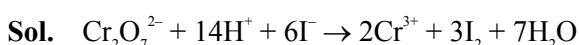


MEMORY BASED QUESTIONS JEE-MAIN EXAMINATION – JANUARY 2026

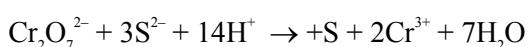
(HELD ON SATURDAY 24th JANUARY 2026)

TIME : 9:00 AM TO 12:00 NOON

CHEMISTRY


TEST PAPER WITH SOLUTION

SECTION-A


1. x & y are the number of moles of electrons involved respectively during oxidation of I^- to I_2 & S^{2-} to S by acidified $K_2Cr_2O_7$.

The value of x+y is ?

Ans. (12)

no. of moles e^- involved = x = 6

No. of moles e^- involved = y = 6

Sum of x + y = 6 + 6 = 12

2. 4 kg of water is heated from 4°C of 20°C at constant pressure 10^5 Pa so that density changes from 1000 kg/m^3 to 998 kg/m^3 . Then find ΔU (in Joules) given C_s of $H_2O = 4.2 \text{ Joule/gm.K}$:

(1) 268799.2 Joule (2) 368900 Joule
 (3) 168400 Joule (4) 578876.8 Joule

Ans. (1)

Sol. $q = mc_s \Delta T$

$$q = 4000 \times 4.2 (20 - 4)$$

$$q = 268800$$

$$w = -P_{\text{ext}} (V_2 - V_1)$$

$$w = -10^5 \left(\frac{4}{998} - \frac{4}{1000} \right)$$

$$w = -0.8 \text{ Joule}$$

$$\Delta U = q + w$$

$$\Delta U = 268800 - 0.8$$

$$\Delta U = 268799.2 \text{ Joule}$$

3. Two solutes, 0.3 gm of A (Mw = 60 gm/mol) & 0.9 gm of B (Mw = 180 gm/mol) are dissolved in 100 ml solution. Find osmotic pressure of solution at 300 K (in atm) (R = 0.082 atm-L/mol-K)

(1) 1.23 (2) 2.46

(3) 4.92 (4) 3.69

Ans. (2)

Sol. $\pi = (C_1 + C_2)$

$$= \left(\frac{0.3 \times 1000}{60 \times 100} + \frac{0.9 \times 1000}{180 \times 100} \right) \times 0.082 \times 300$$

$$= 2.46 \text{ atm}$$

4. For a reaction at 300K, on addition of catalyst, activation energy of reaction lowered by 10 kJ.

Then calculate the value of $\log \frac{K_{\text{catalysed}}}{K_{\text{uncatalysed}}}$

(1) 1.74 (2) 0.174

(3) 17.4 (4) 3.48

Ans. (1)

Sol. $\frac{K_{\text{catalyst}}}{K_{\text{uncatalyst}}} = e^{\frac{\Delta E_a}{RT}}$

$$\ln \frac{K_{\text{catalyst}}}{K_{\text{uncatalyst}}} = \frac{\Delta E_a}{RT}$$

$$\log \frac{K_{\text{catalyst}}}{K_{\text{uncatalyst}}} = \frac{\Delta E_a}{2.303RT}$$

$$= \frac{10 \times 1000}{2.303 \times 8.314 \times 300}$$

$$\log \frac{K_{\text{catalyst}}}{K_{\text{uncatalyst}}} = 1.74$$

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

5. Line corresponding to lyman series are $L_1, L_2, L_3, L_4, \dots$, among these L_1 line corresponds to lowest energy. Similarly lines corresponding to balmer series are $B_1, B_2, B_3, B_4, \dots$, among these B_1 line corresponds to lowest energy

ΔE_L = Energy of 1st line of lyman series

ΔE_B = Energy of 1st line of balmer series

If $\Delta E_L = x \cdot \Delta E_B$

Calculate $(x \times 10^{-1})$

Ans. (54)

$$\text{Sol. } \Delta E_L = 13.6 \times Z^2 \left(\frac{1}{1^2} - \frac{1}{2^2} \right) = 13.6 Z^2 \times \frac{3}{4}$$

$$\Delta E_B = 13.6 \times Z^2 \times \left(\frac{1}{2^2} - \frac{1}{3^2} \right) = 13.6 \times Z^2 \times \frac{5}{4 \times 9}$$

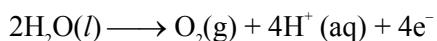
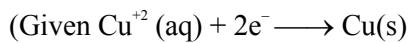
$$\frac{\Delta E_L}{\Delta E_B} = \frac{3}{5} \times 9 = \frac{27}{5} = x$$

$$= \left(\frac{27}{5} \times 10 \right) \times 10^{-1}$$

6.

List-I (Isothermal Process)		List-II (work done) ($V_f > V_i$)	
P.	Reversible expansion	1.	$w = 0$
Q.	Free expansion	2.	$w = -nRT \ln \frac{V_f}{V_i}$
R.	Irreversible expansion	3.	$w = -P_{\text{ext}} (V_f - V_i)$
S.	Irreversible Compression	4.	$w = -P_{\text{ext}} (V_i - V_f)$

Select the correct match



	P	Q	R	S
(A)	4	3	2	1
(B)	2	1	3	4
(C)	1	2	3	4
(D)	3	4	1	2

Ans. (2)

Sol. Theoretical

7. Electrolysis of aqueous solution of CuSO_4 is carried out, where 300 mg of copper is deposited (atomic mass of Cu = 63.54). After this 600 milli amp. current is further passed for 28 minutes. Calculate total volume of O_2 released (in ml).

(Given 1 mole of gas occupy 22.4 litre)

Ans. (111)

Sol. Eq of Cu = Eq of O_2

$$\frac{300 \times 10^{-3} \times 2}{63.54} = n_{\text{O}_2} \times 4$$

$$2.36 \times 10^{-3} = n_{\text{O}_2}$$

When current is further passed

$$n_{\text{O}_2} \times 4 = \frac{600 \times 28 \times 60}{96500 \times 1000}$$

$$n_{\text{O}_2} = 2.611 \times 10^{-3}$$

Total O_2 released

$$= [10^{-3} \times (2.36 + 2.611)] \times 22400 \text{ ml}$$

$$= 111.35 \text{ ml}$$

8. W gm of non-volatile electrolyte solute is added in 100 ml pure water ($P^\circ = 640 \text{ mm Hg}$) showing vapour pressure of solution 600 mm Hg.

This solution have b.p. of 375 K.

Given K_b of $\text{H}_2\text{O} = 0.52 \frac{\text{K} - \text{kg}}{\text{mol}}$,

Molar mass of solute = M

Select the correct option about mole fraction of solute (X_{solute}).

$$(1) \frac{1.3}{8} \left(\frac{W}{M} \right) \quad (2) \frac{8}{1.3} \left(\frac{W}{M} \right)$$

$$(3) \frac{2.6}{16} \left(\frac{M}{W} \right) \quad (4) \frac{1.3}{8} \left(\frac{M}{W} \right)$$

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

Ans. (1)

Sol. $\Delta T_b = i \times K_b \times m$

$$2 = i \times 0.52 \times \frac{\frac{W}{M}}{\frac{100}{1000}}$$

$$i \times \frac{W}{M} = 2 \times \frac{100}{1000} \times \frac{1}{.52}$$

$$i = \frac{1}{2.6} \times \frac{M}{W}$$

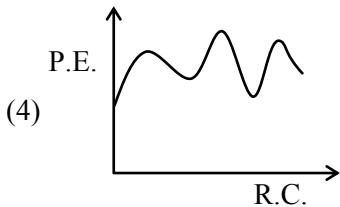
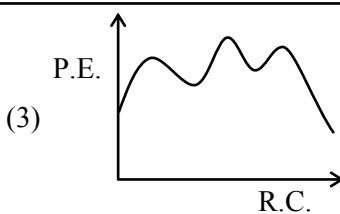
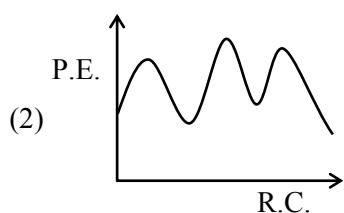
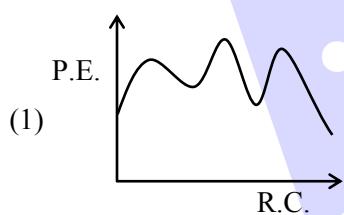
$$RLVP = \frac{P^\circ - P_s}{P^\circ} = i \times X_{\text{solute}}$$

$$\frac{640 - 600}{640} = i \times X_{\text{solute}}$$

$$\frac{1}{16} = \frac{1}{2.6} \times \frac{M}{W} \times X_{\text{solute}}$$

$$X_{\text{solute}} = \frac{1.3}{8} \times \frac{W}{M}$$

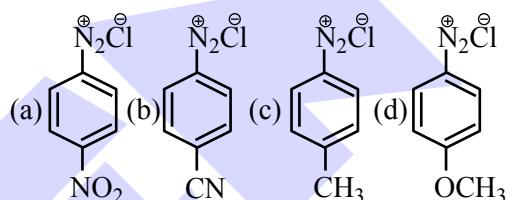
9. For a chemical reaction :





Mechanism is

Step-1 : $A \rightarrow B : \Delta H = +\text{ve}$

Step-2 : $B \rightarrow C : \Delta H = -\text{ve}$

Step-3 : $C \rightarrow D : \Delta H = -\text{ve}$


Select the correct energy plot

Ans. (1)

Sol. $\Delta H = E_{\text{Product}} - E_{\text{Reactant}}$

10. Correct order of stability is :

(1) a > b > c > d

(2) d > c > b > a

(3) b > a > c > d

(4) d > b > c > a

Ans. (2)

Sol. +M group or +I group increases stability (i.e. $-\text{OCH}_3$ – CH_3)

$-M$ decreases stability (i.e. $-\text{NO}_2$ and $-\text{CN}$)

11. Match the List-I and List-II

(1) (I) Vinyl chloride

(2) (II) Allyl chloride

(3) (III) Aryl chloride

(4) (IV) Benzyl chloride

(1) A \rightarrow I, B \rightarrow II, C \rightarrow III, D \rightarrow IV

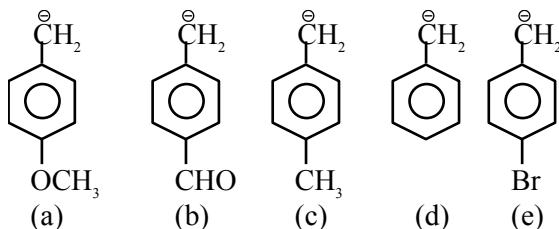
(2) A \rightarrow I, B \rightarrow II, C \rightarrow IV, D \rightarrow III

(3) A \rightarrow III, B \rightarrow II, C \rightarrow I, D \rightarrow IV

(4) A \rightarrow III, B \rightarrow II, C \rightarrow IV, D \rightarrow II

Ans. (2)

Sol. Common Names



Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

12. The correct order of stability of given carbanions is

(1) a > b > c > d > e
 (2) b > e > d > a > c
 (3) a > c > d > e > b
 (4) b > e > d > c > a

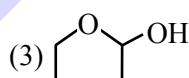
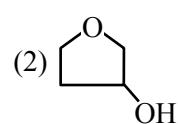
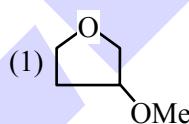
Ans. (4)

Sol. Electron withdrawing group increase the stability of carbanions.

13. 0.5 gm of unknown organic compound undergo Duma's method for estimation of nitrogen. Percentage of nitrogen gas collected over water at P = 715 mm and 27°C has volume = 70 ml. Calculate % N in the unknown organic compound.
 (aq. Tension = 15 mm)

Ans. (14.65)

$$\text{Sol. } P_{\text{N}_2} = (715 - 15) \text{ mm} = \frac{700}{760} \text{ atm}$$





$$V_{\text{N}_2} = 70 \text{ ml} = \frac{70}{1000} \text{ l}$$

$$n_{\text{N}_2} = \frac{PV}{RT} = \frac{\left(\frac{700}{700}\right) \times \left(\frac{70}{1000}\right)}{0.821 \times 300}$$

$$W_{\text{N}_2} = \frac{700}{700} \times \frac{\frac{70}{1000}}{0.821 \times 300} \times 28$$

$$\% \text{ N} = \frac{W_{\text{N}_2}}{0.5} \times 100 = \frac{700}{760} \times \frac{\frac{70}{1000}}{0.821 \times 300} \times 0.5 \times 100 \\ = 14.65\%$$

14. Which of the following gives positive tollen's test ?

**ONE-STOP SOLUTION
FOR JEE ASPIRANTS**

SUBSCRIBE NOW

20.	List-I Species	List-II Hybridization	List-III Shape
(A)	IF ₃	sp ³	T-shape
(B)	IF ₇	sp ³ d ³	P.B.P
(C)	IF ₅	sp ³ d ²	square pyramidal
(D)	ClO ₄ ⁻	sp ² d	square planar

Select the correct match

(1) A, B, C (2) A, B, C, D
(3) B, C, D (4) A, B, D

Ans. (1)

Sol. ClO₄⁻ \rightarrow sp³ \rightarrow tetrahedral, so (D) is incorrect, all others are correct.

21. **Statement-I** [Co(CO₃)₃]³⁻ has magnetic moment of 4.9 BM & hybridization is sp³d²

Statement-II [Ni(CN)₄]²⁻, [Cr(H₂O)₆]²⁺ and [MnF₆]⁴⁻ have square planar, octahedral and octahedral geometry respectively and dsp², sp³d², d²sp³ hybridization respectively and $\mu = 0$, 4.9 BM, 5.9 BM respectively.

(1) Both statements are correct
(2) Statement-I is correct & statement-II is incorrect
(3) Statement-I is incorrect & statement-II is correct
(4) Both statements are incorrect.

Ans. (4)

Sol. [Co(CO₃)₃]³⁻ is d²sp³ hybridized
[MnF₆]⁴⁻ is sp³d² hybridized.

22. Select correct statements(s)

(A) NF₃ has more dipole moment than NH₃
(B) O₂²⁻ and F₂ both have same bond order
(C) In O₃ central oxygen atom has -1 formal charge
(D) In NO₂ all the atoms follow octet rule, so it is stable.
(E) BeH₂ is planar

(1) B, C (2) A, B, C (3) C, D, E (4) B, E

Ans. (4)

Sol. (1) dipole moment NF₃ < NH₃
(2) O₂²⁻, F₂ both have B.O = 1
(3) In O₃ central oxygen atom has +1 formal charge
(4) In NO₂, octet of 'N' atom is not complete
(5) BeH₂ is linear, so planar

23. Salt (X) is soluble in water.
Salt (Y) is sparingly soluble in water.
Salt (Z) is soluble only in hot water.
X, Y, Z respectively are.
(1) AgCl, Hg₂Cl₂, PbCl₂
(2) AlCl₃, AgCl, PbCl₂
(3) BaCl₂, PbCl₂, Hg₂Cl₂
(4) MgCl₂, Hg₂Cl₂, CaCl₂

Ans. (2)

Sol. Theory based.

24. Select correct statements.

(I) Hybridisation of ClO₄⁻ is dsp²
(II) [Ni(CN)₄]²⁻ is tetrahedral
(III) [Co(H₂O)₆]²⁺ has sp³d² hybridisation
(IV) [Mn(CN)₆]⁴⁻ has sp³d² hybridisation
(1) II and III and (2) III only
(3) II, III and IV only (4) I, II, III and IV

Ans. (2)

Sol. (I) ClO₄⁻ \rightarrow sp³
(II) Ni²⁺ \rightarrow 3d⁸ \rightarrow dsp² (square planar)
(III) Co²⁺ \rightarrow 3d⁷ \rightarrow t_{2g}^{2,2,1}eg^{1,1} \rightarrow sp³d²
(IV) Mn²⁺ 3d⁵ \rightarrow t_{2g}^{2,2,1}eg^{0,0} \rightarrow d²sp³

25. **Statement-I** : K > Mg > Al > B metallic character order.

Statement-II : Ionic radius of any element is less than its atomic radius.

In the light of above statements, choose the most appropriate answer from the options given below :

(1) Both statements are true
(2) Statement I is false but statement II is true.
(3) Both statements are False.
(4) Statement I is true but statement II is false.

Ans. (4)

Sol. Statement-I : Correct

EN \uparrow metallic character \downarrow

Metallic character : K > Mg > Al > B

EN : 0.8 < 1.2 < 1.5 < 2.0

Statement-II : Incorrect

Ionic size M⁺ < M < M⁻

Anionic radius > Atomic radius.

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

ALLEN

For Class 12th Pass Students

**RISE. REPEAT.
RANK UP IN JEE**

JOIN LEADER COURSE

JEE (Main+Adv.) 2027

26th Mar & 15th Apr

Know more

AIR 1
JEE (Adv.) 2025
Rajit Gupta
CLASSROOM

ALLEN ONLINE

**Think JEE 2027
will be your **best shot?****

Join the Leader Online Course!

Win up to

90% scholarship

via ASAT

Enrol Now

Get REAL exam practice
for **JEE Main 2026**

with the

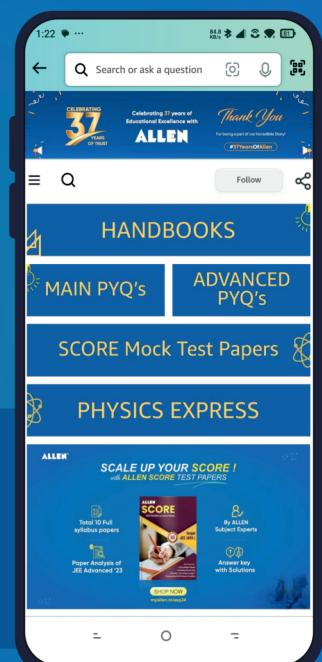
Major Online Test Series!

13 full-syllabus tests

100+ additional mock tests

50,000+ teacher-
recommended Qs. & more

Buy Now


ALLEN

Get The Latest
IIT-JEE Special Books
at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

HANDBOOKS | ADVANCED-QB | SCORE PAPERS
PHYSICS EXPRESS | MAIN PYQ's | Adv. PYQ's

SHOP NOW

Available in
HINDI & ENGLISH