Textile Engineering 29th March 2025 Shift3

Time Allowed :1.5 Hours | **Maximum Marks :**300 | **Total questions : 75**

General Instructions

General Instructions:

- 1. Question Paper contains 75 Questions .
- 2. Each correct answer will have +4 marks and wrong asnwer will lead to -1

1. In, the package is driven in frictional contact with the drum.
(A) Drum driven winding
(B) Spindle driven winding
(C) Pirn winding
(D) Weft winding
2. In, the yarn passes through two plates in which one plate is the baseplate
and the other is a weighing plate.
(A) Electronic tensioner
(B) Additive type tensioner
(C) Multiplicative type tensioner
(D) Roller tensioner
3. In case of plain weave fabric, the respective warp and weft counts are 30 tex and 20
tex, with 40 ends per cm and 30 picks per cm. The warp has 10% crimp and weft also
10% crimp. Calculate the weight of fabric in grams/square meter.
(A) 178
(B) 188
(C) 198
(D) 208
4. In system, a warping beam with a complex pattern of colored stripes is
obtained.
(A) Direct beam warping
(B) Ball warping
(C) Sectional warping
(D) Warp sizing machine
5. In the slasher sizing machine, the principle involved in drying the wet warp sheet by
physical contact with a hot drum surface is

(A) Conduction	
(B) Convection	
(C) Radiation	
(D) Combined convection and radiation	
6. To prevent the growth of microorganisms,	is added to the size paste.
(A) Adhesive material	
(B) Softener	
(C) Antistatic agent	
(D) Antiseptic agent	
7. The material flow of the warp sheet through dif	ferent zones in a sizing machine is
A. Drying zone	
B. Size box zone	
C. Beaming zone	
D. Creel zone	
(A) A, C, B, D	
(B) D, B, A, C	
(C) C, A, D, B	
(D) B, D, C, A	
8. The machine is used to produce a suit	itable package of weft yarn for a
shuttle loom.	
(A) Pirn winding	
(B) Cone winding	
(C) Sectional warping	

9. Match Type of shed with Position of warps.

	LIST I	LIST II
	Type of shed	Position of warps
	A. Fully open shed	I. All warp returns to mid-position before the
		next shedding
	B. Semi-open shed	II. All ends come down to the bottom
		position before the next shedding
	C. Center closed shed	III. Unnecessary movements of the warps are
		avoided
	D. Bottom closed shed	IV. A few healds move half the distance from
		the depth of the shed and go back to their
		top position for next shedding
(A) A-II,	, B-III, C-I, D-IV	
(B) A-III	I, B-II, C-IV, D-I	
	I, B-IV, C-I, D-II	
(C) A-III	i, D-1 v, C-1, D-11	
	, B-I, C-IV, D-III	
(D) A-II,	, B-I, C-IV, D-III	vice is required to close the hook of needle during loop
(D) A-II,	, B-I, C-IV, D-III	vice is required to close the hook of needle during loop
(D) A-II, 10. In	, B-I, C-IV, D-III, an external dev	vice is required to close the hook of needle during loop
(D) A-II, 10. In formation (A) Latel	, B-I, C-IV, D-III, an external dev	vice is required to close the hook of needle during loop
(D) A-II, 10. In formation (A) Latch (B) Com	, B-I, C-IV, D-III , an external devon. h Needle	vice is required to close the hook of needle during loop
(D) A-II, 10. In formation (A) Latch (B) Com (C) Bear	, B-I, C-IV, D-III , an external devent. h Needle pound Needle	vice is required to close the hook of needle during loop
(D) A-II, 10. In formation (A) Latch (B) Com (C) Bear	, B-I, C-IV, D-III , an external devent. h Needle pound Needle ded Needle	vice is required to close the hook of needle during loop
(D) A-II, 10. In formation (A) Latch (B) Com (C) Beard (D) Sewin	, an external devon. h Needle pound Needle ded Needle ing Needle	
(D) A-II, 10. In formation (A) Latch (B) Com (C) Bear (D) Sewin 11. In	, B-I, C-IV, D-III , an external develon. h Needle pound Needle ded Needle ing Needleweft knitting materials.	achine, the needles in the two beds are not face to face
(D) A-II, 10. In _ formation (A) Latel (B) Com (C) Bear (D) Sewin 11. In _ but need	, B-I, C-IV, D-III , an external develon. h Needle pound Needle ded Needle ing Needleweft knitting materials.	achine, the needles in the two beds are not face to face
(D) A-II, 10. In _ formation (A) Latel (B) Com (C) Bear (D) Sewin 11. In _ but need	, an external devon. h Needle pound Needle ded Needle ing Needle weft knitting malles in one bed are in between	achine, the needles in the two beds are not face to face
(D) A-II, 10. In formation (A) Latch (B) Com (C) Bear (D) Sewin 11. In but need (A) Sing (B) Rib I	, an external devon. h Needle pound Needle ded Needle ing Needle weft knitting malles in one bed are in between	achine, the needles in the two beds are not face to face

12. In the warp knitting machine,	_ of the guide bar takes place either from
the front of the needles to the back or from	the back of the needles to the front.

- (A) Swinging motion
- (B) Shogging motion
- (C) Vertical motion
- (D) Circular motion

13. In nonwoven fabric manufacturing, the melt spinning process produces ______.

- (A) Spun bonded web
- (B) Aerodynamically formed web
- (C) mechanically formed web
- (D) wetlaid web

14. Match Direction with Orientation of fibers on the web.

	LIST I	LIST II
	Direction	Orientation of fibers
	A. Longitudinal orientation	I. Not oriented
	B. Transverse orientation	II. Fibres laid in machine
		direction and width-wise
		directions
	C. Cross directional web	III. Fibres laid in a machine
		direction
	D. Random oriented web	IV. Fibres laid in a width-wise
		direction
(A) A - IV, B -	I, C - III, D - II	
(B) A - II, B - I	III, C - I, D - IV	
(C) A - I, B - II	I, C - IV, D - III	
(D) A - III, B -	IV, C - II, D - I	

15. In non-wov	en fabric manufacturing, the surgical face masks are produced by
(A) Spunbond to	echnology
(B) Meltblown t	technology
(C) Carded web	
(D) Wet laid tec	hnology
16. Calculate the	he production per shift of 8 hrs of a loom running at 200 picks/min with
90% efficiency.	The number of picks per inch inserted in the cloth is 56.
(A) 10.4 yards	
(B) 20.0 yards	
(C) 30.0 yards	
(D) 42.86 yards	
17. In	mechanism, the shuttle passes through the shed from one shuttle box
to the opposite	shuttle box.
(A) Shedding	
(B) Picking	
(C) Beat up	
(D) Let off	
18. In	rapier, the gripper heads are propelled by flexible tape.
(A) Telescopic	
(B) Double bone	ded rigid
(C) Flexible	
(D) Single head	rigid
19. In case of w	veft knitted fabric structure, each wale consists of alternate
face and back l	oops.
(A) Rib	

(C) Interlock		
(D) Purl		
20. A cotton	fabric is treated wit	th a finishing chemical of 6.0 % concentration. If the
wet pick up	is 80 %, the add-on	of chemical on fabric is
(A) 1.48 %		
(B) 4.8 %		
(C) 3.48 %		
(D) 0.48 %		
21. The prod	cess of removal of pr	otruding fibers from the surface of fabric is called as
•		
(A) Singeing	5	
(B) Bleachin	g	
(C) Shearing	;	
(D) Cropping	g	
22. Match M	Aachine with Princip	ole.
	LIST I	LIST II
	Machine	Principle
	A. Tub dyeing	I. Moving the textile material through the
		stationary dye liquor.
	B. Jigger dyeing	II. Pumping the dye liquor through the
		stationary textile.
	C. Package dyeing	III. Moving the textile material and dyeing

 $(A)\ A - IV,\ B - I,\ C - II,\ D - III$

D. Jet dyeing

(B) Plain single jersey

liquor simultaneously.

stationary.

IV. Textile materials and dye liquor are

(B) A - I, B - III, C - II, D - IV	
(C) A - I, B - II, C - IV, D - III	
(D) A - III, B - I, C - IV, D - II	
23. Objectives of scouring of cotton.	
A. To remove natural fatty matter from textiles.	
B. To remove added fatty matter from textiles.	
C. To remove pectins from textiles.	
D. To remove coloring matter from textiles.	
(A) A, B and D only	
(B) A and C only	
(C) A, B, C and D	
(D) C and D only	
24. Process sequence for polyester/wool blended knitted goods (Crisp handle).	
A. Light brushing.	
B. Open steam (allowing full relaxation).	
C. Decatising.	
D. Close cropping on face side of fabric.	
(A) A, B, C, D	
(B) A, C, B, D	
(C) B, A, D, C	
(D) C, B, D, A	
25. The reactive dyes are applied to Cellulosic fiber in an alkaline dyeing bath, by	
chemically reacting to form with the hydroxyl group of the fiber.	
(A) Salt linkage	
(B) Hydrogen bond	

(C) Ionic bond

(D) Covalent bond

26. Desizing of a grey cotton fabric having a starch-based size can not be done using
(A) Amylase enzyme
(B) Dilute hydrochloric acid
(C) DMDHEU
(D) Hydrogen peroxide
27. Which among the following is not a characteristic of a binder?
A. Capable of application by dry cure to form a film, trapping the pigment on the
surface of the substrate
B. Provide adhesion of the pigment to the substrate surface
C. Able to crosslink in order to form a protective film
D. Non-elastic properties to allow for bending and stretching of the substrate after
printing
(A) A
(B) B
(C) C
(D) D
28. The Pad - Dry - Cure process is followed in
(A) Reactive Dyeing
(B) Pigment dyeing
(C) Vat dyeing
(D) Direct dyeing
29. The after treatment of certain direct dyes with 0.25-2% copper sulphate and 1%
acetic acid for 20-30 mins at 60°C to improve
(A) Washing fastness
(B) Light fastness

(C) Light and washing fastness both
(D) Perspiration fastness
30. Vatting process does not accelerate due to
(A) Temperature
(B) Concentration of alkali
(C) Concentration of reducing agent
(D) Time
31. The light fastness of azoic dyed material decreases mainly due to
(A) Depth of color
(B) Type of fabric
(C) Humidity
(D) Type of substrate
32. In the pad-steam process of vat dye, intermediate drying is carried out for
(A) Better fixation
(B) Prevention of pigment migration
(C) Increase in color depth
(D) Avoiding color change
33. Which dye is responsible for tendering of cotton?
(A) Reactive dye
(B) Basic dye
(C) Sulphur dye
(D) Azoic dye
34. The maximum damage to cotton in sodium hypochlorite is found at pH

(A) 3 to 4	Į.
(B) 5 to 6	
(C) 7 to 8	}
(D) 9 to 1	0
35	has the highest Biological Oxygen Demand (BOD).
(A) Corn	starch
(B) Britis	h gum
(C) C. M	. C.
(D) Polyv	vinyl alcohol
36. In we	et spinning process, the solvent removal and fiber solidification takes place
$\mathbf{during}\ _$	stage.
(A) Draw	ving
(B) Wet o	coagulation
(C) Span	finish
(D) Heat	setting
37. The 7	Transmission Electron Microscopy (TEM) is used for the study of
structure	e of fibrous material.
(A) Surfa	ce
(B) Intern	nal
(C) Local	lised
(D) Exter	rnal
38. The t	term wash and wear is used in the case of polyester fiber due to its
(A) High	amorphousity and high water absorption
(B) Low	crystalline and low water absorption
(C) Poor	water absorption and high crease recovery
(D) High	water absorption and low crease recovery

39. The glass fiber is fiber.
(A) Protein
(B) Inorganic
(C) Cellulosic
(D) Elastomeric
40. The wool fiber exhibits high elastic recovery among the natural fibers due to its
(A) Strong inter-molecular linkages
(B) Weak lateral forces
(C) Poor molecular arrangement
(D) High crystalline region
41. The outstanding features of polyamide fiber are
A. Good dimensional stability.
B. High wet modulus.
C. High resistance to alkali.
D. Low strength and high elongation.
(A) A, B and D only
(B) A, B and C only
(C) A, B, C and D
(D) B, C and D only
42. Arrange the following transition temperatures given by Differential Scanning
Calorimetry (DSC) in ascending order.
A. Melting temperature
B. Crystallization temperature
C. Degradation temperature
D. Glass transition temperature

(A) D, B, A, C (B) A, C, B, D (C) B, A, D, C (D) C, B, D, A 43. Match Fibre with Application. LIST I LIST II **Fibre Application** A. Silk fibre I. Fire retardant B. Wool fibre II. Directional lustre C. Nomex fibre III. Bulletproof D. Kevlar fibre IV. Thermal insulation (A) A - I, B - II, C - III, D - IV (B) A - II, B - III, C - II, D - IV (C) A - II, B - IV, C - I, D - III (D) A - III, B - I, C - IV, D - II 44. The monomer used in the manufacture of Nylon 6 fiber is _____. (A) Hexamethylene diamine (B) Adipic acid (C) Caprolactam (D) Terephthalic acid 45. On mercerization, moisture regain of cotton fiber ______. (A) Decreases

(B) Remain unchanged

(C) Increases

(D) Indeterminate

A. Linear polymer			
B. Three dimensional polymer			
C. High molecular weight D. Strong lateral forces			
(B) A, B and C only			
(C) A, C and D only			
(D) A, C and D only			
47. The acrylic fiber is called artificial wool due to formed on removal of			
solvent during manufacturing.			
(A) Twist			
(B) Serrations			
(C) Voids			
(D) Faults			
48. The objective of the filament drawing process is to improve the of a fibro			
(A) Crystallinity			
(B) Molecular orientation			
(C) Density			
(D) Thickness			
49. The melting temperature of Nylon 6 fiber is			
(A) 180° C			
(B) 120° C			
(C) 218° C			
(D) 265° C			
50. The primary functions of Spin finish are			
A. Lubrication of fiber surface			

B. Drawing of filaments			
C. Antistatic action			
D. Cohesion of filaments			
(A) A, C and D only			
(B) A, B and C only			
(C) A, B, C and D			
(D) B, C and D only			
51. The strength of yarn decreases with the increase in specimen length due to more			
chances of the occurrence of places in longer specimen.			
(A) Faults			
(B) Strong			
(C) Weak			
(D) Very strong			
52. The KES-FB module of Kawabata hand evaluation instruments gives			
52. The KES-FB module of Kawabata hand evaluation instruments gives A. Linearity of the load elongation curve.			
A. Linearity of the load elongation curve.			
A. Linearity of the load elongation curve. B. Compression resilience.			
A. Linearity of the load elongation curve.B. Compression resilience.C. Tensile energy.			
A. Linearity of the load elongation curve.B. Compression resilience.C. Tensile energy.D. Bending rigidity.			
 A. Linearity of the load elongation curve. B. Compression resilience. C. Tensile energy. D. Bending rigidity. (A) A, C and D only 			
 A. Linearity of the load elongation curve. B. Compression resilience. C. Tensile energy. D. Bending rigidity. (A) A, C and D only (B) A, B and C only 			
A. Linearity of the load elongation curve. B. Compression resilience. C. Tensile energy. D. Bending rigidity. (A) A, C and D only (B) A, B and C only (C) A, B, C and D			
A. Linearity of the load elongation curve. B. Compression resilience. C. Tensile energy. D. Bending rigidity. (A) A, C and D only (B) A, B and C only (C) A, B, C and D (D) A, B and D only			
A. Linearity of the load elongation curve. B. Compression resilience. C. Tensile energy. D. Bending rigidity. (A) A, C and D only (B) A, B and C only (C) A, B, C and D (D) A, B and D only 53. The control and reduction of short fiber content have a direct impact on			
A. Linearity of the load elongation curve. B. Compression resilience. C. Tensile energy. D. Bending rigidity. (A) A, C and D only (B) A, B and C only (C) A, B, C and D (D) A, B and D only 53. The control and reduction of short fiber content have a direct impact on			

	3 T
(D)	Neps

- 54. The periodic mass variations in yarn are mainly caused by ______.
- (A) Machine faults
- (B) Machine setting
- (C) Random fiber arrangement
- (D) Personal error
- 55. Match the LIST I with LIST II.

LIST I	LIST II
A. Tear strength	I. Contact angle test
B. Water repellency	II. Periodic faults
C. Seldom occurring faults	III. Impact principle
D. Spectrogram	IV. Classimat

- (A) A I, B II, C III, D IV
- (B) A I, B III, C II, D IV
- (C) A III, B I, C IV, D II
- (D) A III, B I, C IV, D II
- 56. The cotton fiber exhibits poor crease recovery due to _____.
- (A) Strong lateral linkages
- (B) Flexible polymer chain
- (C) Weak lateral linkages
- (D) Breakage of polymer chains
- 57. With all other parameters constant, the fabric with a low cover factor effectively transmits water vapor by a diffusion mechanism in comparison with that of fabric with a high cover factor due to ______.
- (A) More air space
- (B) Less thickness

(C) High thickness	
(D) Less air space	
58. The strength of fiber is usually	measured in bundle form because there is better
correlation between fiber bundle s	trength and
(A) Yarn hairiness	
(B) Yarn unevenness	
(C) Yarn strength	
(D) Yarn twist	
59. The thermal insulation of cloth	ning mainly depends on fabric
(A) Thickness	
(B) Stiffness	
(C) Crease recovery	
(D) Weight	
60. A 100-meter skein of polyester	filament yarn weighs 2.5 grams, calculate its tex
number.	
(A) 12 tex	
(B) 25 tex	
(C) 17 tex	
(D) 21 tex	
61. The electrical conductivity of f	iber on increase in moisture absorption.
(A) increases	
(B) decreases	
(0) 1 1	
(C) unchanged	

62. In the fineness measurement by Sheffield micronaire instrument, the flow of air			
through a plug of fibers is related to of fiber.			
(A) Area of cross section			
(B) Perimeter			
(C) Weight per unit length			
(D) Specific surface			
63. Which of the following methods are indirect methods for determining the maturity			
of cotton fibers?			
A. Polarised light method			
B. Causticare method			
C. Differential dyeing method			
D. Caustic Soda swelling method			
(A) Only A, B and D			
(B) Only A, B and C			
(C) Only C and D			
(D) All A, B, C and D			
64. In the twisting zone, if the rear end of the fiber is not in the nip of the delivery			
rollers of the ringframe, the fiber will be under no control, which causes			
(A) Hairiness			
(B) Nep			
(C) Thick place			
(D) Nap			
65. The heart loop test of measurement of fabric stiffness is especially used for			
fabrics.			
(A) Heavy			
(B) Stiff			
(C) Limpy			

(D) Knitted

66. Choose the correct answer from the options given below:

Arrange the machines of a ring spinning line in the sequence.

- A. Ring Frame
- **B.** Carding
- C. Speed frame
- D. Draw frame
- (A) A I, B II, C III, D IV
- (B) A III, B I, C II, D IV
- (C) A II, B I, C IV, D III
- (D) A III, B I, C IV, D II

67. Match the LIST-I with LIST-II.

LIST-I	LIST-II
Machine part	Function
A. Taker-in	I. Individualisation of fibres
B. Cylinder	II. Takes the fibers from
	cylinder surface
C. Flats	III. Pluck the flocks from feed
	roller
D. Doffer	IV. Elimination of neps

- (A) A, B and D only
- (B) A, B and C only
- (C) A, B, C and D
- (D) C and D only
- 68. Choose the correct tasks of the rotor spinning machine.
- A. Fibre separation
- **B.** Ordering the fibres in the strand

C. Imparting strength by twisting

D. Removal of neps

- (A) Airjet spinning
- (B) Ring spinning
- (C) Open end spinning
- (D) Friction spinning

69. In	modern spinning system, the rotation of yarn arises from the rotary
movement of the	two drums and is generated by frictional contact at the drum surface.

- (A) Middle and front rollers
- (B) Front roller and spindle
- (C) Back and middle rollers
- (D) Cool and back roller

70. In the drafting system of a ring frame, the break draft is applied between

(A) Middle and front rollers

- (B) Front roller and spindle
- (C) Back and middle rollers
- (D) Cool and back roller

71. Match the LIST-I with LIST-II

LIST-I	LIST-II
Machine	Material
A. Blow room	I. Sliver
B. Carding	II. Yarn
C. Speed frame	III. Lap
D. Ring frame	IV. Roving

- (A) A I, B II, C III, D IV
- (B) A I, B III, C II, D IV

(D) A - III, B - I, C - II, D - IV				
72. On a	machine, two or more single yarns are plied and twisted together.			
(A) Ring frame				
(B) Two for one	B) Two for one twister			
(C) Yarn windin	g			
(D) Speed frame				
73. In the spinr	ning process, a precisely predetermined quantity of short fibers are			
eliminated in $_$	·			
(A) Comber				
(B) Draw frame				
(C) Speed frame				
(D) Carding				
74. The main o	bjective of the ginning process is			
(A) Separation of	of seeds from cotton fibers			
(B) Opening and	d cleaning			
(C) Trash remov	val			
(D) Parallelizati	on of fibers			
75. In a ring bo	obbin, the actual yarn weight is 75 grams with count 30 tex, calculate the			
length of the ya	rn in meters.			
(A) 7500 meters				
(B) 250 meters				
(C) 25 meters				
(D) 2500 meters				

(C) A - III, B - I, C - IV, D - II