

Sol. Work done by external agent :

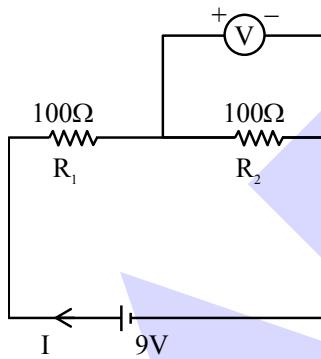
$$W_{\text{ext}} = \Delta U$$

$$U_i = \frac{Gm_1m_2}{r_i} + \frac{Gm_2m_3}{r_i} + \frac{Gm_1m_3}{r_i} : r_i = 20 \text{ m}$$

$$U_f = \frac{Gm_1m_2}{r_f} + \frac{Gm_2m_3}{r_f} + \frac{Gm_1m_3}{r_f} : r_f = 25 \text{ m}$$

$$U_i = \frac{-6.67 \times 10^{-11}}{20} [200 \times 300 + 300 \times 400 + 200 \times 400]$$

$$= \frac{-6.67 \times 10^{-11}}{20} \times 26 \times 10^4 = -86.71 \times 10^{-8} \text{ J}$$


$$U_f = \frac{-6.67 \times 10^{-11}}{0.25} [200 \times 300 + 300 \times 400 + 200 \times 400]$$

$$= \frac{-6.67 \times 10^{-11}}{0.25} \times 26 \times 10^4 = -693.68 \times 10^{-9}$$

$$= -69.36 \times 10^{-8} \text{ J} \quad W = +\Delta U = 17.35 \times 10^{-8}$$

$$= 1.735 \times 10^{-7} \text{ J}$$

5. Two resistors of resistances $R_1 = 100\Omega$ and $R_2 = 100\Omega$ are connected in series. A voltmeter of resistance 400Ω is connected in parallel to one of the resistances. Find the reading of voltmeter. The emf of battery is 9V. :

(1) 3 V
(3) 2 V

(2) 4 V
(4) 5 V

Ans. (2)

Sol. Current in circuit.

$$I = \frac{E}{R_{\text{eq}}}$$

$$R_{\text{eq}} = 100 + \frac{400 \times 100}{500} = 180\Omega$$

$$\therefore I = \frac{9}{180} = \frac{1}{20} \text{ A}$$

$$\text{Reading of voltmeter} = V = I \times 80 = \frac{1}{20} \times 80 = 4 \text{ V}$$

6. A brass rod is fixed rigidly at two ends at 27°C . If it is cooled to temperature -43°C , tension in rod becomes T_0 . Find temperature (in $^\circ\text{C}$) at which tension will be $1.4 T_0$:

Ans. -71°C

Sol. Thermal stress causes tension

$$T = \alpha y A \Delta T$$

$$-43^\circ\text{C} \quad T_0 = \alpha y A (43 + 27) \quad \dots \dots (i)$$

$$-t^\circ\text{C} \quad T_0 = \alpha y A (t + 27) \quad \dots \dots (ii)$$

$$(ii)/(i)$$

$$1.4 = \frac{t + 27}{70}$$

$$t + 27 = 98$$

$$t = 71^\circ$$

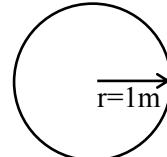
\therefore temp (-71°C)

7. Electric potential at a point is $V = Ar^3 + B$. Find charge enclosed in a sphere of radius 1m, centered at $r = 0$

$$(1) -4\epsilon_0 A$$

$$(3) -12\epsilon_0 A$$

$$(2) -8\epsilon_0 A$$


$$(4) -16\epsilon_0 A$$

Ans. (3)

$$\text{Sol. } E = -\frac{dv}{dr}$$

$$E = -3Ar^2$$

Charge enclosed in 1m radius is

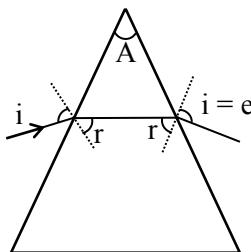
Applying guass law

$$\oint \epsilon \cdot dS = \frac{q_{\text{in}}}{\epsilon_0}$$

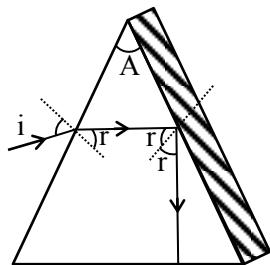
$$E \cdot S = \frac{q_{\text{in}}}{\epsilon_0}$$

$$q_{\text{in}} = \epsilon_0 E S = -\epsilon_0 \cdot (3Ar^2) (4\pi r^2)$$

$$q_{\text{in}} \Big|_{r=1\text{m}} = -12\epsilon_0 A$$


Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

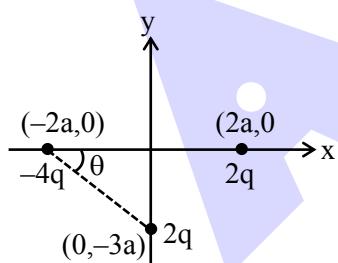

Check Now

Sol. $i = e$ & $r = A/2$ for minimum deviation

For TIR ; $r > \theta_c$

$$\sin r > \sin \theta_c$$

$$\sin r > \frac{n/2}{n}$$


$$\sin r > \frac{1}{2}$$

$$\sin \frac{A}{2} > \sin 30^\circ$$

$$\frac{A}{2} > 30^\circ$$

$$A > 60^\circ$$

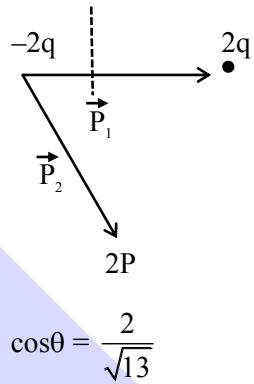
12. In the following configuration of charges. Find the net dipole moment of the system :

$$(1) \sqrt{180} qa$$

$$(2) \sqrt{150} qa$$

$$(3) \sqrt{200} qa$$

$$(4) \sqrt{140} qa$$


Ans. (1)

Sol. $\vec{P}_1 = (2q)(4a)\hat{i} = 8qa\hat{i}$

$$\vec{P}_2 = (2q)(\sqrt{13}a)(\cos \theta \hat{i} - \sin \theta \hat{j})$$

$$= (3q)(\sqrt{3}a)(\cos \theta \hat{i} - \sin \theta \hat{j})$$

$$= (3q)(\sqrt{3}a) \left(\frac{2}{\sqrt{13}} \hat{i} - \frac{3}{\sqrt{3}} \hat{j} \right)$$

$$= 2qa(2\hat{i} - 3\hat{j})$$

$$= 4qa\hat{i} - 6qa\hat{j}$$

$$\vec{P}_{\text{net}} = \vec{p}_1 + \vec{p}_2 = 12qa\hat{i} - 6qa\hat{j}$$

$$|\vec{p}_{\text{net}}| = \sqrt{180} qa$$

13. Density of water at 4°C is 1000 kg/m^3 and at 20°C it is 998 kg/m^3 . If 4kg of water is heated from 4°C to 20°C , the change in internal energy of water is : (Given : specific heat capacity of water = 4200 J/kg).

(1) 268799.2 J (2) 268800.8 J
 (3) 268800.0 J (4) 267765.2 J

Ans. (1)

Sol. $Q = mS\Delta T = 4 \times 4200 \times 16 \text{ J} = 268800 \text{ J}$

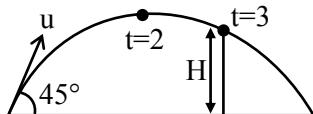
$$W = P\Delta V$$

$$\Delta V = \left(\frac{m}{\rho_f} - \frac{m}{\rho_i} \right) = 4 \left[\frac{1}{998} - \frac{1}{1000} \right]$$

$$P = 10^5 \text{ Pa.}$$

$$\therefore W = 10^5 \times 4 \times \left[\frac{1}{998} - \frac{1}{1000} \right] = \frac{8 \times 10^5}{10^3 \times 998} \approx 0.8 \text{ J}$$

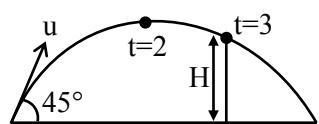
$$\Delta U = Q - W = 268799.2 \text{ J}$$



Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now


14. A projectile is projected with certain speed at an angle of 45° with horizontal as shown. At $t = 2\text{ s}$, projectile is at maximum height and at $t = 3\text{ s}$, it just touches a wall at a height H above horizontal. Find H in meters :

(1) 20 m
(2) 10 m
(3) 15 m
(4) 25 m

Ans. (3)

Sol. $T = \frac{2u_y}{g} = 4$

$$\Rightarrow u_y = \frac{40}{2} = 20 \text{ m/s}$$

$$u_x = 20 \text{ m/s}$$

$$\Delta y = u_y \Delta t - \frac{1}{2} g (\Delta t)^2$$

$$\begin{aligned} \Rightarrow H &= 20 \times 3 - 5 \times 9 \\ &= 60 - 45 \\ &= 15 \text{ m} \end{aligned}$$

15. Column-I gives physical quantities and Column-II represent their dimensions. Choose the option representing correct matching.

Column-I		Column-II
(I)	Magnetic field intensity	(P) $MLT^{-2}A^{-2}$
(II)	Magnetic flux	(Q) $ML^2T^{-2}A^{-2}$
(III)	Magnetic permeability	(R) $ML^2T^{-2}A^{-1}$
(IV)	Magnetic inductance	(S) $MT^{-2}A^{-1}$

(1) I-S, II-R, III-P, IV-Q (2) I-Q, II-R, III-P, IV-S
(3) I-R, II-S, III-P, IV-Q (4) I-S, II-P, III-R, IV-Q

Ans. (1)

Sol. Magnetic field intensity, $B = [MT^{-2}A^{-1}]$ – S

Magnetic Flux, $\phi = [ML^2T^{-2}A^{-1}]$ – R

Magnetic Permeability, $\mu = [MLT^{-2}A^{-2}]$ – P

Magnetic inductance, $L = [ML^2T^{-2}A^{-1}]$ – Q

16. A cylindrical body of mass m and cross section A is floating in a liquid of density ρ_L such that its axis is vertical. If body is displaced by a small displacement 'x' vertically, find the time period of oscillation of the body :

(1) $2\pi \sqrt{\frac{m}{\rho_L Ag}}$ (2) $3\pi \sqrt{\frac{m}{\rho_L Ag}}$
(3) $4\pi \sqrt{\frac{m}{\rho_L Ag}}$ (4) $5\pi \sqrt{\frac{m}{\rho_L Ag}}$

Ans. (1)

ONE-STOP SOLUTION FOR JEE ASPIRANTS

Sol. $\rho_L A \times hg = mg$

After displacing by x ,

$$F = \rho_L A (h + x) g - mg$$

$$F = \rho_L Ahg + \rho_L Axg - mg$$

$$F = \rho_L Axg$$

$$a = \left(\frac{\rho_L Ag}{m} \right) x$$

comparing,

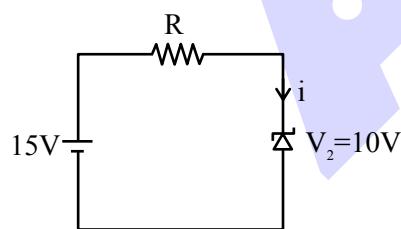
$$a = \omega^2 x$$

$$\omega = \sqrt{\frac{\rho_L Ag}{m}}$$

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{\rho_L Ag}}$$

17. A zener diode of breakdown voltage 10 V is connected to an external voltage of 15 V and a resistance R in series. If power of zener diode is 0.4 W. Find value of unknown resistance R :

(1) 125Ω

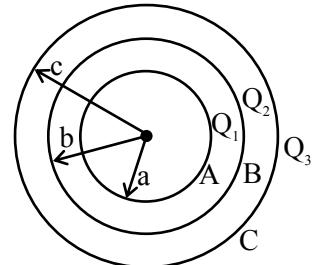

(2) 105Ω

(3) 130Ω

(4) 115Ω

Ans. (1)

Sol.



$$P_D = 0.4 \text{ W} = 10i$$

$$i = 0.04 \text{ A}$$

$$R = \frac{15 - 10}{0.04} = \frac{5}{0.04} = 125 \Omega$$

18. Three uniformly charged concentric shells are kept as shown in the diagram. Charges on individual shells are as shown. Find the final potential on each shell :

$$(1) V_A = \frac{KQ_1}{a} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_B = \frac{K(Q_1 + Q_2 + Q_3)}{c}$$

$$V_C = \frac{KQ_1}{b} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$(2) V_A = \frac{KQ_1}{b} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_B = \frac{KQ_1}{a} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_C = \frac{K(Q_1 + Q_2 + Q_3)}{c}$$

$$(3) V_A = \frac{K(Q_1 + Q_2 + Q_3)}{c}$$

$$V_B = \frac{KQ_1}{b} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_C = \frac{KQ_1}{a} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$(4) V_A = \frac{KQ_1}{a} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_B = \frac{KQ_1}{b} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_C = \frac{K(Q_1 + Q_2 + Q_3)}{c}$$

Ans. (4)

$$\text{Sol. } V_A = \frac{KQ_1}{a} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_B = \frac{KQ_1}{b} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_C = \frac{KQ_1}{a} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$= \frac{K(Q_1 + Q_2 + Q_3)}{c}$$

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

19. An ideal gas in a closed rigid container is at 50°C and pressure 3.23 kPa. If temperature is doubled, find new pressure in Pa :

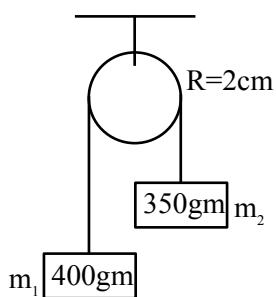
(1) 3730 Pa (2) 3230 Pa
 (3) 6460 Pa (4) 6430 Pa

Ans. (1)

Sol. Closed rigid container

$$V = \text{constant}$$

$$P \propto T$$


$$T_i = 50^\circ \text{C} = 323 \text{ K}$$

$$T_f = 2 \times 50^\circ \text{C} = 100^\circ \text{C} = 373 \text{ K}$$

$$\frac{P_1}{P_2} = \frac{T_1}{T_2} \Rightarrow \frac{3.23}{P_2} = \frac{323}{373}$$

$$\therefore P_2 = 3730 \text{ Pa}$$

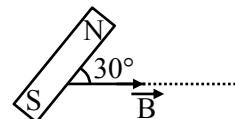
20. After release, the blocks moves 81 cm in 9 seconds. Find moment of inertia of the pulley :

(1) $97 \times 10^{-4} \text{ Kg-m}^2$ (2) $100 \times 10^{-4} \text{ Kg-m}^2$
 (3) $21 \times 10^{-4} \text{ Kg-m}^2$ (4) $87 \times 10^{-4} \text{ Kg-m}^2$

Ans. (1)

$$\text{Sol. } a = \frac{(m_1 - m_2)}{m_1 + m_2 + \frac{I}{R^2}} \cdot g$$

$$S = ut + \frac{1}{2}at^2$$


$$\frac{81}{100} = \frac{1}{2} \left(\frac{m_1 - m_2}{m_1 + m_2 + \frac{I}{R^2}} \right) g \times (81)$$

$$500(m_1 - m_2) = (m_1 + m_2) + \frac{I}{R^2}$$

$$500 \left(\frac{50}{1000} \right) = \left(\frac{750}{1000} \right) + \frac{I}{R^2}$$

$$I = 97 \times 10^{-4} \text{ Kg-m}^2$$

21. A bar magnet is kept such that it is making an angle of 30° with the magnetic field. The torque acting on the magnet is 0.016 N-m. Find the amount of work done by external agent in rotating the magnet from most stable position to most unstable position.

(1) 0.064 J

(2) 0.020 J

(3) 0.034 J

(4) 0.055 J

Ans. (1)

$$\text{Sol. } \tau = \mu B \sin \theta \Rightarrow 0.016 = \mu \times B \times \frac{1}{2}$$

$$\Rightarrow \mu = \frac{0.032}{B}$$

$$W_{\text{ext}} = U_f - U_i = \mu B - (\mu B) = 2\mu B$$

$$= 2 \times \frac{0.032}{B} \times B$$

$$= 0.064 \text{ J}$$

22. **Statement – I :** Greater is the mass of nucleus, more will be its binding energy.

Statement – II : Nucleus with less $\frac{BE}{A}$ (Binding energy/nucleon) breaks into nucleus with higher $\frac{BE}{A}$.

Choose the correct option :

(1) Statement I is true & statement II is false
 (2) Statement I is false & statement II is true
 (3) Both are true
 (4) Both are false

Ans. (3)

Sol. On increasing number of nucleon, BE increase but stability of nucleus depends on BE/A.



Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

Ans. (1)

Sol.

$$2 \sin \theta = 2\sqrt{3} \sin(90 - \theta)$$

$$\tan \theta = \sqrt{3}$$

$$\theta = 60^\circ$$

24. In a H-like ion, ratio of speed of electron in two orbit is 3 : 2, then ratio of energies in these orbits should be :

(1) $\frac{3}{5}$

(2) $\frac{9}{4}$

(3) $\frac{1}{4}$

(4) $\frac{3}{4}$

Ans. (2)

$$\text{Sol. } v = v_{\cdot} \frac{z}{n}$$

$$\frac{V_1}{V_2} = \frac{Z_1}{Z_2} \cdot \frac{n_2}{n_1} = \frac{3}{2}$$

$$E = -E_0 \frac{z^2}{n^2}$$

$$\frac{E_1}{E_2} = \frac{\left(\frac{z_1}{n_1}\right)^2}{\left(\frac{z_2}{n_2}\right)^2} = \frac{9}{4}$$

25. There is a compound microscope of lenses having focal lengths 2 cm and 5 cm and tube length 10 cm. Find magnifying power in normal adjustment. If your answer is 5^α , find ' α ' :

Ans. (2)

Sol. $f_0 = 2 \text{ cm}$, $f_e = 5 \text{ cm}$

$$\ell = 10 \text{ cm}$$

$$M = \frac{\ell}{f_0} \cdot \frac{D}{f_1} = 25$$

Predict your JEE Main 2026 percentile

Try ALLEN's **FREE** Percentile Predictor

Check Now

ALLEN

For Class 12th Pass Students

**RISE. REPEAT.
RANK UP IN JEE**

JOIN LEADER COURSE

JEE (Main+Adv.) 2027

26th Mar & 15th Apr

Know more

AIR 1
JEE (Adv.) 2025
Rajit Gupta
CLASSROOM

ALLEN ONLINE

**Think JEE 2027
will be your *best shot*?**

Join the Leader Online Course!

Win up to

90% scholarship

via ASAT

Enrol Now

Get REAL exam practice
for **JEE Main 2026**

with the

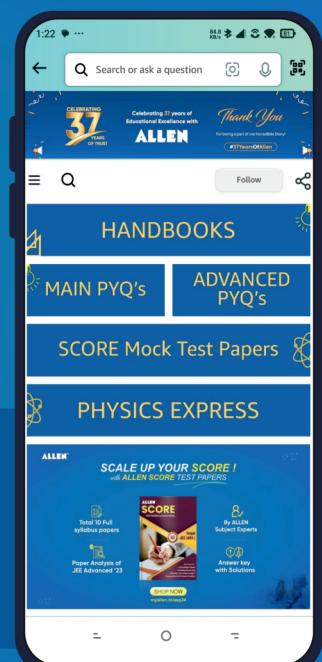
Major Online Test Series!

13 full-syllabus tests

100+ additional mock tests

50,000+ teacher-
recommended Qs. & more

Buy Now


ALLEN

Get The Latest
IIT-JEE Special Books
at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

HANDBOOKS | ADVANCED-QB | SCORE PAPERS
PHYSICS EXPRESS | MAIN PYQ's | Adv. PYQ's

SHOP NOW

Available in
HINDI & ENGLISH