

JEE Mains 2026 22 Jan Shift 1 Question Paper(Memory Based)

1. If the sum of first 4 terms of an A.P. is 6 and the sum of first 6 terms is 4, then the sum of first 12 terms of the A.P. is

- (1) -22
- (2) -21
- (3) -23
- (4) -24

2. Arrange the given metal ions in increasing order of number of unpaired electrons in the *low spin complexes* formed by Mn^{3+} , Cr^{3+} , Fe^{3+} , Co^{3+} .

- (1) $Co^{3+} < Fe^{3+} < Mn^{3+} < Cr^{3+}$
- (2) $Co^{3+} < Mn^{3+} < Fe^{3+} < Cr^{3+}$
- (3) $Cr^{3+} < Mn^{3+} < Co^{3+} < Fe^{3+}$
- (4) $Cr^{3+} < Mn^{3+} < Co^{3+} < Fe^{3+}$

3. Two discs have the same moment of inertia about their axes. Their thicknesses are t_1 and t_2 and they have the same density. If $\frac{R_1}{R_2} = \frac{1}{2}$, then find $\frac{t_1}{t_2}$.

- (1) $\frac{1}{16}$
- (2) 16
- (3) $\frac{1}{4}$
- (4) 4

4. The coefficient of x^{48} in

$$1(1+x) + 2(1+x)^2 + 3(1+x)^3 + \dots + 100(1+x)^{100}$$

is

- (1) ${}^{101}C_{46} - 100$
- (2) $100({}^{101}C_{49}) - {}^{101}C_{50}$
- (3) $100({}^{101}C_{46}) - {}^{101}C_{47}$
- (4) ${}^{101}C_{47} - {}^{101}C_{46}$

5. In a series R-L circuit, the voltage of the battery is 10 V. Resistance and inductance are 10Ω and 10 mH respectively. Find the energy stored in the inductor when the current reaches $\frac{1}{e}$ times its maximum value.

- (1) 0.67 mJ
- (2) 1.33 mJ
- (3) 0.33 mJ
- (4) 0.50 mJ

6. If

$$A = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix},$$

then find the value of

$$|A^{2025} - 3A^{2024} + A^{2023}|.$$

7. Match the following (List-I with List-II) and choose the correct option.

	List-I		List-II
(a)	$[\text{Ag}(\text{NH}_3)_2]^+$	(i)	Fehling's solution
(b)	$\text{Zn-Hg} / \text{HCl}$	(ii)	Clemmensen's reduction
(c)	$\text{NH}_2-\text{NH}_2/\text{KOH}$	(iii)	Tollen's reagent
(d)	$\text{Cu}^{2+}/\text{OH}^-$	(iv)	Wolff-Kishner reduction

(1) a(i), b(ii), c(iii), d(iv)

(2) a(iv), b(iii), c(ii), d(i)

(3) a(iii), b(ii), c(iv), d(i)

(4) a(i), b(ii), c(iv), d(iii)

8. If the domain of the function

$$f(x) = \frac{1}{\ln(10-x)} + \sin^{-1}\left(\frac{x+2}{2x+3}\right)$$

is

$$(-\infty, -a] \cup (-1, b) \cup (b, c),$$

then find the value of $(b + c + 3a)$.

(1) 22

(2) 24

(3) 23

(4) 21

9. Statement-I: Sucrose is dextrorotatory and upon hydrolysis it becomes laevorotatory.

Statement-II: Sucrose on hydrolysis gives glucose and fructose such that the laevorotation of glucose is more than the dextrorotation of fructose.

Choose the correct option.

(1) Both Statement-I and Statement-II are correct

(2) Both Statement-I and Statement-II are incorrect

(3) Statement-I is correct, Statement-II is incorrect

(4) Statement-II is correct, Statement-I is incorrect

10. Let $M = \{1, 2, 3, \dots, 16\}$ and R be a relation on M defined by xRy if and only if $4y = 5x - 3$. Then, the number of ordered pairs required to be added to R to make it symmetric is

(1) 2

(2) 3

(3) 4

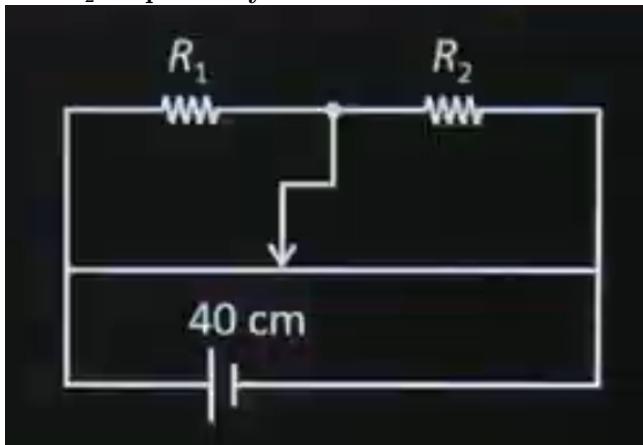
(4) 5

11. The solution of the differential equation

$$x \, dy - y \, dx = \sqrt{x^2 + y^2} \, dx$$

(where c is the constant of integration) is

- (1) $\sqrt{x^2 + y^2} = cx^2 - y$
- (2) $\sqrt{x^2 + y^2} = cx^2 + y$
- (3) $\sqrt{x^2 + y^2} = cx - y$
- (4) $\sqrt{x^2 + y^2} = cx + y$


12. Which of the following is the correct order of reactivity of the given nucleophiles when treated with CH_3Br in methanol?

- (1) $\text{I}^- > \text{C}_2\text{H}_5\text{O}^- > \text{C}_6\text{H}_5\text{O}^- > \text{F}^-$
- (2) $\text{I}^- > \text{F}^- > \text{C}_2\text{H}_5\text{O}^- > \text{C}_6\text{H}_5\text{O}^-$
- (3) $\text{I}^- > \text{C}_2\text{H}_5\text{O}^- > \text{F}^- > \text{C}_6\text{H}_5\text{O}^-$
- (4) $\text{C}_6\text{H}_5\text{O}^- > \text{F}^- > \text{I}^- > \text{C}_2\text{H}_5\text{O}^-$

13. In a potentiometer, the null point for two resistances R_1 and R_2 is at 40 cm as shown. If a 16Ω resistance is connected in parallel to R_2 , the null point shifts to 50 cm. Find the values of R_1 and R_2 respectively.

- (1) $16\Omega, 48\Omega$
- (2) $32\Omega, \frac{32}{3}\Omega$
- (3) $\frac{16}{3}\Omega, 8\Omega$
- (4) $\frac{32}{3}\Omega, 32\Omega$

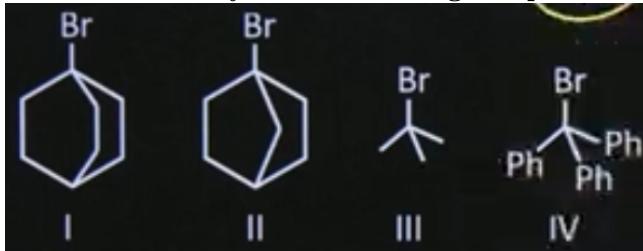
14. The number of values of x satisfying

$$\tan^{-1}(4x) + \tan^{-1}(6x) = \frac{\pi}{6}, \quad x \in \left[-\frac{1}{2\sqrt{6}}, \frac{1}{2\sqrt{6}}\right]$$

is

- (1) 1
- (2) 0
- (3) 2
- (4) 3

15. The value of


$$\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{[x] + 4}$$

where $[\cdot]$ denotes the greatest integer function, is

- (1) $\frac{\pi}{20} + \frac{7}{20}$
- (2) $\frac{7\pi}{20} - \frac{7}{7}$
- (3) $\frac{7\pi}{20} - \frac{1}{60}$
- (4) $\frac{7\pi}{20} + \frac{1}{60}$

16. The reactivity of the following compounds on the basis of the S_N1 mechanism is

(I), (II), (III), (IV) as shown in the figure.

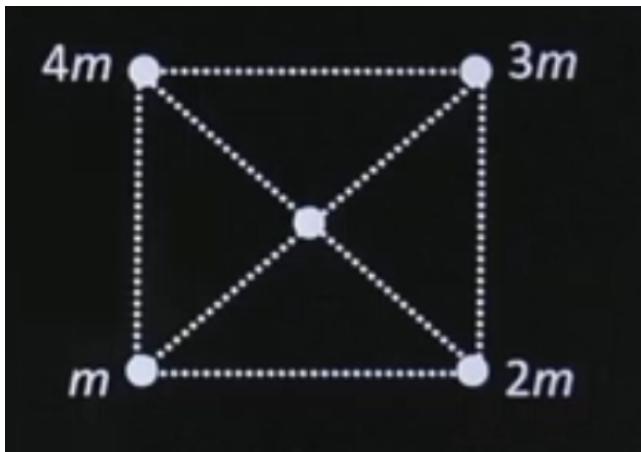
- (1) IV > III > I > II
- (2) II > IV > III > I
- (3) III > IV > I > II
- (4) IV > III > II > I

17. Given below are two statements:

Statement-I: HX bond length is higher in HCl than HF.

Statement-II: The lowest boiling point among hydrides of group 15 elements is for the hydride having covalency 4.

Choose the correct option.


- (1) Both Statement-I and Statement-II are correct
- (2) Both Statement-I and Statement-II are incorrect
- (3) Statement-I is correct but Statement-II is incorrect
- (4) Statement-I is incorrect but Statement-II is correct

18. In the given situation, the force acting at the center on a 1 kg mass is F_1 . Now, if the masses $4m$ and $3m$ are interchanged, the force becomes F_2 . Given that

$$\frac{F_1}{F_2} = \frac{2}{\sqrt{\alpha}},$$

find the value of α .

(1) $\alpha = 5$
 (2) $\alpha = 3$
 (3) $\alpha = 7$
 (4) $\alpha = 1$

19. Match the columns:

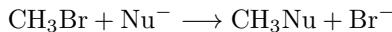
	Column-I		Column-II (Dimensions)
(A)	Thermal Conductivity	(P)	$[ML^2T^{-2}K^{-1}]$
(B)	Boltzmann Constant	(Q)	$[M^1L^{-1}T^{-2}]$
(C)	Spring Constant	(R)	$[M^1L^1T^{-3}K^{-1}]$
(D)	Surface Tension	(S)	$[M^1L^0T^{-2}]$
		(T)	$[M^1L^2T^{-3}K^{-1}]$
		(U)	$[ML^2T^{-2}]$

Choose the correct option.

(1) $A \rightarrow R, B \rightarrow P, C \rightarrow S, D \rightarrow S$
 (2) $A \rightarrow T, B \rightarrow P, C \rightarrow U, D \rightarrow S$
 (3) $A \rightarrow R, B \rightarrow T, C \rightarrow Q, D \rightarrow Q$
 (4) $A \rightarrow T, B \rightarrow U, C \rightarrow S, D \rightarrow Q$

20. If

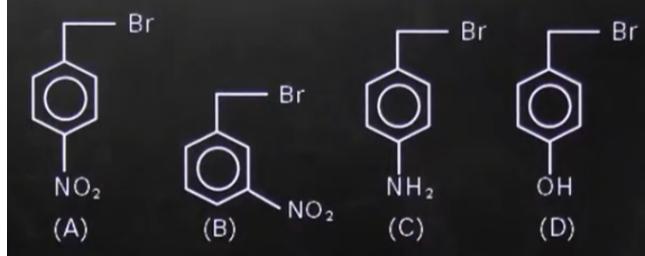
$$\frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \sqrt{5}\beta}{2},$$


then the value of $(\alpha + \beta)$ is

(1) 3
 (2) 2
 (3) 4
 (4) 1

21. Which of the following is the correct order of bond length?

(A) C–H < C ≡ N < C = O < C–O
 (B) C ≡ N < C–H < C–O < C = O
 (C) C–H < C ≡ N < C–O < C = O
 (D) C–O < C ≡ N < C = O < C–H


22. Which of the following is the correct order of nucleophilic nature for the following reaction?

(1) $\text{HO}^- > \text{PhO}^- > \text{CH}_3\text{COO}^- > \text{ClO}_4^-$
(2) $\text{PhO}^- > \text{HO}^- > \text{CH}_3\text{COO}^- > \text{ClO}_4^-$
(3) $\text{CH}_3\text{COO}^- > \text{HO}^- > \text{PhO}^- > \text{ClO}_4^-$
(4) $\text{HO}^- > \text{ClO}_4^- > \text{PhO}^- > \text{CH}_3\text{COO}^-$

23. The following compounds undergo $\text{S}_{\text{N}}2$ reaction. What is the correct order of $\text{S}_{\text{N}}2$ reactivity?

(1) $D > C > B > A$
(2) $A > B > D > C$
(3) $A > B > C > D$
(4) $D > A > C > B$

24. Let $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 29 & 49 \\ 1 & 2 \end{bmatrix}$. If $(A^5 + B) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, then find (x, y) .

25. Let one end of focal chord of the parabola $y^2 = 16x$ be $(16, 16)$. If $P(\alpha, \beta)$ divides this focal chord internally in the ratio $5 : 2$, then the minimum value of $\alpha + \beta$ is equal to

(A) 7
(B) 22
(C) 5
(D) 16

26.

$$\left(\frac{1}{^{15}C_0} + \frac{1}{^{15}C_1} \right) \left(\frac{1}{^{15}C_1} + \frac{1}{^{15}C_2} \right) \cdots \left(\frac{1}{^{15}C_{12}} + \frac{1}{^{15}C_{13}} \right) = \frac{\alpha^{13}}{^{14}C_0 \cdot ^{14}C_1 \cdot ^{14}C_2 \cdots ^{14}C_{12}}$$

If so, then find the value of 30α .
