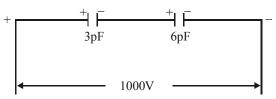

SOLVED PAPER

VITEEE 2006

PART - I (PHYSICS)


- 1 A potential difference of 300 V is applied to a combination of $2.0\mu F$ and $8.0~\mu F$ capacitors connected in series. The charge on the $2.0\mu F$ capacitor is
 - (a) 2.4×10^{-4} C
- (b) 4.8×10^{-4} C
- (c) 7.2×10^{-4} C
- (d) 9.6×10^{-4} C
- 2. Two point charges $4\mu C$ and $-2\mu C$ are separated by a distance of 1 m in air. Then the distance of the point on the line joining the charges, where the resultant electric field is zero, is (in metre)
 - (a) 0.58
- (b) 0.75
- (c) 0.67
- (d) 0.81
- 3. Figure shows a triangular array of three point charges. The electric potential V of these source charges at the midpoint P of the base of the triangle is

$$\left[\frac{1}{4\pi \in_0} = 9 \times 10^9 \,\mathrm{Nm}^2 \mathrm{C}^{-2} \right]$$

- (a) 55kV
- (b) 45kV
- (c) 63kV
- (d) 49kV

- 4. A current of 5A is passing through a metallic wire of cross-sectional area $4 \times 10^{-6} \text{m}^2$. If the density of the charge carriers in the wire is $5 \times 10^{26} \text{m}^{-3}$, the drift speed of the electrons will be $[e = 1.602 \times 10^{-19} \text{C}]$
 - (a) $1.56 \times 10^{-2} \text{ms}^{-1}$
- (b) $1.98 \times 10^{-2} \text{ms}^{-1}$
- (c) $2.42 \times 10^{-2} \text{ms}^{-1}$
- (d) $2.84 \times 10^{-2} \text{ms}^{-1}$
- 5. The series combination of two capacitors shown in figure is connected across 1000V. The magnitude of the charges on the capacitors will be

- (a) 3×10^{-9} C
- (b) $2 \times 10^{-9} \,\mathrm{C}$
- (c) 2.5×10^{-9} C
- (d) 3.5×10^{-9} C
- 6. Three resistances of values 2Ω , 3Ω and 6Ω are to be connected to produce an effective resistance of 4Ω . This can be done by connecting
 - (a) 6Ω resistance in series with the parallel combination of 2Ω and 3Ω
 - (b) 3Ω resistance in series with the parallel combination of 2Ω and 6Ω
 - (c) 2Ω resistance in series with the parallel combination of 3Ω and 6Ω
 - (d) 2Ω resistance in parallel with the parallel combination of 3Ω and 6Ω
- 7. The resistance of a field coil measures 50Ω at 20° C and 65Ω at 70° C. The temperature coefficient of resistance is
 - (a) 0.0086/°C
- (b) 0.0068/°C
- (c) 0.0096/°C
- (d) 0.0999/°C
- B. The electrolyte used in Lechlanche cell is
 - (a) copper sulphate solution
 - (b) ammonium chloride solution
 - (c) dilute sulphuric acid
 - (d) zinc sulphate

11.	(a) 3A (b) 2A (c) 4A (d) 1A In the presence of magnetic field 'B' and electric field 'E', the total force on a moving charged		A ray of light strikes a piece of glass at an angle of incidence of 60° and the reflected beam is completely plane polarised. The refractive index of glass is		
	particle is		(a) $2\sqrt{3}$ (b) $\sqrt{3}$		
	(a) $\vec{\mathbf{F}} = \vec{\mathbf{v}}[(\vec{\mathbf{q}} \times \vec{\mathbf{B}}) + \vec{\mathbf{E}}]$		(c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{2}$		
	(b) $\vec{F} = q[(\vec{v} \times \vec{E}) + \vec{B}]$		2 2		
	(c) $\vec{\mathbf{F}} = \mathbf{q}[(\vec{\mathbf{v}} \times \vec{\mathbf{B}}) + \vec{\mathbf{E}}]$	20.	In an experiment on Newton's rings, the diameter of the 20 th dark ring was found to be 5.82mm and		
	(d) $\vec{F} = \vec{B}[(\vec{q} \times \vec{E}) + \vec{v}]$		that of the 10 th ring 3.36 mm. If the radius of the		
12.	A circular coil of radius 40 mm consists of 250 turns of wire in which the current is 20mA. The		plano-convex lens is 1 m, the wavelength of light used is		
	magnetic field in the center of the coil is		(a) 5646 A° (b) 5896 A°		
	$[\mu = 4\pi \times 10^{-7} \mathrm{Hm}^{-1}]$		(c) 5406 A° (d) 5900 A°		
	(a) 0.785G (b) 0.525G	21.	What is the angular momentum of an electron in		
13.	(c) 0.629G (d) 0.900G RMS value of AC is of the peak value.		the fourth orbit of Bohr's model of hydrogen		
15.	(a) 7% (b) 7.7%		atom?		
	(a) 7/8 (b) 7.7/8 (c) 70% (d) 70.7%		h 2h		
14.	Q-factor can be increased by having a coil of		$(a)\frac{h}{2\pi} \qquad \qquad (b)\frac{2h}{\pi}$		
	(a) large inductance, small ohmic resistance				
	(b) large inductance, large ohmic resistance		(c) h (d) $\frac{h}{4\pi}$		
	(c) small inductance, large ohmic resistance		(c) h (d) $\frac{\pi}{4\pi}$		
	(d) small inductance, small ohmic resistance		The transition of an electrom from $n_2 = 5.6$,		
15.	A small piece of metal wire is dragged across the		to $n_1 = 4$ gives rise to		
	gap between the pole pieces of a magnet in 0.5		(a) Pfund series (b) Lyman series		
	second. The magnetic flux between the pole		(c) Paschen series (d) Brackett series		
	pieces is known to be 8×10^{-4} Wb. The emf	23.	The ground state energy of hydrogen atom is –		
	induced in the wire is (a) 16 mV (b) 1.6 V		13.6 eV. What is the potential energy of the		
	(a) 16mV (b) 1.6V (c) 1.6mV (d) 16V		electron in this state?		
16.	Current in the LCR circuit becomes extremely		(a) -27.2eV (b) -13.6eV		
10.	large when		(c) $+13.6 \text{eV}$ (d) 0eV		
	(a) frequency of AC supply is increased	24.	The longest wavelength that can be analysed		
	(b) frequency of AC supply is decreased		by a sodium chloride crystal of spacing $d = 2.82$		
	(c) inductive reactance becomes equal to		A° in the second order is		
	capacitive reactance		(a) $2.82 \mathrm{A}^{\circ}$ (b) $5.64 \mathrm{A}^{\circ}$		
	(d) inductance becomes equal to capacitance		(c) $8.46 \mathrm{A}^{\circ}$ (d) $11.28 \mathrm{A}^{\circ}$		

Our eyes respond to wavelengths ranging from

A new system of units is evolved in which the

values of μ_0 and $\epsilon_0 are \, 2$ and 8 respectively. Then the speed of light in this system will be

A ray of light strikes a piece of glass at an angle

(b) 0.5

(d) 1

(a) $400 \, \text{nm} \, \text{to} \, 700 \, \text{nm}$

(b) 700 nm to 800 nm

(c) $0 \text{ to } \infty$ (d) $-\infty$ to $+\infty$

(a) 0.25

(c) 0.75

19.

9.

galvanometer]

A galvanometer has a resistance of 50Ω . If a

resistance of 1Ω is connected across its

terminals, the total current flow through the

galvanometer is $[I_g]$ represents the maximum current that can be passed through the

(a) 42 I_g (b) 53 I_g
(c) 46 I_g (d) 51 I_g
In a tangent galvanometer, a current of 1A

produces a deflection of 30°. The current required

to produce a deflection of 60° is

- 25. Which is the incorrect statement of the following?
 - (a) Photon is a particle with zero rest mass
 - (b) Photon is a particle with zero momentum
 - (c) Photons travel with velocity of light in vacuum
 - (d) Photons even feel the pull of gravity
- The deBroglie wavelength associated with a steel ball of mass 1000 gm moving at a speed of 1 ms⁻¹ is $[h = 6.626 \times 10^{-34} \text{ Js}]$

 - (a) 6.626×10^{-31} m (b) 6.626×10^{-37} m
 - (c) 6.626×10^{-34} m (d) 6.626×10^{34} m
- The velocity v, at which the mass of a particle is double its rest mass is

 - (a) v = c (b) $v = \sqrt{\frac{3}{4}}c$
 - (c) $v = \sqrt{\frac{3}{2}}c$
- (d) v = 2c
- How much energy is produced, if 2 kg of a substance is fully converted into energy? $[c = 3 \times 10^8 \, \text{ms}^{-1}]$
 - (a) $9 \times 10^{16} \,\text{J}$
- (b) $11 \times 10^{16} \,\mathrm{J}$
- (c) $15 \times 10^{16} \,\mathrm{J}$
- (d) $18 \times 10^{16} \,\mathrm{J}$
- The difference between the rest mass of the nucleus and the sum of the masses of the nucleons composing a nucleus is known as
 - packing fraction (b) mass defect
 - (c) binding energy (d) isotopic mass
- The half life period of Radium is 3 minute. Its mean life time is
 - (a) 1.5 minute
- (b) $\frac{3}{0.6931}$ minute
- (c) 6 minute
- (d) (3×0.6931) minute
- 'Pair production' involves conversion of a 31. photon into
 - (a) a neutron-electron pair
 - (b) a positron-neutron pair
 - (c) an electron-proton pair
 - (d) an electron-positron pair
- The sub atomic particles proton and neutron fall under the group of
 - (a) mesons
- (b) photons
- (c) leptons
- (d) baryons

- When the conductivity of a semiconductor is only due to the breaking up of the covalent bonds, the semiconductor is known as
 - (a) donor
- (b) extrinsic
- (c) intrinsic
- (d) acceptor
- 34. In a P-type semiconductor, the acceptor impurity produces an energy level
 - (a) just below the valence band
 - (b) just above the conduction band
 - (c) just below the conduction band
 - (d) just above the valence band
- 35. An oscillator is essentially
 - an amplifier with proper negative feedback network circuits
 - converts alternating current into direct current
 - an amplifier with no feedback network (c)
 - an amplifier with proper positive feedback network circuits
- 36. Which of the following gates can perform perfect binary addition?
 - (a) AND gate
- (b) OR gate
- (c) EXOR gate
- (d) NAND gate
- The frequency of an FM transmitter without signal input is called
 - (a) the centre frequency
 - modulation factor (b)
 - the frequency deviation
 - (d) the carrier swing
- The fundamental radio antenna is a metal rod which has a length equal to
 - (a) λ in free space at the frequency of operation
 - (b) $\frac{\lambda}{2}$ in free space at the frequency of operation
 - (c) $\frac{\lambda}{4}$ in free space at the frequency of operation
 - (d) $\frac{3\lambda}{4}$ in free space at the frequency of operation
- Vidicon works on the principle of
 - (a) electrical conductivity
 - (b) photoconductivity
 - (c) thermal conductivity
 - (d) SONAR

40.	The	maximum range, d _{max} of radar is
	(a)	proportional to the cube root of the peak
		transmitted power
	(b)	proportional to the fourth root of the peak
		transmitted power
	(c)	proportional to the square root of the peak
		transmitted power
	(d)	not related to the peak transmitted power
		at all

PART - II (CHEMISTRY)

41.	The	equivalent	weight	of	potassium
	permanganate when it acts as oxidising agent in				
	ferrous ion estimation is				
				_	

- 158 (a)
- (b) 31.6
- (c) 79
- (d) 39.5

The magnetic moment of lanthanide ions is determined from which one of the following relation?

- $\mu = \sqrt{n(n+2)}$ (b) $\mu = g\sqrt{J(J+1)}$ (a)

- $\mu = g\sqrt{n(n+1)}$ (d) $\mu = 2\sqrt{n(n+1)}$
- Which one of the following has maximum number of unpaired electrons?
 - (a) Mg^{2+}
- (b) Ti³⁺
- (c) V^{3+}
- (d) Fe^{2+}

Excess of NaOH reacts with Zn to form

- (a) ZnH₂
- (b) Na_2ZnO_2
- (c) ZnO
- (d) $Zn(OH)_2$

How many isomers does Co(en)₂Cl₂⁺ have?

- (b) 3
- (c) 2
- (d) 4

46. NH₃ group in a coordination compound is named

- (a) ammonium
- (b) ammine
- (c) amine
- (d) ammonia

Name the complex $Ni(PF_3)_4$

- (a) tetrakis (phosphorus (III) fluoride) nickel
- (b) tetra (phosphorus (III) fluoride) nickel
- (c) Nickel tetrakis phosphorus (III) fluoride
- (d) (phosphorus (III) tetrakis fluoride) nickel

48. The purple colour of KMnO₄ is due to

- (a) charge transfer (b) d-d transition
- (c) f-f transition
- (d) d-f transition

How many lattice points belong to a face centered cubic unit cell?

- (a) 1
- (b) 2
- (c) 4
- (d) 3

50. Schottky defect in solids is due to

- (a) a pair of cation and anion vacancies
- occupation of interstitial site by a pair of cation and anion
- occupation of interstitial site by a cation
- (d) occupation of interstitial site by an anion
- 51. Which one of the following is amorphous?
 - (a) Polystyrene
- (b) Table salt
- (c) Silica
- (d) Diamond

52. The metal that crystallises in simple cubic system is

- (a) Po
- (b) Na
- (c) Cu
- (d) Ag

When ideal gas expands in vacuum, the work done by the gas is equal to

- (a) PV
- (b) RT
- (c) 0
- (d) nRT

For a closed system consisting of a reaction $N_2O_4(g) \rightarrow 2NO_2(g)$, the pressure

- (a) remains constant (b) decreases
- (c) increases
- (d) becomes zero

6 moles of an ideal gas expand isothermally and reversibly from a volume of 1 litre to a volume of 10 litres at 27°C. What is the maximum work done?

- (a) 47 kJ
- (b) 100 kJ
- (c) 0
- (d) 34.465 kJ

The reaction,

 $Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$ is an example of a

- (a) spontaneous process
- (b) isobaric process
- (c) non-spontaneous process
- (d) reversible process

For the reaction, $H_2(g) + I_2(g) \iff 2HI(g)$

- (a) $K_p = -K_c$ (b) $K_c = 0$ (c) $K_p = K_c$ (d) $K_p = 0$

The increase of pressure on ice ⇔ water at a constant temperature will cause

- (a) water to vaporize (b) water to freeze
- (c) no change
- (d) ice to melt

59. The order of the reaction

$$N_2O_5 \rightarrow N_2O_4(g) + \frac{1}{2}O_2(g)$$
 is

- (c) 1
- (d) 0

- 60. The reactions with low activation energy are always
 - (a) adiabatic
 - (b) slow
 - (c) non-spontaneous
 - (d) fast
- 61. For a cell reaction to be spontaneous, the standard free energy change of the reaction must be
 - (a) zero
- (b) positive
- (c) infinite
- (d) negative
- 62. Equivalent conductance of an electrolyte containing NaF at infinite dilution is 90.1 Ohm⁻¹cm². If NaF is replaced by KF what is the value of equivalent conductance?
 - (a) $90.1 \, \text{Ohm}^{-1} \text{cm}^2$ (b) $111.2 \, \text{Ohm}^{-1} \text{cm}^2$
 - (c) 0
- (d) 222.4 Ohm⁻¹cm²
- 63. The tendencies of the electrodes made up of Cu, Zn and Ag to release electrons when dipped in their respective salt solutions decrease in the order
 - (a) Zn > Ag > Cu (b) C
 - (b) Cu > Zn > Ag
 - (c) Zn > Cu > Ag
- (d) Ag > Cu > Zn
- 64. The electrode reaction that takes place at the anode of $CH_4 O_2$ fuel cell is
 - (a) $2O_2 + 8H^+ + 8e^- \rightarrow 4H_2O$
 - (b) $CH_4^- + 2H_2O \rightarrow CO_2 + 8H^+ + 8e^-$
 - (c) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
 - (d) $2H^{+} + 2e^{-} \rightarrow H_{2}$
- 65. What is the hybridization of oxygen atom in an alcohol molecule?
 - (a) sp^3
- (b) sp
- (c) sp^2
- (d) p^2
- 66. $R-C-OH \xrightarrow{LiAlH_4} ?$
 - (a) RCH₂CH₂OH (b)
 - (c) RCOR
- (d) RCH₂OH
- 67. Which one of the following is correct?
 - (a) RCH₂OH $\xrightarrow{\text{KMnO}_4}$ No reaction
 - (b) $CH_3CH_2OH \xrightarrow{Na_2Cr_2O_7, H_2SO_4}$ No reaction
 - (c) $CH_3CHO \xrightarrow{Na_2Cr_2O_7, H_2SO_4}$ No reaction

$$\begin{array}{ccc} & CH_3 \\ I \\ CH_3-C-OH \\ CH_3 \end{array}$$

 $alkaline KMnO_4 \rightarrow No reaction$

- 68. Which one of the following products obtained when diethyl ether is boiled with water in presence of dilute acid?
 - (a) Glycol
- (b) Ethyl alcohol
- (c) Ethylene oxide (d) Peroxide
- 69. Identify the product for the following reaction

$$\begin{array}{c} \text{O} \\ \text{CH}_3\text{-C-CH}_3 + \begin{array}{c} \text{CH}_2\text{OH} \\ \text{CH}_2\text{OH} \end{array} \begin{array}{c} \text{HCl} \end{array} ?$$

$$\begin{array}{c} CH_3 \\ I \\ CHOH \\ \end{array} \begin{array}{c} COOH \\ + I \\ COOH \end{array}$$

(b)
$$H_3C$$
 C O CH_2 O CH_2 O CH_2

$$H_3C$$
 C-OH

- (c) CH₃-CHOH
- (d) No reaction
- 70. What is the reaction of acetaldehyde with concentrated sulphuric acid?
 - (a) No reaction
 - (b) Decomposition
 - (c) Charred to black residue
 - (d) Polymerisation
- 71. Calcium Acetate on heating under distillation gives
 - (a) Acetaldehyde and Calcium Oxide
 - (b) Calcium Carbonate and Acetic acid
 - (c) Acetone and Calcium Carbonate
 - (d) Calcium Oxide and CO₂
- 72. Identify the correct statement
 - (a) Aldehydes on reduction give secondary alcohols
 - (b) Ketones on reduction give primary alcohols
 - (c) Ketones reduce Fehling's solution and give red cuprous oxide
 - (d) Ketones do not react with alcohols
- 73. The O H stretching vibration of alcohols absorbs in the region 3700 3500 cm⁻¹. The O H stretching of carboxylic acids absorb in the region
 - (a) $3900 3700 \text{ cm}^{-1}$ (b) $3000 2500 \text{ cm}^{-1}$
 - (c) $3700 3500 \,\mathrm{cm}^{-1}$ (d) $1700 2000 \,\mathrm{cm}^{-1}$
- 74. Which among the following reduces Fehling's solution?
 - (a) Acetic acid
- (b) Formic acid
- (c) Benzoic acid
- (d) Salicylic acid

Determine the experimental condition for the following reaction

$$\begin{array}{c} & & & \\ & &$$

- (a) in presence of KOH
- (b) on heating
- (c) in presence of NaOH
- (d) in presence of HCl
- Which one of the following is an ingredient of Pthalic acid manufacture by catalytic oxidation
 - (a) Benzene
- (b) Salicylic acid
- (c) Anthranilic acid (d) naphthalene
- On comparison with H-C-H bond angle of methane, the C-N-C bond angle of trimethylamine is
 - (a) higher
- (b) no change
- (c) not comparable (d) lower
- The treatment of acylazide (RCON₃) with acidic or alkaline medium gives
 - (a) RCONH₂
- (b) $R NH_2$
- (c) RCH, NH,
- (d) RCOCHNH
- The sequence of basic strength of alkyl amines follows the order
 - (a) $RNH_2 < R_2NH > R_3N$
 - (b) $R_2NH_2 < R_2NH < R_3N$
 - (c) $R_2NH < RNH_2 < R_3N$
 - (d) $RNH_2 < R_2NH < R_3N$
- Activation of benzene ring in aniline can be decreased by treating with
 - (a) dil. HCl
- (b) ethyl alcohol
- (c) acetic acid
- (d) acetyl chloride

PART - III (MATHEMATICS)

The value of x, for which the matrix

$$A = \begin{bmatrix} \frac{2}{x} & -1 & 2\\ 1 & x & 2x^2\\ 1 & \frac{1}{x} & 2 \end{bmatrix}$$
 is singular, is

- (a) ± 1
- (b) ± 2
- $(c) \pm 3$
- $(d) \pm 4$

82. If x = -9 is a root of $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$, then other

two roots are

- (a) 3,7
- (b) 2,7
- (c) 3,6
- (d) 2, 6
- The values of α for which the system of equation x+y+z=1, $x+2y+4z=\alpha$, $x+4y+10z=\alpha^2$ is consistent are given by
 - (a) 1,-2
- (b) -1, 2
- (c) 1,2
- (d) 1,1
- Let $A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 5 & t \\ 4 & 7 t & -6 \end{pmatrix}$, then the values of t

for which inverse of A does not exist

- (a) -2, 1
- (b) 3,2
- (c) 2,-3
- (d) 3,-1
- 85. The non integer roots of

$$x^4 - 3x^3 - 2x^2 + 3x + 1 = 0$$

(a)
$$\frac{1}{2}$$
(3 + $\sqrt{13}$), $\frac{1}{2}$ (3 - $\sqrt{13}$)

(b)
$$\frac{1}{2}(3-\sqrt{13}), \frac{-1}{2}(3+\sqrt{13})$$

(c)
$$\frac{1}{2}(3+\sqrt{17}), \frac{1}{2}(3-\sqrt{17})$$

(d)
$$\frac{1}{2}(3-\sqrt{17}), \frac{-1}{2}(3+\sqrt{17})$$

- 86. If $e^x = y + \sqrt{1 + y^2}$, then the value of y is

 - (a) $\frac{1}{2}(e^x + e^{-x})$ (b) $\frac{1}{2}(e^x e^{-x})$
 - (c) $e^{x} e^{\frac{-x}{2}}$ (d) $e^{x} + e^{\frac{-x}{2}}$
- Consider an infinite geometric series with the 87. first term a and common ratio r. If its sum is 4 and

the second term is $\frac{3}{4}$, then

- (a) $a = \frac{4}{7}, r = \frac{3}{7}$ (b) $a = 2, r = \frac{3}{8}$
- (c) $a = \frac{3}{2}, r = \frac{1}{2}$ (d) $a = 3, r = \frac{1}{4}$

	$ax^2 + bx + c = 0$, then the value of $\alpha^3 + \beta^3$ is		
	(a) $\frac{3abc + b^3}{a^3}$	(b)	$\frac{a^3 + b^3}{3abc}$
	$(c) \frac{3abc - b^3}{a^3}$	(d)	$\frac{-(3abc+b^3)}{a^3}$
89.	The volume of the		
	P(-1, 2, 0), Q(2, 1, -	3), R (1	0, 1 and S $(3, -2, 3)$
	1S		
	(a) $\frac{1}{3}$	(b) $\frac{2}{3}$	2/3
	(c) $\frac{1}{4}$	(d)	$\frac{3}{4}$
90.	If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, \vec{b}	$=-\hat{\mathbf{i}}+\hat{\mathbf{j}}$	$2\hat{j} + \hat{k}$ and
	$\vec{c} = 3\hat{i} + \hat{j}$ then t such	that \vec{a}	$+ t\vec{b}$ is at right angle
	to \vec{c} will be equal to)	

If α and β are the roots of the equation

(a) 5 (b) 4 (c) 6 (d) 2 91. An equation of the plane passing through the line of intersection of the planes x + y + z = 6 and 2x + 3y + 4z + 5 = 0 and passing through (1, 1, 1) (a) 2x+3y+4z=9 (b) x+y+z=3(c) x+2y+3z=6 (d) 20x+23y+26z=69The length of the shortest distance between the lines $\vec{r} = 3\hat{i} + 5\hat{j} + 7\hat{k} + \lambda(\hat{i} - 2\hat{j} + \hat{k})$ and $\vec{r} = -\hat{i} - \hat{j} - \hat{k} + \mu(7\hat{i} - 6\hat{j} + \hat{k})$ is (b) $\sqrt{6}$ units (a) 83 units (c) $\sqrt{3}$ units (d) $2\sqrt{29}$ units The region of the argand plane defined by $|z-i|+|z+i| \le 4$ is (a) interior of an ellipse

(b) exterior of a circle

(c) interior and boundary of an ellipse

(d) interior of a parabola

The value of the sum $\sum_{n=1}^{13} (i^n + i^{n+1})$ where

 $i = \sqrt{-1}$ equals

(a) i

(b) i-1

(c) -i

(d) 0

If $\sin \theta$, $\cos \theta$, $\tan \theta$ are in G.P. then $\cos^9 \theta$ + $\cos^6\theta + 3\cos^5\theta - 1$ is equal to

(a) -1

(b) 0

(c) 1

96. If in a triangle ABC,

 $5\cos C + 6\cos B = 4$ and $6\cos A + 4\cos C = 5$,

then $\tan \frac{A}{2} \tan \frac{B}{2}$ is equal to

(b) $\frac{3}{2}$

(c) $\frac{1}{5}$

(d) 5

In a model, it is shown that an arc of a bridge is semielliptical with major axis horizontal. If the length of the base is 9m and the highest part of the bridge is 3m from horizontal; the best approximation of the height of the arch, 2m from the centre of the base is

(a) $\frac{11}{4}$ m

(b) $\frac{8}{3}$ m

(c) $\frac{7}{2}$ m

(d) 2m

The number of real tangents through (3,5) that can be drawn to the ellipses $3x^2 + 5y^2 = 32$ and $25x^2 + 9y^2 = 450$ is

(a) 0

(b) 2

(c) 3 (d) 4

99. If the normal to the rectangular hyperbola xy =

 c^2 at the point $\left(ct, \frac{c}{t}\right)$ meets the curve again at

$$\left(ct',\frac{c}{t'}\right)$$
, then

(a) $t^3t' = 1$

(b) $t^3t' = -1$

(c) tt' = 1

(d) tt' = -1

100. An equilateral triangle is inscribed in the parabola $y^2 = 4x$ one of whose vertex is at the vertex of the parabola, the length of each side of the triangle is

(a) $\frac{\sqrt{3}}{2}$ (b) $4\frac{\sqrt{3}}{2}$

(c) $8\frac{\sqrt{3}}{2}$

(d) $8\sqrt{3}$

- 101. If f(2) = 4 and f'(2) = 1,
 - then $\lim_{x\to 2} \frac{xf(2)-2f(x)}{x-2}$ is equal to
 - (a) 0
- (b) $\frac{1}{2}$
- (c) 1
- (d) 2
- 102. What is the least value of k such that the function $x^2 + kx + 1$ is strictly increasing on (1,2)
 - (a) 1
- (b) -1
- (c) 2
- (d) -2
- 103. The maximum value of $\left(\frac{1}{x}\right)^x$ is
 - (a) e
- (b) e^e
- (c) $e^{\frac{1}{e}}$
- (d) $\left(\frac{1}{e}\right)^{\frac{1}{e}}$
- 104. If $u = \tan^{-1} \left\{ \frac{x^3 + y^3}{x + y} \right\}$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$
 - (a) sin 2u
- (b) cos 2u
- (c) $\sec^2 2u$
- (d) tan 2u
- 105. If $f'(x) = \frac{x}{\sqrt{1+x}}$ and f(0) = 0, then f(x) = 0
 - (a) $\frac{2}{3}$ $\left\{ (1+x)^{\frac{3}{2}} 6(1+x)^{\frac{1}{2}} + 1 \right\}$
 - (b) $\frac{2}{3} \left\{ (1+x)^{\frac{3}{2}} 3(1+x)^{\frac{1}{2}} + 2 \right\}$
 - (c) $\frac{2}{3} \left\{ (1+x)^{\frac{3}{2}} 4(1+x)^{\frac{1}{2}} + 2 \right\}$
 - (d) $\frac{2}{3} \left\{ (1+x)^{\frac{3}{2}} 3(1+x)^{\frac{1}{2}} + 1 \right\}$

- 106. The value of the integral $\int_{0}^{\frac{\pi}{2}} \log(\tan x) dx =$
 - (a) 0
- (b) 1
- (c) $\frac{\pi}{2}$
- (d) $\frac{\pi}{4}$
- 107. What is the area of a loop of the curve $r = a\sin 3\theta$?
 - (a) $\frac{\pi a^2}{6}$
- $(b)\frac{\pi a^2}{8}$
- (c) $\frac{\pi a^2}{12}$
- (d) $\frac{\pi a^2}{24}$
- 108. The value of the integral $\int_{1}^{9} e^{\sqrt{t}} dt =$
 - (a) e^3
- (b) $4e^3$
- (c) $4(e^3-e)$
- (d) $4e^3 2e$
- 109. The differential equation that represents all parabolas each of which has a latus rectum 4a and whose axes are parallel to the x axis is
 - (a) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$
 - (b) $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$
 - (c) $a \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$
 - (d) $2a\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$
- 110. The solution of $\left(x\csc\left(\frac{y}{x}\right) y\right)dx + xdy = 0$
 - (a) $\log |x| \cos \left(\frac{x}{y}\right) = c$
 - (b) $\log |x| \cos \left(\frac{y}{x}\right) = c$
 - (c) $\log |x| \sin \left(\frac{x}{y}\right) = c$
 - (d) $\log |x| \sin \left(\frac{y}{x}\right) = c$

111.	The particular integral of $\frac{d^2y}{dx^2} + 2y = x^2$ is				
	(a)	x^2-1	(b)	$x^2 + 1$	
	(c)	$\frac{1}{2}(x^2-1)$	(d)	$\frac{1}{2}(x^2+1)$	
112.	The	solution of (D ²	+ 16) y	$=\cos 4x$ is	

- (a) $A\cos 4x + B\sin 4x + \frac{x}{8}\sin 4x$
 - (b) $A\cos 4x + B\sin 4x \frac{x}{8}\sin 4x$
 - (c) $A\cos 4x + B\sin 4x + \frac{x}{4}\sin 4x$
 - (d) $A\cos 4x + B\sin 4x \frac{x}{4}\sin 4x$
- 113. Determine which one of the following relations on $X = \{1,2,3,4\}$ is not transitive.
 - (a) $R_1 = \phi$, the empty relation
 - (b) $R_2 = X \times X$, the universal relation
 - (c) $R_3 = \{(1,3), (2,1)\}$
 - (d) $R_4 = \{(1,1), (1,2), (2,3), (1,3), (4,4)\}$
- 114. Find the number of ways in which five large books, four medium-size books, and three small books can be placed on a shelf so that all books of the same size are together.
 - (a) $5 \times 4 \times 3$
- (b) $5! \times 4! \times 3!$
- (c) $3 \times 5! \times 4! \times 3!$
- (d) $3! \times 5! \times 4! \times 3!$
- 115. Consider the set Q of rational numbers. Let * be the operation on Q defined by a * b = a + b ab. The identity element under * is
 - (a) 0
- (b) 1
- (c) 2
- (d) not exist
- 116. The statement $\sim p \vee q$ is equivalent to
 - (a) $p \rightarrow q$
- (b) $\sim p \rightarrow 0$
- (c) $\sim p \rightarrow \sim q$
- (d) $p \rightarrow \sim q$

- 117. In rolling two fair dice, what is the probability of obtaining a sum greater than 3 but not exceeding 6?
 - (a) $\frac{1}{2}$
- (b) $\frac{1}{3}$
- (c) $\frac{1}{4}$
- (d) $\frac{1}{6}$
- 118. Team A has probability $\frac{2}{3}$ of winning whenever

it plays. Suppose A plays four games. What is the probability that A wins more than half of its games?

- (a) $\frac{16}{27}$
- (b) $\frac{19}{27}$
- (c) $\frac{19}{81}$
- (d) $\frac{32}{81}$
- 119. An unprepared student takes five-questions of true-false type quiz and guesses every answer. What is the probability that the student will pass the quiz if at least four correct answers is the passing grade?
 - (a) $\frac{1}{16}$
- (b) $\frac{3}{16}$
- (c) $\frac{1}{32}$
- (d) $\frac{3}{32}$
- 120. The probability density f(x) of a continuous random variable is given by f(x) =

 $Ke^{-|x|}$, $-\infty < x < \infty$. Then the value of K is

- (a) $\frac{1}{2}$
- (b) 2
- (c) $\frac{1}{4}$
- (d) 4