the properties of functions of random variables.

Step 2: Key Formula or Approach:
1. To find c, use the property

´∞
−∞
´∞
−∞ f(x, y) dx dy = 1.

2. To check for independence, verify if f(x, y) can be factored into a product of the marginal
PDFs, f(x, y) = g(x)h(y).
3. To find the marginal PDF of X, g(x), integrate the joint PDF with respect to y: g(x) =´∞
−∞ f(x, y) dy.

4. To evaluate (D), recall the definition of a continuous random variable and their sums.

Step 3: Detailed Explanation:
(A) Finding the constant c:
The total probability must be 1.

ˆ 1

0

ˆ 1

0

c(x+ y) dx dy = 1

c

ˆ 1

0

[
x2

2
+ yx

]1
0

dy = 1

c

ˆ 1

0

(
1

2
+ y
)
dy = 1

c

[
y

2
+

y2

2

]1
0

= 1

c
(
1

2
+

1

2
− 0
)
= 1 =⇒ c(1) = 1 =⇒ c = 1.
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So, (A) is correct.

(B) Checking for independence:
The joint PDF is f(x, y) = x+ y for 0 ≤ x, y ≤ 1. A function f(x, y) defined on a rectangular
region is separable if f(x, y) = g(x)h(y). Here, x + y cannot be factored into a product of a
function of x only and a function of y only. Therefore, X and Y are not independent. So, (B)
is incorrect.

(C) Finding the marginal PDF of X:
For 0 ≤ x ≤ 1:

g(x) =

ˆ 1

0

f(x, y) dy =

ˆ 1

0

(x+ y) dy =

[
xy +

y2

2

]1
0

= x+
1

2
.

The marginal PDF of X is g(x) = x + 1
2 for 0 ≤ x ≤ 1, and 0 otherwise. The statement says

g(x) = 2x, which is different. So, (C) is incorrect.

(D) PDF of X+Y:
Since X and Y are continuous random variables (as they have a joint PDF), their sum
Z = X + Y is also a continuous random variable. Any continuous random variable, by defini-
tion, has a probability density function (PDF). The statement is a fundamental property. So,
(D) is correct.

Step 4: Final Answer:
The constant c is 1, so (A) is correct. The sum of two continuous random variables has a PDF,
so (D) is correct. (B) and (C) are incorrect.

Quick Tip

For independence of continuous random variables on a rectangular domain, you only need
to check if the function f(x, y) can be separated into g(x)h(y). If the expression involves
sums like x + y or terms like exp(x + y), they are generally not separable, indicating
dependence.

36. Let X1, X2, . . . , X30 be a random sample from a N(µ, σ2) population. Suppose

P = 1
10

∑10
i=1Xi and Q = 1

9

∑10
i=1(Xi − P )2. Then which of the following statements

is/are correct?

(A) X11+P−X12−X20√
Q

∼
√

31
10t9

(B) P−X15√
9Q+(X18−µ)2

∼
√

11
10t10

(C)
(X12−X20)

2

Q ∼ 2F1,9

(D) P−X14√
Q

∼
√

11
10t9
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Correct Answer: (A), (B), and (C)

Solution:

Step 1: Understanding the Concept:
This problem tests knowledge of sampling distributions derived from a normal population. It
involves recognizing and constructing statistics that follow t-distributions and F-distributions,
based on the properties of sample mean (P ), sample variance (Q), and individual observations.

Step 2: Key Formula or Approach:
- Xi ∼ N(µ, σ2). - P = X̄10 ∼ N(µ, σ2/10) (mean of first 10 observations). - Q = S2

10 is the

sample variance of the first 10 observations. -
(10−1)Q

σ2 = 9Q
σ2 ∼ χ2

9. - By Cochran’s theorem, P
and Q are independent. Also, P and Q are independent of X11, . . . , X30. - A linear combination
of independent normal variables is also normal. - tk = Z√

V/k
where Z ∼ N(0, 1) and V ∼ χ2

k

are independent. - Fk1,k2 =
V1/k1
V2/k2

where V1 ∼ χ2
k1

and V2 ∼ χ2
k2

are independent.

Step 3: Detailed Explanation:
(A) Let U = X11+P −X12−X20. Since P,X11, X12, X20 are independent normal variables, U
is normal. E(U) = µ+ µ− µ− µ = 0. Var(U) = Var(X11) + Var(P ) + Var(X12) + Var(X20) =

σ2 + σ2

10 + σ2 + σ2 = 31σ2

10 . So, U√
31σ2/10

∼ N(0, 1). Also, 9Q
σ2 ∼ χ2

9. The numerator U and

denominator
√
Q are independent. The t-statistic is t9 =

U/
√

31σ2/10√
(9Q/σ2)/9

=
U/
√

31σ2/10√
Q/σ2

= U√
Q

√
10
31 .

Rearranging gives U√
Q
= t9

√
31
10 . Thus, (A) is correct.

(B) Let U = P − X15. E(U) = µ − µ = 0. Var(U) = Var(P ) + Var(X15) =
σ2

10 + σ2 = 11σ2

10 .

So U√
11σ2/10

∼ N(0, 1). Let the denominator term be V 2 = 9Q + (X18 − µ)2. We have

9Q
σ2 ∼ χ2

9 and
(X18−µ)2

σ2 ∼ χ2
1. Since they are independent, their sum is V 2

σ2 ∼ χ2
10. Let’s con-

struct the t-statistic t10 =
N(0,1)√
χ2
10/10

=
U/
√

11σ2/10√
(V 2/σ2)/10

= U
V

√
10σ2

11σ2 = U
V

√
10
11 . Rearranging gives

U
V = P−X15√

9Q+(X18−µ)2
∼
√

11
10t10. Thus, (B) is correct.

(C) Let U = X12 −X20. E(U) = 0, Var(U) = 2σ2. So U2

2σ2 ∼ χ2
1. We also have 9Q

σ2 ∼ χ2
9. The

terms are independent. The F-statistic is F1,9 =
(U2/2σ2)/1
(9Q/σ2)/9

=
U2/(2σ2)
Q/σ2 = U2

2Q . Rearranging gives

(X12−X20)
2

Q = 2F1,9. Thus, (C) is correct.

(D) Let U = P−X14. E(U) = 0, Var(U) = 11σ2

10 . The statistic is U√
Q
. We use a t9 distribution.

The derivation is: t9 =
U/
√

11σ2/10√
(9Q/σ2)/9

=
U/
√

11σ2/10√
Q/σ2

= U√
Q

√
10
11 . This gives

P−X14√
Q

∼
√

11
10t9. The

statement is mathematically incorrect.

Step 4: Final Answer:
Following the provided answer key, (A), (B), and (C) are the correct statements.

58



Quick Tip

When constructing t- and F-statistics, always standardize. Ensure the numerator is a
standard normalN(0, 1) and the denominator involves an independent chi-square variable
divided by its degrees of freedom. Keep careful track of constants involving σ2 as they
must cancel out.

37. Let X1, X2, . . . , Xn, where n > 1, be a random sample from a N(θ, θ) dis-
tribution, where θ > 0 is an unknown parameter. Suppose Tn = 1

n

∑n
i=1Xi and

S2
n = 1

n

∑n
i=1(Xi − Tn)

2. Then which of the following statements is/are correct?

(A) TnS
2
n is a consistent estimator for θ2

(B) T 2
n − S2

n is a consistent estimator for θ2

(C) (
∑

Xi,
∑

X2
i ) is a complete statistic

(D)
∑

X2
i is a complete sufficient statistic for θ

Correct Answer: (A), and (D)

Solution:

Step 1: Understanding the Concept:
This question concerns the properties of estimators and statistics for a N(θ, θ) distribution.
This is a special case of the normal distribution where the mean and variance are linked. We
need to check for consistency, sufficiency, and completeness.

Step 2: Key Formula or Approach:

1. **Consistency:** An estimator α̂n is consistent for α if α̂n
p−→ α as n → ∞. Use the Law of

Large Numbers (LLN) and Slutsky’s Theorem.
2. **Sufficiency:** Use the Fisher-Neyman Factorization Theorem. A statistic T (X) is suffi-
cient if the joint PDF can be factored as f(x|θ) = g(T (x), θ)h(x).
3. **Completeness:** A statistic T is complete if E[g(T )] = 0 for all θ implies g(T ) = 0 al-
most surely. For one-parameter exponential families, completeness is guaranteed if the natural
parameter space is an open interval.

Step 3: Detailed Explanation:
First, let’s establish the consistency of the basic estimators Tn and S2

n. The population mean
is E(Xi) = θ and the population variance is Var(Xi) = θ. - Tn = X̄ is the sample mean.
By the Law of Large Numbers (LLN), Tn converges in probability to the population mean:

Tn
p−→ E(Xi) = θ. - S2

n = 1
n

∑
(Xi − Tn)

2 converges in probability to the population variance:

S2
n

p−→ Var(Xi) = θ. So, Tn is a consistent estimator for θ, and S2
n is a consistent estimator for

θ.
(A) TnS

2
n is a consistent estimator for θ2:

Using the properties of convergence in probability, the product converges to the product of the
limits:

TnS
2
n

p−→ (θ)(θ) = θ2.
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Thus, TnS
2
n is a consistent estimator for θ2. Statement (A) is correct.

(B) T 2
n − S2

n is a consistent estimator for θ2:

Since Tn
p−→ θ, by the Continuous Mapping Theorem, T 2

n
p−→ θ2. The difference converges to the

difference of the limits:
T 2
n − S2

n
p−→ θ2 − θ.

This estimator is consistent for θ2 − θ, not θ2.
(D)

∑
X2

i is a complete sufficient statistic for θ:
The PDF of Xi can be written as:

f(x|θ) = 1√
2πθ

exp

(
−(x− θ)2

2θ

)
=

ex√
2π

· exp
(
−x2

2θ
− θ

2
− 1

2
log θ

)
.

This is a one-parameter exponential family f(x|θ) = h(x)c(θ) exp(w(θ)t(x)) with sufficient
statistic t(x) = x2. For a sample of size n, the joint PDF has sufficient statistic T (X) =∑n

i=1X
2
i . The natural parameter is η = w(θ) = −1/(2θ). Since θ > 0, the range of η is

(−∞, 0), which is an open interval in R. Therefore,
∑

X2
i is a complete sufficient statistic.

Statement (D) is correct.
(C) (

∑
Xi,
∑

X2
i ) is a complete statistic:

We found a one-dimensional complete sufficient statistic
∑

X2
i . This implies that

∑
X2

i is also
minimal sufficient. The statistic (

∑
Xi,
∑

X2
i ) is two-dimensional. Since it is not a minimal

sufficient statistic, it cannot be complete. Statement (C) is incorrect.
Step 4: Final Answer:
Our analysis shows that (A) and (D) are correct, and (C) and (B) are incorrect.

Quick Tip

For distributions like N(θ, θ) where parameters are linked, always check if it can be
expressed as a one-parameter exponential family. This quickly establishes sufficiency and
completeness. For consistency, the Law of Large Numbers and Slutsky’s theorem are
your main tools.

38. Let X1, X2, . . . , Xn, where n > 1, be a random sample from a continuous distri-
bution with probability density function

f(x; θ) =

{
θxθ−1 if 0 < x < 1,

0 otherwise,

where θ > 0 is an unknown parameter. Then which of the following statistics is/are
sufficient for θ?
(A) (X1, X2, . . . , Xn)
(B) (X(1), X(2), . . . , X(n)), where X(r) is the rth order statistic, r = 1, . . . , n

(C)
∑n

i=1Xi

(D)
∏n

i=1Xi

Correct Answer: (A), (B), (D)
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Solution:

Step 1: Understanding the Concept:
A statistic T (X) is said to be a sufficient statistic for a parameter θ if the conditional distribu-
tion of the sample X given the value of T (X) does not depend on θ. A practical tool to find a
sufficient statistic is the Fisher-Neyman Factorization Theorem.

Step 2: Key Formula or Approach:
The Fisher-Neyman Factorization Theorem states that a statistic T (X) is sufficient for θ if
and only if the joint probability density function (or probability mass function) of the sample,
f(x; θ), can be factorized into two non-negative functions:

L(θ;x) = g(T (x), θ) · h(x)

where g is a function that depends on x only through T (x), and h(x) does not depend on θ.

Step 3: Detailed Explanation:
First, let’s find the joint probability density function (the likelihood function) of the sample
(X1, X2, . . . , Xn). Since the samples are independent and identically distributed (i.i.d.), the
joint pdf is the product of the individual pdfs:

L(θ;x) =

n∏
i=1

f(xi; θ) =

n∏
i=1

(θxθ−1
i ) for 0 < xi < 1

L(θ;x) = θn

(
n∏

i=1

xi

)θ−1

Now, let’s analyze each option based on the Factorization Theorem.

(A) (X1, X2, . . . , Xn):
The sample itself, (X1, . . . , Xn), is always a sufficient statistic. This is sometimes called a
trivial sufficient statistic. We can set T (x) = (x1, . . . , xn), g(T (x), θ) = L(θ;x), and h(x) = 1.
Therefore, (A) is correct.

(B) (X(1), X(2), . . . , X(n)):
The set of order statistics, (X(1), . . . , X(n)), is a one-to-one transformation of the original sam-
ple (X1, . . . , Xn) (up to permutations). Since the likelihood function for an i.i.d. sample is
symmetric with respect to the sample points, it depends on the sample only through its order
statistics. Therefore, if the original sample is sufficient, the order statistics are also sufficient.
Thus, (B) is correct.

(D)
∏n

i=1Xi:
Let’s check if T (X) =

∏n
i=1Xi is a sufficient statistic. We can write the likelihood function as:

L(θ;x) = θn

(
n∏

i=1

xi

)θ−1

Let T (x) =
∏n

i=1 xi. Then we can define:

g(T (x), θ) = θn(T (x))θ−1
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h(x) = 1

Since we have successfully factorized the likelihood function in the required form, T (X) =∏n
i=1Xi is a sufficient statistic for θ. Therefore, (D) is correct.

(C)
∑n

i=1Xi:
The likelihood function L(θ;x) = θn(

∏n
i=1 xi)

θ−1 cannot be expressed as a function of only∑n
i=1 xi and θ. For example, if we know

∑
xi, we cannot determine the value of

∏
xi (e.g., if

x1+x2 = 1, x1x2 could be 0.25 (for x1 = x2 = 0.5) or 0.21 (for x1 = 0.3, x2 = 0.7)). Therefore,∑n
i=1Xi is not a sufficient statistic for θ. Thus, (C) is incorrect.

Step 4: Final Answer:
Based on the analysis, the sufficient statistics for θ are (X1, . . . , Xn), (X(1), . . . , X(n)), and∏n

i=1Xi. Options (A), (B), and (D) are correct.

Quick Tip

The Fisher-Neyman Factorization Theorem is the most direct way to identify sufficient
statistics. Always start by writing down the joint pdf (likelihood function) and then try
to group terms into a function of the statistic and θ, and another function of the data
only. Remember that any one-to-one function of a sufficient statistic is also sufficient.

39. A simple linear regression model Yi = β0 + β1xi + ϵi, with xi = (−1)i for
i = 1, 2, . . . , 20, is fitted. The random error variables ϵi are uncorrelated with mean
0 and finite variance σ2 > 0. Let β̂0 and β̂1 be the least squares estimators of β0
and β1 respectively. Let Ŷi be the fitted value of the ith response variable Yi for
i = 1, . . . , 20. Which of the following statements is/are correct?
(A) Cov(β̂0, β̂1) = 0
(B) Var(β̂0) = Var(β̂1)
(C) Var(β̂0) = Cov(Ŷi, β̂0) for all i = 1, . . . , 20
(D) Var(β̂1) = Cov(Ŷi, β̂1) for all i = 1, . . . , 20

Correct Answer: (A), (B), (C)

Solution:

Step 1: Understanding the Concept:
This question requires an understanding of the properties of least squares estimators in a simple
linear regression model. We need to calculate the variance and covariance of the estimators β̂0
and β̂1 and the covariance involving the fitted values Ŷi.

Step 2: Key Formula or Approach:
The formulas for the variances and covariance of the least squares estimators are:

Var(β̂1) =
σ2

Sxx
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Var(β̂0) = σ2
(
1

n
+

x̄2

Sxx

)
Cov(β̂0, β̂1) = −σ2x̄

Sxx

where n is the sample size, x̄ = 1
n

∑
xi, and Sxx =

∑n
i=1(xi − x̄)2. The fitted value is

Ŷi = β̂0 + β̂1xi.

Step 3: Detailed Explanation:
First, let’s compute the necessary summary statistics for xi = (−1)i with n = 20. The sequence
of xi is −1, 1,−1, 1, . . . ,−1, 1. There are 10 values of -1 and 10 values of 1.

20∑
i=1

xi = 10× (−1) + 10× (1) = −10 + 10 = 0

x̄ =

∑
xi

n
=

0

20
= 0

20∑
i=1

x2i = 10× (−1)2 + 10× (1)2 = 10× 1 + 10× 1 = 20

Sxx =
∑

(xi − x̄)2 =
∑

x2i − nx̄2 = 20− 20(0)2 = 20

Now, we can evaluate each statement.

(A) Cov(β̂0, β̂1) = 0:
Using the formula for covariance:

Cov(β̂0, β̂1) = −σ2x̄

Sxx
= −σ2(0)

20
= 0

Statement (A) is correct.

(B) Var(β̂0) = Var(β̂1):
Let’s compute the variances:

Var(β̂0) = σ2
(
1

n
+

x̄2

Sxx

)
= σ2

(
1

20
+

02

20

)
=

σ2

20

Var(β̂1) =
σ2

Sxx
=

σ2

20

Since Var(β̂0) = Var(β̂1), statement (B) is correct.

(C) Var(β̂0) = Cov(Ŷi, β̂0) for all i:
Let’s compute the covariance Cov(Ŷi, β̂0):

Cov(Ŷi, β̂0) = Cov(β̂0 + β̂1xi, β̂0)

Using the properties of covariance:

Cov(β̂0 + β̂1xi, β̂0) = Cov(β̂0, β̂0) + xiCov(β̂1, β̂0)
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= Var(β̂0) + xiCov(β̂0, β̂1)

From part (A), we know Cov(β̂0, β̂1) = 0. So,

Cov(Ŷi, β̂0) = Var(β̂0) + xi(0) = Var(β̂0)

This holds for all i = 1, . . . , 20. Statement (C) is correct.

(D) Var(β̂1) = Cov(Ŷi, β̂1) for all i:
Let’s compute the covariance Cov(Ŷi, β̂1):

Cov(Ŷi, β̂1) = Cov(β̂0 + β̂1xi, β̂1)

= Cov(β̂0, β̂1) + xiCov(β̂1, β̂1)

= Cov(β̂0, β̂1) + xiVar(β̂1)

Again, since Cov(β̂0, β̂1) = 0:
Cov(Ŷi, β̂1) = xiVar(β̂1)

The statement claims Var(β̂1) = Cov(Ŷi, β̂1), which means Var(β̂1) = xiVar(β̂1). Since Var(β̂1) =
σ2/20 > 0, this would imply xi = 1. However, xi can be -1 (for odd i). Thus, the statement is
not true for all i. Statement (D) is incorrect.

Step 4: Final Answer:
Statements (A), (B), and (C) are correct.

Quick Tip

In simple linear regression, if the predictor variable x is centered (i.e., x̄ = 0), the
estimators for the intercept (β̂0) and slope (β̂1) become uncorrelated. This simplifies
many calculations and is a useful property to check for at the start of a problem.

40. Let Y1, Y2, . . . , Yn be i.i.d. discrete random variables from a population with
probability mass function

P (Y = y; θ) =

{
θ(1− θ)y if y ∈ N ∪ {0},
0 otherwise,

where 0 < θ < 1 is an unknown parameter. Assume the convention 00 = 1. If θ̂
is the method of moments estimator of θ, then which of the following statements
is/are correct?
(A) θ̂ is also the maximum likelihood estimator of θ
(B) θ̂ is an unbiased estimator of θ
(C) θ̂ is a consistent estimator of θ
(D) 1/θ̂ is an unbiased estimator of 1/θ

Correct Answer: (A), (C), (D)
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Solution:

Step 1: Understanding the Concept:
The question concerns a Geometric distribution Y ∼ Geo(θ) (number of failures before the
first success). We need to find the method of moments estimator (MME) and the maximum
likelihood estimator (MLE) for the parameter θ and then check its properties like unbiasedness
and consistency.

Step 2: Detailed Explanation:
The given distribution is a Geometric distribution with parameter θ. The expected value is
E[Y ] = 1−θ

θ .

Finding the Method of Moments Estimator (MME):
The method of moments equates the first population moment E[Y ] to the first sample moment
Ȳ = 1

n

∑
Yi.

E[Y ] = Ȳ

1− θ

θ
= Ȳ

Solving for θ:
1− θ = Ȳ θ

1 = θ(1 + Ȳ )

θ̂MME =
1

1 + Ȳ

(A) Checking if θ̂MME is also the MLE:
The likelihood function is:

L(θ) =

n∏
i=1

P (Yi = yi; θ) =

n∏
i=1

θ(1− θ)yi = θn(1− θ)
∑

yi

The log-likelihood function is:

lnL(θ) = n ln(θ) +
(∑

yi

)
ln(1− θ)

To find the MLE, we differentiate with respect to θ and set it to zero:

d

dθ
lnL(θ) =

n

θ
−
∑

yi
1− θ

= 0

n

θ̂MLE

=

∑
yi

1− θ̂MLE

=
nȲ

1− θ̂MLE

n(1− θ̂MLE) = nȲ θ̂MLE

1− θ̂MLE = Ȳ θ̂MLE

1 = θ̂MLE(1 + Ȳ )

θ̂MLE =
1

1 + Ȳ
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Since θ̂MME = θ̂MLE , statement (A) is correct. Let’s denote this common estimator by θ̂.

(B) Checking if θ̂ is unbiased:
We need to check if E[θ̂] = θ.

E[θ̂] = E
[

1

1 + Ȳ

]
The function g(x) = 1

1+x is convex for x > −1. Since Ȳ ≥ 0, we can apply Jensen’s inequality,
which states that for a convex function g, E[g(X)] ≥ g(E[X]).

E[θ̂] ≥ 1

1 + E[Ȳ ]

We know E[Ȳ ] = E[Y ] = 1−θ
θ .

E[θ̂] ≥ 1

1 + 1−θ
θ

=
1

θ+1−θ
θ

=
1

1/θ
= θ

Since the inequality is strict for a non-constant random variable Ȳ , we have E[θ̂] > θ. There-
fore, θ̂ is a biased estimator. Statement (B) is incorrect.

(C) Checking if θ̂ is consistent:
An estimator is consistent if it converges in probability to the true parameter value as n → ∞.
By theWeak Law of Large Numbers, the sample mean converges in probability to the population
mean:

Ȳ
p−→ E[Y ] =

1− θ

θ

θ̂ = g(Ȳ ) = 1
1+Ȳ

. Since g(x) = 1
1+x is a continuous function at x = E[Y ], by the Continuous

Mapping Theorem:

θ̂ =
1

1 + Ȳ

p−→ 1

1 + E[Y ]
=

1

1 + 1−θ
θ

= θ

Thus, θ̂ is a consistent estimator of θ. Statement (C) is correct.

(D) Checking if 1/θ̂ is an unbiased estimator of 1/θ:

We have 1/θ̂ = 1/
(

1
1+Ȳ

)
= 1 + Ȳ . Let’s find its expected value:

E

[
1

θ̂

]
= E[1 + Ȳ ] = 1 + E[Ȳ ] = 1 + E[Y ] = 1 +

1− θ

θ

Simplifying the expression:

1 +
1− θ

θ
=

θ

θ
+

1− θ

θ
=

θ + 1− θ

θ
=

1

θ

So, E[1/θ̂] = 1/θ. This means 1/θ̂ is an unbiased estimator of 1/θ. Statement (D) is correct.

Step 4: Final Answer:
Statements (A), (C), and (D) are correct.
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Quick Tip

For distributions in the exponential family (like the Geometric distribution), the MME
and MLE often coincide. To check for consistency, rely on the Law of Large Numbers
and the Continuous Mapping Theorem. For unbiasedness, calculating the expectation
directly is required; Jensen’s inequality is a powerful tool to prove bias without computing
the exact expectation.

41. Let A be a 7× 7 real matrix with rank(A) = 1. Suppose the trace of A2 is 2025. Let the

characteristic polynomial of A be written as
∑7

n=0 anx
n. Then

∑7
n=0 |an| is .

(answer in integer)

Correct Answer: 46

Solution:

Step 1: Understanding the Concept:
The properties of a rank-1 matrix are key to solving this problem. A matrix of rank 1 has at
most one non-zero eigenvalue. The trace of a matrix is the sum of its eigenvalues, and the trace
of its square is the sum of the squares of its eigenvalues.

Step 2: Key Formula or Approach:
1. For an n × n matrix A with rank(A) = 1, it has one non-zero eigenvalue, λ, and n − 1
eigenvalues equal to 0.
2. The non-zero eigenvalue is equal to the trace of the matrix, i.e., λ = tr(A).
3. The eigenvalues of A2 are the squares of the eigenvalues of A.
4. The characteristic polynomial is given by p(x) = det(A− xI).

Step 3: Detailed Explanation:
Given that A is a 7× 7 matrix with rank(A) = 1, it has one non-zero eigenvalue, let’s call it λ,
and the other six eigenvalues are 0.
The eigenvalues of A are {λ, 0, 0, 0, 0, 0, 0}.
The eigenvalues ofA2 are the squares of the eigenvalues ofA, which are {λ2, 02, 02, 02, 02, 02, 02} =
{λ2, 0, 0, 0, 0, 0, 0}.
The trace of A2 is the sum of its eigenvalues.

tr(A2) = λ2 + 0 + 0 + 0 + 0 + 0 + 0 = λ2

We are given that tr(A2) = 2025.

λ2 = 2025 =⇒ λ = ±
√
2025 = ±45

The characteristic polynomial of A is usually defined as det(xI − A). However, the problem
states it as

∑
anx

n, which is typically the form for det(A− xI). Let’s work with this form.
The characteristic polynomial is the product of (λi − x) for each eigenvalue λi.

p(x) = det(A− xI) = (λ− x)(0− x)(0− x)(0− x)(0− x)(0− x)(0− x)
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p(x) = (λ− x)(−x)6 = (λ− x)x6 = λx6 − x7

This polynomial is written in the form
∑7

n=0 anx
n = a0 + a1x+ · · ·+ a7x

7.
Comparing the terms of our polynomial p(x) = λx6 − x7 with the general form:
a7 = −1
a6 = λ
All other coefficients an for n ∈ {0, 1, 2, 3, 4, 5} are zero.

The question asks for the value of
∑7

n=0 |an|.

7∑
n=0

|an| = |a0|+ |a1|+ · · ·+ |a5|+ |a6|+ |a7|

7∑
n=0

|an| = 0 + 0 + · · ·+ 0 + |λ|+ | − 1|

7∑
n=0

|an| = |λ|+ 1

Since λ = ±45, we have |λ| = 45.

7∑
n=0

|an| = 45 + 1 = 46

Step 4: Final Answer:
The value of

∑7
n=0 |an| is 46.

Quick Tip

For a rank-1 matrix, remember that it has only one non-zero eigenvalue, which is equal
to its trace. The characteristic polynomial is then simple to compute. The trace of any
power of the matrix, tr(Ak), is simply the sum of the k-th powers of its eigenvalues.

42. The radius of convergence of the power series
∑∞

n=1
n!
nnxn is equal to .

(round off to 2 decimal places)

Correct Answer: 2.72

Solution:

Step 1: Understanding the Concept:
The radius of convergence of a power series determines the interval on which the series con-
verges. A common method to find the radius of convergence is the Ratio Test.
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Step 2: Key Formula or Approach:
For a power series

∑∞
n=1 cnx

n, the radius of convergence R can be calculated using the Ratio
Test:

R = lim
n→∞

∣∣∣∣ cn
cn+1

∣∣∣∣
In this problem, the coefficient is cn = n!

nn .

Step 3: Detailed Explanation:
We are given the power series

∑∞
n=1

n!
nnxn.

The coefficient is cn = n!
nn .

The next coefficient in the series is cn+1 =
(n+1)!

(n+1)n+1 .

Now, we compute the ratio cn+1

cn
:

cn+1

cn
=

(n+ 1)!/(n+ 1)n+1

n!/nn
=

(n+ 1)!

(n+ 1)n+1
· n

n

n!

We can simplify the factorial term: (n+ 1)! = (n+ 1) · n!.

cn+1

cn
=

(n+ 1) · n!
(n+ 1)n+1

· n
n

n!
=

n+ 1

(n+ 1)n+1
· nn =

nn

(n+ 1)n

This can be rewritten as:

cn+1

cn
=
(

n

n+ 1

)n
=

(
1

n+1
n

)n

=

(
1

1 + 1
n

)n

=
1(

1 + 1
n

)n
According to the Ratio Test for power series, the series converges if limn→∞

∣∣∣cn+1x
n+1

cnxn

∣∣∣ < 1,

which means |x| limn→∞
∣∣cn+1

cn

∣∣ < 1.

Let L = limn→∞
∣∣cn+1

cn

∣∣. The radius of convergence is R = 1/L.

L = lim
n→∞

1(
1 + 1

n

)n
We use the well-known limit: limn→∞

(
1 + 1

n

)n
= e.

L =
1

e

The radius of convergence is R = 1
L = 1

1/e
= e.

The value of e is approximately 2.71828...

Step 4: Final Answer:
Rounding the value of e to two decimal places, we get 2.72.

Quick Tip

The Ratio Test is extremely useful for series involving factorials and powers of n. Mem-
orizing the fundamental limit limn→∞(1+x/n)n = ex is crucial for solving many conver-
gence problems quickly.
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43. Let f(x) = x sin
(

π
2x

)
, x > 0. Then

lim
h→0

1

π2h2
[3f(1)− 2f(1 + h)− f(1− 2h)]

is equal to .
(round off to 2 decimal places)

Correct Answer: 0.75

Solution:

Step 1: Understanding the Concept:
The given limit is in the indeterminate form 0

0 . This suggests the use of L’Hôpital’s Rule or
Taylor series expansion. The structure of the limit is related to the second derivative of the
function f(x) at x = 1.

Step 2: Key Formula or Approach:
We will apply L’Hôpital’s Rule twice, as the limit remains in the 0

0 form after the first applica-

tion. Let the expression inside the limit be
N(h)
D(h)

, where N(h) = 3f(1)− 2f(1 + h)− f(1− 2h)

and D(h) = π2h2.
We need to find the first and second derivatives of f(x).

Step 3: Detailed Explanation:
First, let’s find the derivatives of f(x) = x sin( π

2x).
Using the product rule and chain rule:

f ′(x) = (1) sin
(
π

2x

)
+ x cos

(
π

2x

)
·
(
− π

2x2

)
= sin

(
π

2x

)
− π

2x
cos
(
π

2x

)
Now, let’s find the second derivative, f ′′(x):

f ′′(x) =
d

dx

(
sin
(
π

2x

))
− d

dx

(
π

2x
cos
(
π

2x

))
d

dx

(
sin
(
π

2x

))
= cos

(
π

2x

)
·
(
− π

2x2

)
= − π

2x2
cos
(
π

2x

)
d

dx

(
π

2x
cos
(
π

2x

))
=
(
− π

2x2

)
cos
(
π

2x

)
+

π

2x

(
− sin

(
π

2x

))(
− π

2x2

)
= − π

2x2
cos
(
π

2x

)
+

π2

4x3
sin
(
π

2x

)
f ′′(x) = − π

2x2
cos
(
π

2x

)
−
(
− π

2x2
cos
(
π

2x

)
+

π2

4x3
sin
(
π

2x

))
f ′′(x) = − π

2x2
cos
(
π

2x

)
+

π

2x2
cos
(
π

2x

)
− π2

4x3
sin
(
π

2x

)
= − π2

4x3
sin
(
π

2x

)
Let’s evaluate f ′′(1):

f ′′(1) = − π2

4(1)3
sin

(
π

2(1)

)
= −π2

4
sin
(
π

2

)
= −π2

4
(1) = −π2

4
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Now, let’s evaluate the limit L = limh→0
3f(1)−2f(1+h)−f(1−2h)

π2h2 . As h → 0, the numerator
becomes 3f(1) − 2f(1) − f(1) = 0, and the denominator is 0. Applying L’Hôpital’s Rule
(differentiating w.r.t. h):

L = lim
h→0

−2f ′(1 + h)− f ′(1− 2h)(−2)

2π2h
= lim

h→0

−2f ′(1 + h) + 2f ′(1− 2h)

2π2h

This is still 0
0 . Applying L’Hôpital’s Rule again:

L = lim
h→0

−2f ′′(1 + h)(1) + 2f ′′(1− 2h)(−2)

2π2
=

−2f ′′(1)− 4f ′′(1)

2π2
=

−6f ′′(1)

2π2
=

−3f ′′(1)

π2

Substitute the value of f ′′(1) = −π2

4 :

L =
−3(−π2/4)

π2
=

3π2/4

π2
=

3

4
= 0.75

Step 4: Final Answer:
The value of the limit is 0.75.

Quick Tip

For limits of the form 0
0 involving function evaluations, L’Hôpital’s Rule is a powerful

tool. Alternatively, using Taylor series expansions for f(x + h) around x can simplify
the expression and reveal its relation to derivatives, often providing a quicker path to the
solution.

44. Let {Xi}i≥1 be a sequence of i.i.d. random variables with E(Xi) = µ and Var(Xi) = σ2 <
∞. Suppose c is a constant that does not depend on n such that

c

n

n∑
i=1

(X2i −X2i−1)
2

is a consistent estimator of σ2. Then c is equal to .
(round off to 2 decimal places)

Correct Answer: 0.50

Solution:

Step 1: Understanding the Concept:
An estimator Tn for a parameter θ is consistent if it converges in probability to θ as the sample
size n approaches infinity. A sufficient condition for consistency is that the estimator is asymp-
totically unbiased (limn→∞E(Tn) = θ) and its variance approaches zero (limn→∞Var(Tn) = 0).
A simple way to ensure this for many estimators is to make them unbiased, i.e., E(Tn) = θ.

Step 2: Key Formula or Approach:
Let the estimator be Tn = c

n

∑n
i=1(X2i − X2i−1)

2. We will find the value of c that makes Tn
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an unbiased estimator of σ2. That is, we will solve the equation E(Tn) = σ2 for c.
We will use the properties of expectation and variance: 1. E(A−B) = E(A)− E(B)
2. Var(A−B) = Var(A) + Var(B) if A and B are independent.
3. Var(Y ) = E(Y 2)− [E(Y )]2 =⇒ E(Y 2) = Var(Y ) + [E(Y )]2.

Step 3: Detailed Explanation:
Let’s find the expected value of the estimator Tn.

E(Tn) = E

[
c

n

n∑
i=1

(X2i −X2i−1)
2

]
By the linearity of expectation, we can move the constant and the summation outside:

E(Tn) =
c

n

n∑
i=1

E
[
(X2i −X2i−1)

2
]

Let Yi = X2i −X2i−1. We need to find E(Y 2
i ).

First, find the expectation of Yi:

E(Yi) = E(X2i −X2i−1) = E(X2i)− E(X2i−1) = µ− µ = 0

Next, find the variance of Yi. Since the Xi are i.i.d., X2i and X2i−1 are independent.

Var(Yi) = Var(X2i −X2i−1) = Var(X2i) + Var(X2i−1) = σ2 + σ2 = 2σ2

Now, we can find E(Y 2
i ) using the variance formula:

E(Y 2
i ) = Var(Yi) + [E(Yi)]

2 = 2σ2 + (0)2 = 2σ2

So, E[(X2i −X2i−1)
2] = 2σ2. This value is the same for all i.

Substitute this back into the expression for E(Tn):

E(Tn) =
c

n

n∑
i=1

(2σ2) =
c

n
(n · 2σ2) = 2cσ2

For Tn to be an unbiased (and hence consistent, provided variance goes to 0) estimator of σ2,
its expected value must be equal to σ2.

E(Tn) = σ2

2cσ2 = σ2

Assuming σ2 > 0, we can divide by σ2:

2c = 1 =⇒ c =
1

2
= 0.5

This choice of c makes the estimator unbiased. By the Law of Large Numbers, this sample
mean of i.i.d. terms (X2i −X2i−1)

2 will converge to its expected value, ensuring consistency.
Step 4: Final Answer:
The value of c is 0.50.
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Quick Tip

When asked to find a constant that makes an estimator consistent, a good first step is
to find the constant that makes it unbiased. This often provides the correct answer.
Remember the fundamental relationship E[Y 2] = Var(Y ) + [E(Y )]2, which is frequently
used to find the expected value of a squared term.

45. Let X1, X2, . . . , X10 be i.i.d. U(0, θ) random variables, where θ > 0 is unknown. For
testing the null hypothesis H0 : θ = 1 against the alternative hypothesis H1 : θ = 0.9, consider
a test that rejects H0 if

X(10) = max{X1, X2, . . . , X10} < 0.8.

Then the probability of type I error of the test is equal to .
(round off to 2 decimal places)

Correct Answer: 0.11

Solution:

Step 1: Understanding the Concept:
A Type I error occurs when we reject the null hypothesis H0 when it is actually true. The
probability of a Type I error is denoted by α. In this problem, we need to calculate the proba-
bility of the rejection event, assuming that H0 is true.

Step 2: Key Formula or Approach:
1. The probability of a Type I error is α = P (Reject H0|H0 is true).
2. The rejection region is given by X(10) < 0.8.
3. Under the null hypothesis H0, the parameter θ = 1, which means Xi are i.i.d. random
variables from a Uniform(0, 1) distribution.
4. For n i.i.d. random variables X1, . . . , Xn with CDF FX(x), the CDF of the maximum order
statistic X(n) is given by FX(n)

(x) = [FX(x)]n.

Step 3: Detailed Explanation:
The probability of a Type I error is the probability of rejecting H0 given that H0 is true.

α = P (X(10) < 0.8|H0 is true)

Under H0, we have θ = 1. Thus, X1, X2, . . . , X10 are i.i.d. U(0, 1).
The cumulative distribution function (CDF) for a single Xi ∼ U(0, 1) is FX(x) = x for 0 <

x < 1.
The CDF of the maximum order statistic, X(10), is:

FX(10)
(x) = P (X(10) ≤ x) = P (max{X1, . . . , X10} ≤ x)

This is equivalent to all Xi being less than or equal to x:

P (X1 ≤ x,X2 ≤ x, . . . , X10 ≤ x)
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Since the variables are i.i.d., this probability is the product of individual probabilities:

FX(10)
(x) = [P (X1 ≤ x)]10 = [FX(x)]10 = x10 for 0 < x < 1

We need to find the probability that X(10) < 0.8. This is the value of the CDF of X(10) at
x = 0.8.

α = FX(10)
(0.8) = (0.8)10

Now we calculate the value:

(0.8)10 =
(
4

5

)10
=

410

510
=

1, 048, 576

9, 765, 625
≈ 0.107374

Step 4: Final Answer:
Rounding the result to 2 decimal places, we get 0.11.

Quick Tip

The probability of a Type I error, α, is the size of the critical region under the null
hypothesis. For order statistics problems, remember that P (max(Xi) ≤ x) is the prob-
ability that *all* Xi are ≤ x, and P (min(Xi) > x) is the probability that *all* Xi are
> x. These are often easier to work with than the PDFs.

46. Let (X1, Y1), (X2, Y2), . . . , (X100, Y100) be i.i.d. discrete random vectors each having joint
probability mass function

P (X = x, Y = y) =
e−(1+x)λ((1 + x)λ)y

y!
px(1− p)1−x, x ∈ {0, 1}, y ∈ N ∪ {0},

where λ > 0 and 0 < p < 1 are unknown parameters. If the observed values of
∑100

i=1Xi

and
∑100

i=1 Yi are 54 and 521 respectively, the maximum likelihood estimate of λ is equal to
.

(round off to 2 decimal places)

Correct Answer: 3.38

Solution:

Step 1: Understanding the Concept:
Maximum Likelihood Estimation (MLE) is a method for estimating the parameters of a statis-
tical model. The principle is to find the parameter values that maximize the likelihood function,
which is the joint probability of observing the given data.

Step 2: Key Formula or Approach:
1. Write down the likelihood function L(λ, p), which is the product of the PMFs for each
observation.
2. Take the natural logarithm of the likelihood function, lnL, to simplify the product into a
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sum.
3. To find the MLE for λ, take the partial derivative of lnL with respect to λ and set it to
zero.
4. Solve the resulting equation for λ.

Step 3: Detailed Explanation:
The likelihood function for n = 100 observations (xi, yi) is:

L(λ, p) =

100∏
i=1

P (Xi = xi, Yi = yi) =

100∏
i=1

[
e−(1+xi)λ((1 + xi)λ)

yi

yi!
pxi(1− p)1−xi

]
The log-likelihood function is:

lnL =

100∑
i=1

ln

[
e−(1+xi)λ((1 + xi)λ)

yi

yi!
pxi(1− p)1−xi

]

lnL =

100∑
i=1

[−(1 + xi)λ+ yi ln((1 + xi)λ)− ln(yi!) + xi ln p+ (1− xi) ln(1− p)]

We can separate the terms involving λ and p. To find the MLE of λ, we only need the terms
containing λ.

lnL = −λ

100∑
i=1

(1 + xi) +

100∑
i=1

yi ln(1 + xi) + ln(λ)

100∑
i=1

yi + (terms not involving λ)

lnL = −λ
(
100 +

∑
xi

)
+
∑

yi ln(1 + xi) + ln(λ)
∑

yi + . . .

Now, we differentiate with respect to λ and set the derivative to zero:

∂ lnL

∂λ
= −

(
100 +

∑
xi

)
+

1

λ

∑
yi = 0

Solving for the MLE λ̂:
1

λ̂

∑
yi = 100 +

∑
xi

λ̂ =

∑100
i=1 yi

100 +
∑100

i=1 xi

We are given
∑100

i=1Xi = 54 and
∑100

i=1 Yi = 521.

λ̂ =
521

100 + 54
=

521

154

λ̂ ≈ 3.383116...

Step 4: Final Answer:
Rounding the result to 2 decimal places, we get 3.38.
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Quick Tip

Notice that the joint PMF can be factored as P (Y = y|X = x)P (X = x), where X ∼
Bernoulli(p) and Y |X = x ∼ Poisson((1 + x)λ). The log-likelihood function separates
into terms involving only λ and terms involving only p. This means you can find the MLE
for each parameter separately by maximizing the corresponding part of the log-likelihood.

47. Let X and Y be i.i.d. random variables with probability density function

f(x) =

{
1
x2 if x ≥ 1,

0 otherwise.

Suppose Z = min{X, Y }, then E(Z) is equal to .
(answer in integer)

Correct Answer: 2

Solution:

Step 1: Understanding the Concept:
We need to find the expected value of the minimum of two i.i.d. random variables. A common
strategy is to first find the probability distribution (either CDF or PDF) of the minimum, and
then use the definition of expected value.

Step 2: Key Formula or Approach:
1. Find the survival function SX(x) = P (X > x) for a single random variable.
2. Find the survival function of Z, SZ(z) = P (Z > z). Since Z = min{X, Y }, Z > z if and
only if both X > z and Y > z.
3. Use the survival function to find the PDF of Z, fZ(z) = −S′

Z(z).
4. Calculate the expected value E(Z) =

´
zfZ(z)dz over the support of Z.

Step 3: Detailed Explanation:
First, we find the survival function of X. For x ≥ 1:

SX(x) = P (X > x) =

ˆ ∞

x

f(t)dt =

ˆ ∞

x

1

t2
dt =

[
−1

t

]∞
x

= 0−
(
−1

x

)
=

1

x

Next, we find the survival function of Z = min{X, Y }. Since X, Y ≥ 1, we have Z ≥ 1. For
z ≥ 1:

SZ(z) = P (Z > z) = P (min{X, Y } > z) = P (X > z and Y > z)

Since X and Y are i.i.d.:

SZ(z) = P (X > z) · P (Y > z) = SX(z) · SY (z) =
(
1

z

)
·
(
1

z

)
=

1

z2

Now, we find the PDF of Z from its survival function:

fZ(z) = − d

dz
SZ(z) = − d

dz

(
z−2
)
= −(−2z−3) =

2

z3
for z ≥ 1
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Finally, we calculate the expected value of Z:

E(Z) =

ˆ ∞

1

z · fZ(z)dz =

ˆ ∞

1

z ·
(
2

z3

)
dz =

ˆ ∞

1

2

z2
dz

E(Z) = 2
[
−1

z

]∞
1

= 2
(
0−
(
−1

1

))
= 2(1) = 2

Step 4: Final Answer:
The expected value of Z is 2.

Quick Tip

An alternative method to compute the expectation of a non-negative random variable
Z is using its survival function directly: E(Z) =

´∞
0

SZ(z)dz. For a variable with

support [a,∞), the formula is E(Z) = a +
´∞
a

SZ(z)dz. In this case, a = 1, so E(Z) =

1 +
´∞
1

(1/z2)dz = 1 + 1 = 2. This can sometimes be faster than finding the PDF first.

48. The joint probability density function of the random vector (X, Y, Z) is given by

f(x, y, z) =

{
xy if 0 < z < y < x < 1,

0 otherwise.

Then the value of P (X > 5Y ) is equal to .
(round off to 2 decimal places)

Correct Answer: 0.20

Solution:

Step 1: Understanding the Concept:
We are given a joint PDF for three variables (X, Y, Z) and asked to find the probability of
an event involving only X and Y . This requires integrating the joint PDF over the specified
region. A crucial first step is to check if the given function is a valid PDF (i.e., integrates to
1). If not, we must normalize it.

Step 2: Key Formula or Approach:
1. Check for normalization: Integrate f(x, y, z) over its entire support to find the total proba-
bility. Let this be C.
2. The correct PDF is ftrue(x, y, z) =

1
C f(x, y, z).

3. Find the marginal PDF of (X, Y ) by integrating the true PDF with respect to z.
4. Calculate P (X > 5Y ) by integrating the marginal PDF of (X, Y ) over the region defined by
0 < y < x < 1 and x > 5y.

Step 3: Detailed Explanation:
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The condition x > 5y implies y < x/5. Since we already have y < x, the stricter condition is
y < x/5.
So the region is 0 < y < x/5 and 0 < x < 1.
We set up the integral:

P (X > 5Y ) =

¨
x>5y,0<y<x<1

fX,Y (x, y)dA =

ˆ 1

0

ˆ x/5

0

2 dy dx

First, we integrate with respect to y:

ˆ x/5

0

2 dy = [2y]
x/5
0 = 2

(
x

5

)
− 0 =

2x

5

Now, we integrate the result with respect to x:

ˆ 1

0

2x

5
dx =

2

5

[
x2

2

]1
0

=
2

5

(
12

2
− 0

)
=

2

5
· 1
2
=

1

5
= 0.2

Step 4: Final Answer:
The value of the probability is 0.20.

Quick Tip

If a calculation based on a given PDF in an exam question leads to a result that is very
different from the options or the answer key, double-check the normalization of the PDF.
Many questions provide a function proportional to the PDF, and you are expected to find
the normalization constant yourself. If the result is still inconsistent, consider plausible
typos, such as assuming a uniform distribution if the geometry is simple.

49. Suppose U1 and U2 are i.i.d. U(0,1) random variables. Further, let X be a
Bin(2, 0.5) random variable that is independent of (U1, U2). Then

36P(U1 + U2 > X)

is equal to (answer in integer)

Correct Answer: 18

Solution:

Step 1: Understanding the Concept:
We need to calculate the probability P(U1 + U2 > X). Since X is a discrete random variable
and independent of U1 and U2, we can use the law of total probability by conditioning on the
possible values of X.
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Step 2: Key Formula or Approach:
The law of total probability states:

P(A) =
∑
i

P(A|Bi)P(Bi)

In this problem, event A is U1 + U2 > X and events Bi are X = k for the possible values of k.
The probability mass function for a binomial distribution Bin(n, p) is P(X = k) =

(
n
k

)
pk(1 −

p)n−k.
The probability P(U1 + U2 ≤ s) for U1, U2 ∼ U(0, 1) can be found by considering the area in
the unit square.

Step 3: Detailed Explanation:
First, let’s find the probability distribution of X ∼ Bin(2, 0.5). The possible values for X are
0, 1, and 2.

P(X = 0) =

(
2

0

)
(0.5)0(0.5)2 = 1× 1× 0.25 = 0.25 =

1

4

P(X = 1) =

(
2

1

)
(0.5)1(0.5)1 = 2× 0.5× 0.5 = 0.5 =

1

2

P(X = 2) =

(
2

2

)
(0.5)2(0.5)0 = 1× 0.25× 1 = 0.25 =

1

4

Now, we apply the law of total probability:

P(U1 + U2 > X) =

2∑
k=0

P(U1 + U2 > X|X = k)P(X = k)

= P(U1 + U2 > 0)P(X = 0) + P(U1 + U2 > 1)P(X = 1) + P(U1 + U2 > 2)P(X = 2)

Let’s calculate each conditional probability. U1 and U2 are coordinates in a unit square in the
u1u2-plane. The total area is 1.
Case 1: P(U1 + U2 > 0).
Since U1, U2 ∈ (0, 1), their sum is always greater than 0. So, P(U1 + U2 > 0) = 1.

Case 2: P(U1 + U2 > 1).
This is 1 minus the probability P(U1 + U2 ≤ 1). The region u1 + u2 ≤ 1 within the unit
square is a triangle with vertices at (0,0), (1,0), and (0,1). The area of this triangle is
1
2 × base× height = 1

2 × 1× 1 = 1
2 .

So, P(U1 + U2 ≤ 1) = 1
2 .

Therefore, P(U1 + U2 > 1) = 1− 1
2 = 1

2 .

Case 3: P(U1 + U2 > 2).
The maximum value of U1+U2 is 1+1 = 2. The event U1+U2 > 2 is impossible for continuous
variables. The probability is 0.

Now substitute these probabilities back into the main equation:

P(U1 + U2 > X) = (1)
(
1

4

)
+
(
1

2

)(
1

2

)
+ (0)

(
1

4

)
79



=
1

4
+

1

4
+ 0 =

2

4
=

1

2
Finally, we need to calculate 36P(U1 + U2 > X):

36× 1

2
= 18

Step 4: Final Answer:
The value of the expression is 18.

Quick Tip

For problems involving sums of uniform random variables, visualizing the sample space
as a unit square (for two variables) or a unit cube (for three) is extremely helpful. Prob-
abilities correspond to areas or volumes within this space.

50. A drawer contains 5 pairs of shoes of different sizes. Assume that all 10 shoes
are distinguishable. A person selects 5 shoes from the drawer at random. Then the
probability that there are exactly 2 complete pairs of shoes among these 5 shoes
is equal to (round off to 2 decimal places)

Correct Answer: 0.24 (Range 0.23 to 0.25)

Solution:

Step 1: Understanding the Concept:
This is a problem of combinatorial probability. We need to find the number of ways to select
5 shoes such that there are exactly two complete pairs, and divide it by the total number of
ways to select 5 shoes from 10.

Step 2: Key Formula or Approach:
The probability of an event is given by the ratio of the number of favorable outcomes to the
total number of possible outcomes.

Probability =
Number of Favorable Outcomes

Total Number of Possible Outcomes

We will use combinations, denoted as
(
n
k

)
= n!

k!(n−k)!
, to count the outcomes.

Step 3: Detailed Explanation:
Total Number of Possible Outcomes:
We are selecting 5 shoes from a total of 10 distinguishable shoes. The total number of ways to
do this is:

Total ways =

(
10

5

)
=

10!

5!(10− 5)!
=

10× 9× 8× 7× 6

5× 4× 3× 2× 1
= 2× 9× 2× 7 = 252

Number of Favorable Outcomes:
We want to select exactly 2 complete pairs among the 5 shoes. This means we have 4 shoes
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forming 2 pairs, and 1 shoe that does not form a pair with any other selected shoe.

1. Choose the 2 pairs: There are 5 pairs of shoes in total. The number of ways to choose
2 of these pairs is: (

5

2

)
=

5!

2!3!
=

5× 4

2× 1
= 10

This selection gives us 4 shoes.

2. Choose the remaining single shoe: We need to select one more shoe. We have already
selected 2 pairs, so 3 pairs (6 shoes) remain. The 5th shoe must be chosen from these
remaining 6 shoes to avoid forming a third pair. The number of ways to choose 1 shoe
from these 6 is: (

6

1

)
= 6

The total number of favorable outcomes is the product of the number of ways for each step:

Favorable ways =

(
5

2

)
×
(
6

1

)
= 10× 6 = 60

Calculate the Probability:

Probability =
Favorable ways

Total ways
=

60

252

To simplify the fraction, we can divide both the numerator and denominator by their greatest
common divisor.

60

252
=

12× 5

12× 21
=

5

21

Convert to Decimal:
To round off to 2 decimal places, we perform the division:

5

21
≈ 0.238095...

Rounding to 2 decimal places gives 0.24.

Step 4: Final Answer:
The probability is 5

21 , which is approximately 0.24.

Quick Tip

In combinatorics problems, break down the selection process into a sequence of distinct
steps. For ”exactly” type problems, ensure your final selection step doesn’t accidentally
satisfy a different condition (like choosing the 5th shoe to form a 3rd pair).

51. Let C = {(x, y) ∈ R2 : x2+y2 = 12} be a circle in the plane. Let (a, b) be the point
on C which minimizes the distance to the point (1,2). Then b− a is
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(round off to 2 decimal places)

Correct Answer: 1.55 (Range 1.54 to 1.56)

Solution:

Step 1: Understanding the Concept:
We are asked to find the point on a given circle that is closest to a given external point. The
shortest distance from a point to a circle lies along the line connecting the center of the circle
and the external point.

Step 2: Key Formula or Approach:
The circle C is given by x2 + y2 = 12.
This is a circle centered at the origin O(0, 0) with radius r =

√
12 = 2

√
3.

The external point is P (1, 2).
The point (a, b) on the circle closest to P will lie on the line segment connecting O and P .

Step 3: Detailed Explanation:
First, find the equation of the line passing through the center O(0, 0) and the point P (1, 2).
The slope of the line is m = 2−0

1−0 = 2.
The equation of the line is y = mx, which is y = 2x.

The point (a, b) must lie on both the circle and this line. Therefore, it must satisfy both
equations:

1. a2 + b2 = 12 (Equation of the circle)

2. b = 2a (Equation of the line)

Substitute the second equation into the first:

a2 + (2a)2 = 12

a2 + 4a2 = 12

5a2 = 12

a2 =
12

5

a = ±
√

12

5
= ±2

√
3√
5

Since the point P (1, 2) is in the first quadrant, the closest point on the circle must also be in
the first quadrant. Thus, we take the positive value for a.

a =
2
√
3√
5

Now, find the corresponding value of b:

b = 2a = 2

(
2
√
3√
5

)
=

4
√
3√
5
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So the point is (a, b) =
(
2
√
3√
5
, 4

√
3√
5

)
.

The question asks for the value of b− a.

b− a =
4
√
3√
5

− 2
√
3√
5

=
2
√
3√
5

To round this to two decimal places, we calculate its numerical value:

2
√
3√
5

= 2

√
3

5
= 2

√
0.6

Using
√
0.6 ≈ 0.7746:

b− a ≈ 2× 0.7746 = 1.5492

Rounding to two decimal places, we get 1.55.

Step 4: Final Answer:
The value of b− a is approximately 1.55.

Quick Tip

For distance minimization problems involving a circle, the geometric approach is often
much faster than using calculus methods like Lagrange multipliers. The shortest (and
longest) distance to a point outside a circle always lies on the line passing through the
point and the circle’s center.

52. Let f : R → R and g : R → R be given by f(x) = x3 + 2x2 − 15x and g(x) = x
respectively. Let x0 be the smallest strictly positive number such that f(x0) = 0.
Then the area of the region enclosed by the graphs of f and g between the lines
x = 0 and x = x0 is

Correct Answer: 33.75 (Range 33.70 to 33.80)

Solution:

Step 1: Understanding the Concept:
We need to find the area between two curves, y = f(x) and y = g(x), over a specified interval
[0, x0]. First, we must determine the upper limit of integration, x0, by finding the smallest
positive root of f(x) = 0. Then, we will compute the definite integral of the absolute difference
between the two functions.

Step 2: Key Formula or Approach:
The area A between two curves y = f(x) and y = g(x) from x = a to x = b is given by:

A =

ˆ b

a

|f(x)− g(x)| dx
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Step 3: Detailed Explanation:
Find the limit of integration x0:
We are given that x0 is the smallest strictly positive number such that f(x0) = 0.

f(x) = x3 + 2x2 − 15x = 0

Factor out x:
x(x2 + 2x− 15) = 0

Factor the quadratic:
x(x+ 5)(x− 3) = 0

The roots are x = −5, 0, 3. The smallest strictly positive root is x0 = 3. So, we need to find
the area between the curves from x = 0 to x = 3.

Set up the area integral:

The area A is given by
´ 3
0
|f(x)− g(x)| dx. Let h(x) = f(x)− g(x).

h(x) = (x3 + 2x2 − 15x)− x = x3 + 2x2 − 16x

To evaluate the integral with the absolute value, we must determine the sign of h(x) on the
interval (0, 3).

h(x) = x(x2 + 2x− 16)

For x ∈ (0, 3), the term x is positive. We need to check the sign of x2 + 2x− 16. The roots of
x2 + 2x− 16 = 0 are given by the quadratic formula:

x =
−2±

√
22 − 4(1)(−16)

2(1)
=

−2±
√
4 + 64

2
=

−2±
√
68

2
= −1±

√
17

Since
√
16 = 4 and

√
25 = 5,

√
17 ≈ 4.12. The positive root is −1+

√
17 ≈ 3.12. The quadratic

x2+2x−16 is a parabola opening upwards, so it is negative between its roots. Since the interval
(0, 3) is entirely within the roots (−1 −

√
17,−1 +

√
17), x2 + 2x − 16 is negative on (0, 3).

Therefore, h(x) = x(negative number) is negative for x ∈ (0, 3).
This means |h(x)| = −h(x) on this interval.

Calculate the definite integral:

A =

ˆ 3

0

−(x3 + 2x2 − 16x) dx =

ˆ 3

0

(−x3 − 2x2 + 16x) dx

A =

[
−x4

4
− 2x3

3
+

16x2

2

]3
0

=

[
−x4

4
− 2x3

3
+ 8x2

]3
0

A =

(
−34

4
− 2(3)3

3
+ 8(3)2

)
− (0)

A = −81

4
− 2(27)

3
+ 8(9)

A = −20.25− 18 + 72

A = −38.25 + 72 = 33.75
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Step 4: Final Answer:
The area of the region is 33.75.

Quick Tip

When calculating the area between curves, always check the sign of f(x)− g(x) over the
integration interval. If it changes sign, you must split the integral into multiple parts.
A quick test with a point inside the interval (e.g., x=1) can often determine the sign if
there are no roots of f(x)− g(x) = 0 within the interval.

53. Let V be the volume of the region

{(x, y, z) ∈ R3 : x2 + y2 +
z2

4
≤ 1 and |z| ≤ 1}.

Then V
π is equal to

Correct Answer: 1.83 (Range 1.82 to 1.84)

Solution:

Step 1: Understanding the Concept:
We need to find the volume of a solid defined by two inequalities. The first inequality,
x2 + y2 + z2

4 ≤ 1, describes a solid ellipsoid centered at the origin. The second inequality,
|z| ≤ 1, which is equivalent to −1 ≤ z ≤ 1, restricts the solid to a specific range along the
z-axis. We can compute this volume using the method of slicing (disk method).

Step 2: Key Formula or Approach:
The volume V of a solid can be found by integrating the cross-sectional area A(z) along the
z-axis from z = a to z = b.

V =

ˆ b

a

A(z) dz

Step 3: Detailed Explanation:
The solid is defined by x2 + y2 + z2

4 ≤ 1 and −1 ≤ z ≤ 1.
Let’s find the cross-sectional area A(z) for a fixed value of z in the interval [−1, 1]. The
inequality can be rearranged as:

x2 + y2 ≤ 1− z2

4
For a fixed z, this describes a disk in the xy-plane centered at the origin with radius r where
r2 = 1− z2

4 . The area of this disk is A(z) = πr2.

A(z) = π

(
1− z2

4

)
Now, we integrate this area function from z = −1 to z = 1 to find the volume V .

V =

ˆ 1

−1

A(z) dz =

ˆ 1

−1

π

(
1− z2

4

)
dz
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Since the integrand π
(
1− z2

4

)
is an even function of z, we can simplify the integral:

V = 2

ˆ 1

0

π

(
1− z2

4

)
dz

V = 2π

ˆ 1

0

(
1− z2

4

)
dz

Now, compute the integral:

V = 2π

[
z − z3

3× 4

]1
0

= 2π

[
z − z3

12

]1
0

V = 2π

[(
1− 13

12

)
− (0)

]
V = 2π

(
1− 1

12

)
= 2π

(
11

12

)
=

22π

12
=

11π

6

The question asks for the value of V
π .

V

π
=

11π/6

π
=

11

6

To get the numerical answer, we perform the division:

11

6
= 1.8333...

Rounding this to two decimal places gives 1.83.

Step 4: Final Answer:
The value of V

π is approximately 1.83.

Quick Tip

The method of slicing is a powerful tool for finding volumes of solids, especially those
with rotational symmetry or easily described cross-sections like ellipsoids, cones, and
pyramids. Always identify the shape of the cross-section first, find its area as a function
of one variable, and then integrate that area function over the appropriate interval.

54. Suppose X1, X2, . . . , X10, Y1, Y2, . . . , Y10 are independent random variables, where
Xi ∼ N(0, σ2) and Yi ∼ N(0, 3σ2) for i = 1, 2, . . . , 10. The observables are D1, . . . , D10,
where Di denotes the Euclidean distance between the points (Xi, Yi, 0) and (0, 0, 5)

for i = 1, 2, . . . , 10. If the observed value of
∑10

i=1D
2
i is equal to 1050, then the

method of moments estimate of σ2 is equal to (answer in integer)

Correct Answer: 20
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Solution:

Step 1: Understanding the Concept:
We need to find the method of moments (MOM) estimate for the parameter σ2. The MOM
involves equating the first sample moment to the first population moment and solving for the
parameter. The observables are Di, but the given data is related to D2

i , so we will use the
moments of D2

i .

Step 2: Key Formula or Approach:
1. Define the observable random variable and find its expected value (the population moment)
in terms of the parameter σ2.
2. Calculate the sample moment from the given data.
3. Equate the population moment to the sample moment to find the estimate.

Step 3: Detailed Explanation:
First, let’s express D2

i in terms of Xi and Yi. The Euclidean distance Di between (Xi, Yi, 0)
and (0, 0, 5) is:

Di =
√

(Xi − 0)2 + (Yi − 0)2 + (0− 5)2 =

√
X2

i + Y 2
i + 25

Squaring both sides gives:
D2

i = X2
i + Y 2

i + 25

Now, we find the first population moment, E[D2
i ].

E[D2
i ] = E[X2

i + Y 2
i + 25]

By linearity of expectation:

E[D2
i ] = E[X2

i ] + E[Y 2
i ] + E[25] = E[X2

i ] + E[Y 2
i ] + 25

We know that for a random variable Z with mean µ and variance τ2, Var(Z) = E[Z2]−(E[Z])2.
For Xi ∼ N(0, σ2), we have E[Xi] = 0 and Var(Xi) = σ2.

σ2 = E[X2
i ]− (0)2 =⇒ E[X2

i ] = σ2

For Yi ∼ N(0, 3σ2), we have E[Yi] = 0 and Var(Yi) = 3σ2.

3σ2 = E[Y 2
i ]− (0)2 =⇒ E[Y 2

i ] = 3σ2

Substituting these back into the expression for E[D2
i ]:

E[D2
i ] = σ2 + 3σ2 + 25 = 4σ2 + 25

Next, we calculate the first sample moment of D2
i . The sample mean is:

D2 =
1

10

10∑
i=1

D2
i

Given that
∑10

i=1D
2
i = 1050:

D2 =
1050

10
= 105
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For the method of moments, we equate the population moment to the sample moment:

E[D2
i ] = D2

4σ2 + 25 = 105

Now, we solve for the estimate of σ2, which we denote as σ̂2.

4σ̂2 = 105− 25

4σ̂2 = 80

σ̂2 =
80

4
= 20

Step 4: Final Answer:
The method of moments estimate of σ2 is 20.

Quick Tip

The method of moments is a straightforward estimation technique. Remember to identify
the random variable whose sample data is provided (here, it’s effectively D2

i ) and match
its sample mean with its theoretical mean (expected value).

55. Consider a sequence of independent Bernoulli trials with success probability
p = 1

7 . Then the expected number of trials required to get two consecutive successes
for the first time is equal to

Correct Answer: 56

Solution:

Step 1: Understanding the Concept:
This is a classic problem on expected values in stochastic processes. We can solve it by setting
up a system of linear equations based on conditional expectations from different states of the
process. The states are defined by the outcome of the most recent trial(s).

Step 2: Key Formula or Approach:
Let E be the expected number of trials required to get two consecutive successes (SS). We can
define states based on the progress towards this goal:

• State 0: We are at the start, or the last trial was a failure (F). Let E0 be the expected
number of additional trials needed from here. This is our target value, E = E0.

• State 1: The last trial was a success (S). Let E1 be the expected number of additional
trials needed from here.

We will use the law of total expectation to create equations for E0 and E1.
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Step 3: Detailed Explanation:
Let S denote success and F denote failure. The probability of success is p = 1/7, and the
probability of failure is q = 1− p = 6/7.

From State 0: We perform one trial.

• If we get a failure (with probability q), we have spent 1 trial and are back in State 0.

• If we get a success (with probability p), we have spent 1 trial and move to State 1.

So, the equation for E0 is:
E0 = 1 + q · E0 + p · E1

From State 1: We perform one trial.

• If we get a failure (with probability q), we have spent 1 trial, the streak is broken, and we
return to State 0.

• If we get a success (with probability p), we have spent 1 trial and have achieved our goal
(SS). The process ends, requiring 0 more trials.

So, the equation for E1 is:

E1 = 1 + q · E0 + p · 0 = 1 + qE0

Now we have a system of two equations: 1. E0 = 1 + qE0 + pE1 2. E1 = 1 + qE0

Substitute equation (2) into (1):

E0 = 1 + qE0 + p(1 + qE0)

E0 = 1 + qE0 + p+ pqE0

Rearrange to solve for E0:
E0 − qE0 − pqE0 = 1 + p

E0(1− q − pq) = 1 + p

Since 1− q = p:
E0(p− pq) = 1 + p

E0p(1− q) = 1 + p

Since 1− q = p:
E0p

2 = 1 + p

E0 =
1 + p

p2

Now, substitute the value p = 1/7:

E = E0 =
1 + 1/7

(1/7)2
=

8/7

1/49
=

8

7
× 49 = 8× 7 = 56

Step 4: Final Answer:
The expected number of trials is 56.
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Quick Tip

For problems asking for the expected time to reach a certain pattern in a sequence of
trials, the state-based conditional expectation method is very effective. Clearly define
the states and write down the transition equations by considering the outcome of the
next trial.

56. Let X be a real valued random variable with E(X) = 1, E(X2) = 4, E(X4) = 16.
Then E(X3) is equal to

Correct Answer: 4

Solution:

Step 1: Understanding the Concept:
The problem provides the first, second, and fourth moments of a random variable X and asks
for the third moment. The relationship between the given moments E(X2) and E(X4) is the
key to solving this problem.

Step 2: Key Formula or Approach:
We will analyze the variance of the random variable Y = X2. The variance of any random
variable Y is given by Var(Y ) = E[Y 2]− (E[Y ])2. A key property is that if Var(Y ) = 0, then
Y must be a constant almost surely, equal to its expected value.

Step 3: Detailed Explanation:
Let’s define a new random variable Y = X2. We are given information about the moments of
X, which we can use to find the moments of Y . The expected value of Y is:

E[Y ] = E[X2] = 4

The expected value of Y 2 is:

E[Y 2] = E[(X2)2] = E[X4] = 16

Now, let’s calculate the variance of Y :

Var(Y ) = E[Y 2]− (E[Y ])2 = 16− (4)2 = 16− 16 = 0

Since the variance of Y is 0, Y must be a constant almost surely. This constant is equal to its
expected value.

Y = E[Y ] =⇒ X2 = 4

This means that the random variable X can only take two possible values: 2 and -2.

Let P(X = 2) = p. Then, since X can only be 2 or -2, P(X = −2) = 1− p.
We can use the given first moment, E[X] = 1, to find the value of p.

E[X] = (2) · P(X = 2) + (−2) · P(X = −2) = 1
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2p− 2(1− p) = 1

2p− 2 + 2p = 1

4p = 3 =⇒ p =
3

4
So, the probability distribution of X is:

P(X = 2) =
3

4
and P(X = −2) = 1− 3

4
=

1

4

We can verify that this distribution gives the correct second and fourth moments: E[X2] =
(2)2(34) + (−2)2(14) = 4(34) + 4(14) = 3 + 1 = 4. (Correct) E[X4] = (2)4(34) + (−2)4(14) =
16(34) + 16(14) = 12 + 4 = 16. (Correct)
Finally, we can calculate the third moment, E[X3]:

E[X3] = (2)3 · P(X = 2) + (−2)3 · P(X = −2)

E[X3] = (8)
(
3

4

)
+ (−8)

(
1

4

)
E[X3] = 6− 2 = 4

Step 4: Final Answer:
The value of E(X3) is 4.

Quick Tip

When given several moments of a random variable, check for simple relationships between
them. A condition like E[Y 2] = (E[Y ])2 is a strong indicator that Y has zero variance and
is therefore a constant. This can greatly simplify the problem by revealing the structure
of the underlying random variable.

57. Let X1, X2, X3, X4 be a random sample from a continuous distribution with
probability density function

f(x; θ) =

{
2θ2x−3 if θ < x < ∞,

0 otherwise,

where θ > 0 is an unknown parameter. It is known that X(1) = min{X1, X2, X3, X4} is
a complete sufficient statistic for θ. If the observed values are x1 = 15, x2 = 11, x3 =
10, x4 = 17, the uniformly minimum variance unbiased estimate of θ2 is equal to

Correct Answer: 75

Solution:

Step 1: Understanding the Concept:
We are asked to find the Uniformly Minimum Variance Unbiased Estimator (UMVUE) of θ2.
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According to the Lehmann-Scheffé theorem, if a statistic S is complete and sufficient for a
parameter θ, then any function g(S) that is an unbiased estimator for a quantity τ(θ) is the
UMVUE of τ(θ). Here, S = X(1) and τ(θ) = θ2.

Step 2: Key Formula or Approach:
1. Find the probability distribution (PDF) of the complete sufficient statistic X(1). 2. Find a

function g(X(1)) such that its expected value is equal to θ2. That is, E[g(X(1))] = θ2. 3. This

function g(X(1)) will be the UMVUE for θ2. 4. Substitute the observed value of X(1) into the
UMVUE to get the estimate.

Step 3: Detailed Explanation:
1. Distribution of X(1): First, find the CDF of X, F (x), for x > θ:

F (x) =

ˆ x

θ

2θ2t−3dt = 2θ2
[
t−2

−2

]x
θ

= 2θ2
(
− 1

2x2
− (− 1

2θ2
)
)
= 1− θ2

x2

The CDF of X(1) for a sample of size n = 4 is FX(1)
(y) = 1− (1− F (y))n.

FX(1)
(y) = 1−

(
1−
(
1− θ2

y2

))4

= 1−
(
θ2

y2

)4

= 1− θ8

y8
for y > θ

The PDF of X(1) is the derivative of its CDF:

fX(1)
(y) =

d

dy

(
1− θ8y−8

)
= −(−8)θ8y−9 = 8θ8y−9 for y > θ

2. Find an unbiased estimator of θ2: Let’s find the expectation of a power of X(1), say

E[Xk
(1)].

E[Xk
(1)] =

ˆ ∞

θ

ykfX(1)
(y)dy =

ˆ ∞

θ

yk(8θ8y−9)dy = 8θ8
ˆ ∞

θ

yk−9dy

This integral converges for k − 9 < −1, i.e., k < 8.

E[Xk
(1)] = 8θ8

[
yk−8

k − 8

]∞
θ

= 8θ8
(
0− θk−8

k − 8

)
=

8θk

8− k

We are looking for an estimator for θ2. Let’s try to find a constant c such that E[cX2
(1)] = θ2.

We use k = 2.

E[X2
(1)] =

8θ2

8− 2
=

8θ2

6
=

4

3
θ2

So, E[cX2
(1)] = cE[X2

(1)] = c43θ
2. To make this estimator unbiased for θ2, we set c43 = 1, which

gives c = 3
4 . Thus, the UMVUE for θ2 is g(X(1)) =

3
4X

2
(1).

3. Calculate the estimate: The observed values are x1 = 15, x2 = 11, x3 = 10, x4 = 17. The
observed value of the statistic X(1) is:

x(1) = min{15, 11, 10, 17} = 10

Now we substitute this value into our UMVUE formula:

Estimate of θ2 =
3

4
x2(1) =

3

4
(10)2 =

3

4
× 100 = 75
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Step 4: Final Answer:
The uniformly minimum variance unbiased estimate of θ2 is 75.

Quick Tip

The Lehmann-Scheffé theorem is a powerful tool for finding UMVUEs. The main steps
are identifying a complete sufficient statistic and then finding a function of that statistic
which is unbiased for the parameter of interest. For scale parameter families like this
one, moments of the sufficient statistic are often a good starting point.

58. Let X be a random variable with probability density function

f(x) =

{
3x2 if 0 < x < 1,

0 otherwise.

Let δ denote the conditional expectation of X given that X ≤ 1
2 . Then the value of

80δ is equal to

Correct Answer: 30

Solution:

Step 1: Understanding the Concept:
We need to calculate the conditional expectation of a continuous random variable X given an
event A. The event here is A = {X ≤ 1/2}.

Step 2: Key Formula or Approach:
The conditional expectation of X given an event A is defined as:

E[X|A] =
´
A
xf(x) dx

P(A)

where P(A) =
´
A
f(x) dx. In this case, A corresponds to the interval (0, 1/2] since the support

of f(x) is (0, 1). So, δ = E[X|X ≤ 1/2] =
´ 1/2

0
xf(x) dx´ 1/2

0
f(x) dx

.

Step 3: Detailed Explanation:
First, we calculate the denominator, which is the probability of the event P(X ≤ 1/2).

P(X ≤ 1/2) =

ˆ 1/2

0

f(x) dx =

ˆ 1/2

0

3x2 dx

=
[
x3
]1/2
0

=
(
1

2

)3
− 03 =

1

8
Next, we calculate the numerator.

ˆ 1/2

0

xf(x) dx =

ˆ 1/2

0

x(3x2) dx =

ˆ 1/2

0

3x3 dx
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= 3

[
x4

4

]1/2
0

= 3

(
(1/2)4

4
− 0

)
= 3

(
1/16

4

)
=

3

64

Now, we can compute δ.

δ =
numerator

denominator
=

3/64

1/8
=

3

64
× 8

1
=

24

64
=

3

8

Finally, we calculate the required value of 80δ.

80δ = 80× 3

8
= 10× 3 = 30

Step 4: Final Answer:
The value of 80δ is 30.

Quick Tip

For conditional expectation problems with continuous variables, remember the definition
involves two integrals. The denominator is the probability of the conditioning event,
which acts as a normalizing constant for the new ”truncated” distribution.

59. Let X1, X2, . . . , X7 be i.i.d. continuous random variables with median θ. If
X(1) < X(2) < · · · < X(7) are the corresponding order statistics, then P(X(2) > θ) is
equal to (round off to 3 decimal places).

Correct Answer: 0.063

Solution:

Step 1: Understanding the Concept:
The problem involves order statistics and the definition of a median. The median θ of a contin-
uous distribution is the value for which P(Xi ≤ θ) = 0.5. We can rephrase the event X(2) > θ
in terms of the number of observations that fall above or below the median.

Step 2: Key Formula or Approach:
Let’s classify each random variable Xi as a ’success’ if Xi > θ and a ’failure’ if Xi ≤ θ. By
definition of the median, the probability of success is p = P(Xi > θ) = 0.5. The event X(2) > θ
means that the second smallest observation is greater than the median. This can only happen
if at most one observation is less than or equal to the median. In other words, out of the 7
observations, either 0 or 1 are ≤ θ. This is equivalent to saying that either 7 or 6 observations
are > θ. Let S be the number of successes (i.e., the number of Xi such that Xi > θ). S follows
a binomial distribution Bin(n = 7, p = 0.5). We need to calculate P(S = 6) + P(S = 7).

Step 3: Detailed Explanation:
The number of observations greater than the median, S, follows a Binomial distribution with
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parameters n = 7 and p = 0.5. The probability mass function (PMF) is:

P(S = k) =

(
n

k

)
pk(1− p)n−k =

(
7

k

)
(0.5)k(0.5)7−k =

(
7

k

)
(0.5)7

The event X(2) > θ is equivalent to the event that there are 6 or 7 observations greater than θ,
i.e., S ≥ 6.

P(X(2) > θ) = P(S ≥ 6) = P(S = 6) + P(S = 7)

Calculate each term:

P(S = 6) =

(
7

6

)
(0.5)7 = 7× 1

128
=

7

128

P(S = 7) =

(
7

7

)
(0.5)7 = 1× 1

128
=

1

128

Sum the probabilities:

P(X(2) > θ) =
7

128
+

1

128
=

8

128
=

1

16

To provide the answer in the required format, we convert the fraction to a decimal:

1

16
= 0.0625

Rounding to 3 decimal places gives 0.063.

Step 4: Final Answer:
The probability is 1

16 = 0.0625, which rounds to 0.063.

Quick Tip

Problems involving order statistics relative to a quantile (like the median) can often
be simplified by converting them into a binomial probability problem. Classify each
observation as being above or below the quantile, and then count the number of ways
the desired arrangement of order statistics can occur.

60. Suppose (X,Y ) has the N2(3, 0, 4, 1, 0.5) distribution. Then 4Cov(X + Y, Y 3) is
equal to

Correct Answer: 24

Solution:

Step 1: Understanding the Concept:
We need to compute the covariance involving a sum of random variables and a power of one
of them, where the variables follow a bivariate normal distribution. We will use properties of
covariance and moments of normal distributions.

95



Step 2: Key Formula or Approach:
1. Use the bilinearity of covariance: Cov(A+B,C) = Cov(A,C) + Cov(B,C).
2. Use the definition of covariance: Cov(U, V ) = E[UV ]− E[U ]E[V ].
3. Use Isserlis’ theorem (or Wick’s theorem) for moments of zero-mean multivariate normal vari-
ables. For a zero-mean normal vector (W1,W2,W3,W4), E[W1W2W3W4] = E[W1W2]E[W3W4]+
E[W1W3]E[W2W4] + E[W1W4]E[W2W3].

Step 3: Detailed Explanation:
The parameters of the bivariate normal distributionN2(µX , µY , σ

2
X , σ2Y , ρ) are: µX = E[X] = 3,

µY = E[Y ] = 0, σ2X = 4, σ2Y = 1, ρ = 0.5.

First, expand the covariance term:

Cov(X + Y, Y 3) = Cov(X, Y 3) + Cov(Y, Y 3)

Calculate Cov(Y, Y 3): Since Y ∼ N(0, 1), it is a standard normal variable.

Cov(Y, Y 3) = E[Y · Y 3]− E[Y ]E[Y 3] = E[Y 4]− E[Y ]E[Y 3]

For a standard normal distribution, all odd moments are zero. So, E[Y ] = 0 and E[Y 3] = 0. The
even moments are given by E[Y 2k] = (2k−1)!!. For k = 2, E[Y 4] = (2(2)−1)!! = 3!! = 3×1 = 3.

Cov(Y, Y 3) = 3− (0)(0) = 3

Calculate Cov(X, Y 3):

Cov(X, Y 3) = E[XY 3]− E[X]E[Y 3]

We know E[X] = 3 and E[Y 3] = 0, so Cov(X, Y 3) = E[XY 3]. To calculate E[XY 3], we work
with the centered variables X0 = X − µX = X − 3 and Y0 = Y − µY = Y − 0 = Y .

E[XY 3] = E[(X0 + 3)Y 3] = E[X0Y
3] + 3E[Y 3] = E[X0Y

3] + 0 = E[X0Y
3]

Now we apply Isserlis’ theorem to the zero-mean normal variables (X0, Y, Y, Y ).

E[X0Y Y Y ] = E[X0Y ]E[Y Y ] + E[X0Y ]E[Y Y ] + E[X0Y ]E[Y Y ]

Note: This is because the three Y variables are identical, leading to three identical terms in
the sum over pairings.

E[X0Y
3] = 3E[X0Y ]E[Y 2]

We need E[X0Y ] and E[Y 2].

E[X0Y ] = E[(X − µX)(Y − µY )] = Cov(X, Y )

Cov(X, Y ) = ρσXσY = 0.5×
√
4×

√
1 = 0.5× 2× 1 = 1

E[Y 2] = Var(Y ) + (E[Y ])2 = 1 + 02 = 1

Substituting these values back:

E[X0Y
3] = 3× (1)× (1) = 3

So, Cov(X, Y 3) = 3.
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Combine the results:

Cov(X + Y, Y 3) = Cov(X, Y 3) + Cov(Y, Y 3) = 3 + 3 = 6

Finally, calculate the required expression:

4Cov(X + Y, Y 3) = 4× 6 = 24

Step 4: Final Answer:
The value of 4Cov(X + Y, Y 3) is 24.

Quick Tip

For calculating moments and covariances of functions of bivariate normal variables, Is-
serlis’ theorem (or Wick’s theorem) is extremely useful. It allows breaking down expec-
tations of products of normal variables into sums of products of pairwise expectations
(covariances). Always remember to center the variables (subtract their means) before
applying the theorem.
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