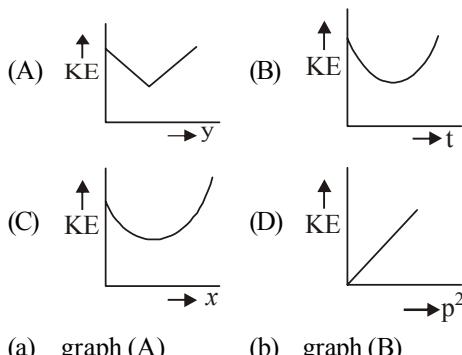


VITEEE 2009 Question Paper

PART - I (PHYSICS)


1 When a wave traverses a medium the displacement of a particle located at x at a time t is given by $y = a \sin(bt - cx)$. Where a , b and c are constants of the wave. Which of the following is a quantity with dimensions?

(a) $\frac{y}{a}$ (b) bt
 (c) cx (d) $\frac{b}{c}$

2. A body is projected vertically upwards at time $t = 0$ and it is seen at a height H at time t_1 and t_2 second during its flight. The maximum height attained is (g is acceleration due to gravity)

(a) $\frac{g(t_2 - t_1)^2}{8}$ (b) $\frac{g(t_1 + t_2)^2}{4}$
 (c) $\frac{g(t_1 + t_2)^2}{8}$ (d) $\frac{g(t_2 - t_1)^2}{4}$

3. A particle is projected up from a point at an angle θ with the horizontal direction. At any time t , if p is the linear momentum, y is the vertical displacement, x is horizontal displacement, the graph among the following which does not represent the variation of kinetic energy KE of the particle is

(a) graph (A) (b) graph (B)
 (c) graph (C) (d) graph (D)

4. A motor of power P_0 is used to deliver water at a certain rate through a given horizontal pipe. To increase the rate of flow of water through the same pipe n times, the power of the motor is increased to P_1 . The ratio of P_1 to P_0 is
 (a) $n : 1$ (b) $n^2 : 1$
 (c) $n^3 : 1$ (d) $n^4 : 1$

5. A body of mass 5 kg makes an elastic collision with another body at rest and continues to move in the original direction after collision with a

velocity equal to $\frac{1}{10}$ th of its original velocity.

Then the mass of the second body is

(a) 4.09 kg (b) 0.5 kg
 (c) 5 kg (d) 5.09 kg

6. A particle of mass 4 m explodes into three pieces of masses m , m and $2m$. The equal masses move along X-axis and Y-axis with velocities 4 ms^{-1} and 6 ms^{-1} respectively. The magnitude of the velocity of the heavier mass is

(a) $\sqrt{17} \text{ ms}^{-1}$ (b) $2\sqrt{13} \text{ ms}^{-1}$
 (c) $\sqrt{13} \text{ ms}^{-1}$ (d) $\frac{\sqrt{13}}{2} \text{ ms}^{-1}$

7. A body is projected vertically upwards from the surface of the earth with a velocity equal to half the escape velocity. If R is the radius of the earth, maximum height attained by the body from the surface of the earth is

(a) $\frac{R}{6}$ (b) $\frac{R}{3}$
 (c) $\frac{2R}{3}$ (d) R

8. The displacement of a particle executing SHM is given by

$$y = 5 \sin\left(4t + \frac{\pi}{3}\right)$$

If T is the time period and the mass of the particle is $2g$, the kinetic energy of the particle when $t = T/4$ is given by

(a) 0.4 J (b) 0.5 J
 (c) 3 J (d) 0.3 J

18. Two sources A and B are sending notes of frequency 680 Hz. A listener moves from A and B with a constant velocity u . If the speed of sound in air is 340 ms^{-1} , what must be the value of u so that he hears 10 beats per second?

(a) 2.0 ms^{-1} (b) 2.5 ms^{-1}
(c) 3.0 ms^{-1} (d) 3.5 ms^{-1}

19. Two identical piano wires have a fundamental frequency of 600 cycle per second when kept under the same tension. What fractional increase in the tension of one wires will lead to the occurrence of 6 beats per second when both wires vibrate simultaneously?

(a) 0.01 (b) 0.02
(c) 0.03 (d) 0.04

20. In the Young's double slit experiment, the intensities at two points P_1 and P_2 on the screen are respectively I_1 and I_2 . If P_1 is located at the centre of a bright fringe and P_2 is located at a distance equal to a quarter of fringe width from P_1 ,

then $\frac{I_1}{I_2}$ is

(a) 2 (b) $\frac{1}{2}$
(c) 4 (d) 16

21. In Young's double slit experiment, the 10^{th} maximum of wavelength λ_1 is at a distance of y_1 , from the central maximum. When the wavelength of the source is changed to λ_2 , 5^{th} maximum is at a distance of y_2 from its central maximum. The

ratio $\left(\frac{y_1}{y_2}\right)$ is

(a) $\frac{2\lambda_1}{\lambda_2}$ (b) $\frac{2\lambda_2}{\lambda_1}$
(c) $\frac{\lambda_1}{2\lambda_2}$ (d) $\frac{\lambda_2}{2\lambda_1}$

22. Four light sources produce the following four waves:

(i) $y_1 = a \sin(\omega t + \phi_1)$
(ii) $y_2 = a \sin 2\omega t$
(iii) $y_3 = a \sin(\omega t + \phi_2)$
(iv) $y_4 = a \sin(3\omega t + \phi)$

Superposition of which two waves give rise to interference?

(a) (i) and (ii) (b) (ii) and (iii)
(c) (i) and (iii) (d) (iii) and (iv)

23. The two lenses of an achromatic doublet should have

(a) equal powers
(b) equal dispersive powers
(c) equal ratio of their power and dispersive power
(d) sum of the product of their powers and dispersive power equal to zero

24. Two bar magnets A and B are placed one over the other and are allowed to vibrate in a vibration magnetometer. They make 20 oscillations per minute when the similar poles of A and B are on the same side, while they make 15 oscillations per minute when their opposite poles lie on the same side. If M_A and M_B are the magnetic moments of A and B and if $M_A > M_B$, the ratio of M_A and M_B is

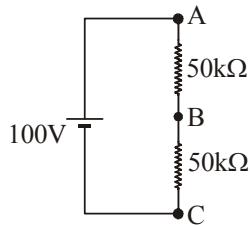
(a) 4 : 3 (b) 25 : 7
(c) 7 : 5 (d) 25 : 16

25. A bar magnet is 10 cm long is kept with its north (N)-pole pointing north. A neutral point is formed at a distance of 15 cm from each pole. Given the horizontal component of earth's field is 0.4 Gauss, the pole strength of the magnet is

(a) 9 A-m (b) 6.75 A-m
(c) 27 A-m (d) 1.35 A-m

26. An infinitely long thin straight wire has uniform

linear charge density of $\frac{1}{3} \text{ cm}^{-1}$. Then, the

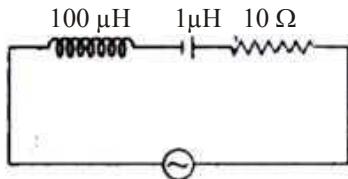

magnitude of the electric intensity at a point 18 cm away is (given $\epsilon_0 = 8.8 \times 10^{-12} \text{ C}^2 \text{ Nm}^{-2}$)

(a) $0.33 \times 10^{11} \text{ NC}^{-1}$ (b) $3 \times 10^{11} \text{ NC}^{-1}$
(c) $0.66 \times 10^{11} \text{ NC}^{-1}$ (d) $1.32 \times 10^{11} \text{ NC}^{-1}$

27. Two point charges $-q$ and $+q$ are located at points $(0, 0, -a)$ and $(0, 0, a)$ respectively. The electric potential at a point $(0, 0, z)$, where $z > a$ is

(a) $\frac{qa}{4\pi\epsilon_0 z^2}$ (b) $\frac{q}{4\pi\epsilon_0 a}$
(c) $\frac{2qa}{4\pi\epsilon_0(z^2 - a^2)}$ (d) $\frac{2qa}{4\pi\epsilon_0(z^2 + a^2)}$

28. In the adjacent shown circuit, a voltmeter of internal resistance R , when connected across B and C reads $\frac{100}{3}$ V. Neglecting the internal resistance of the battery, the value of R is

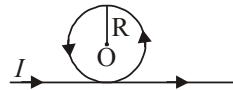


(a) $100\text{ k}\Omega$ (b) $75\text{k}\Omega$
(c) $50\text{k}\Omega$ (d) $25\text{k}\Omega$

29. A cell in secondary circuit gives null deflection for 2.5 m length of potentiometer having 10 m length of wire. If the length of the potentiometer wire is increased by 1 m without changing the cell in the primary, the position of the null point now is

(a) 3.5m (b) 3m
(c) 2.75m (d) 2.0m

30. The following series L-C-R circuit, when driven by an emf source of angular frequency 70 kilo-radians per second, the circuit effectively behaves like


(a) purely resistive circuit
(b) series R-L circuit
(c) series R-C circuit
(d) series L-C circuit with $R = 0$

31. A wire of length l is bent into a circular loop of radius R and carries a current I . The magnetic field at the centre of the loop is B . The same wire is now bent into a double loop of equal radii. If both loops carry the same current I and it is in the same direction, the magnetic field at the centre of the double loop will be

(a) Zero (b) $2B$
(c) $4B$ (d) $8B$

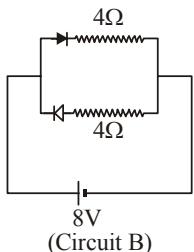
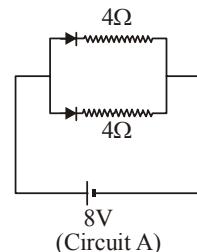
32. An infinitely long straight conductor is bent into the shape as shown below. It carries a current of

I ampere and the radius of the circular loop is R metre. Then, the magnitude of magnetic induction at the centre of the circular loop is

(a) $\frac{\mu_0 I}{2\pi R}$ (b) $\frac{\mu_0 nI}{2R}$
(c) $\frac{\mu_0 I}{2\pi R}(\pi + 1)$ (d) $\frac{\mu_0 I}{2\pi R}(\pi - 1)$

33. The work function of a certain metal is 3.31×10^{-19} J. Then, the maximum kinetic energy of photoelectrons emitted by incident radiation of wavelength 5000 \AA is (Given, $h = 6.62 \times 10^{-34}$ J-s, $c = 3 \times 10^8\text{ ms}^{-1}$, $e = 1.6 \times 10^{-19}$ C)

(a) 2.48 eV (b) 0.41 eV
(c) 2.07 eV (d) 0.82 eV



34. A photon of energy E ejects a photoelectron from a metal surface whose work function is W_0 . If this electron enters into a uniform magnetic field of induction B in a direction perpendicular to the field and describes a circular path of radius r , then the radius r is given by, (in the usual notation)

(a) $\frac{\sqrt{2m(E - W_0)}}{eB}$ (b) $\sqrt{2m(E - W_0)eB}$
(c) $\frac{\sqrt{2e(E - W_0)}}{mB}$ (d) $\frac{\sqrt{2m(E - W_0)}}{eB}$

35. Two radioactive materials x_1 and x_2 have decay constants 10λ and λ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of x_1 to that of x_2 will be $1/e$ after a time

(a) $(1/10\lambda)$ (b) $(1/11\lambda)$
(c) $11/(10\lambda)$ (d) $1/(9\lambda)$

36. Current flowing in each of the following circuit A and B respectively are

(a) 1A, 2A (b) 2A, 1A
 (c) 4A, 2A (d) 2A, 4A

37. A bullet of mass 0.02 kg travelling horizontally with velocity 250 ms^{-1} strikes a block of wood of mass 0.23 kg which rests on a rough horizontal surface. After the impact, the block and bullet move together and come to rest after travelling a distance of 40 m. The coefficient of sliding friction of the rough surface is ($g = 9.8 \text{ ms}^{-2}$)
 (a) 0.75 (b) 0.61
 (c) 0.51 (d) 0.30

38. Two persons A and B are located in X-Y plane at the points (0, 0) and (0, 10) respectively. (The distances are measured in MKS unit). At a time $t = 0$, they start moving simultaneously with velocities $\vec{v}_a = 2\hat{j} \text{ ms}^{-1}$ and $\vec{v}_b = 2\hat{i} \text{ ms}^{-1}$ respectively. The time after which A and B are at their closest distance is
 (a) 2.5s (b) 4s
 (c) 1s (d) $\frac{10}{\sqrt{2}} \text{ s}$

39. A rod of length l is held vertically stationary with its lower end located at a point P, on the horizontal plane. When the rod is released to topple about P, the velocity of the upper end of the rod with which it hits the ground is
 (a) $\sqrt{\frac{g}{l}}$ (b) $\sqrt{3gl}$
 (c) $3\sqrt{\frac{g}{l}}$ (d) $\sqrt{\frac{3g}{l}}$

40. A wheel of radius 0.4 m can rotate freely about its axis as shown in the figure. A string is wrapped over its rim and a mass of 4 kg is hung. An angular acceleration of 8 rad s^{-2} is produced in it due to the torque. Then, moment of inertia of the wheel is ($g = 10 \text{ ms}^{-2}$)
 (a) 2 kg m^2 (b) 1 kg m^2
 (c) 4 kg m^2 (d) 8 kg m^2

41. Given that $\Delta H_f(\text{H}) = 218 \text{ kJ/mol}$, express the H—H bond energy in kcal/mol.
 (a) 52.15 (b) 911
 (c) 104 (d) 52153

42. Identify the alkyne in the following sequence of reactions
 Alkyne $\xrightarrow[\text{Lindlar's catalyst}]{\text{H}_2}$ A $\xrightarrow{\text{Ozonolysis}}$ B only
 $\xleftarrow[\text{Wacker Process}]{}$ $\text{CH}_2 = \text{CH}_2$

(a) $\text{H}_3\text{C}—\text{C}—\text{C}—\text{CH}_3$
 (b) $\text{H}_3\text{C}—\text{CH}_2—\text{C}\equiv\text{CH}$
 (c) $\text{H}_2\text{C}=\text{CH}—\text{C}\equiv\text{CH}$
 (d) $\text{HC}\equiv\text{C}—\text{CH}_2—\text{C}\equiv\text{CH}$

43. Fluorine reacts with dilute NaOH and forms a gaseous product A. The bond angle in the molecule of A is
 (a) $104^\circ 40'$ (b) 103°
 (c) 107° (d) $109^\circ 28'$

44. One mole of alkene X on ozonolysis gave one mole of acetaldehyde and one mole of acetone. The IUPAC name of X is
 (a) 2-methyl-2-butene (b) 2-methyl-1-butene
 (c) 2-butene (d) 1-butene

45. The number of $\text{p}\pi - \text{d}\pi$ 'pi' bonds present in XeO_3 and XeO_4 molecules, respectively are
 (a) 3, 4 (b) 4, 2
 (c) 2, 3 (d) 3, 2

46. The wavelengths of electron waves in two orbits is 3 : 5. The ratio of kinetic energy of electrons will be
 (a) 25 : 9 (b) 5 : 3
 (c) 9 : 25 (d) 3 : 5

47. Which one of the following sets correctly represents the increase in the paramagnetic property of the ions?
 (a) $\text{Cu}^{2+} > \text{V}^{2+} > \text{Cr}^{2+} > \text{Mn}^{2+}$
 (b) $\text{Cu}^{2+} < \text{Cr}^{2+} < \text{V}^{2+} < \text{Mn}^{2+}$
 (c) $\text{Cu}^{2+} < \text{V}^{2+} < \text{Cr}^{2+} < \text{Mn}^{2+}$
 (d) $\text{V}^{2+} < \text{Cu}^{2+} < \text{Cr}^{2+} < \text{Mn}^{2+}$

48. Electrons with a kinetic energy of $6.023 \times 10^4 \text{ J/mol}$ are evolved from the surface of a metal, when it is exposed to radiation of wavelength of 600 nm. The minimum amount of energy required to remove an electron from the metal atom is
 (a) $2.3125 \times 10^{-19} \text{ J}$ (b) $3 \times 10^{-19} \text{ J}$
 (c) $6.02 \times 10^{-19} \text{ J}$ (d) $6.62 \times 10^{-34} \text{ J}$

49. The chemical entities present in thermosphere of the atmosphere are
 (a) $\text{O}_2^+, \text{O}^+, \text{NO}^+$ (b) O_3
 (c) $\text{N}_2, \text{O}_2, \text{CO}_2, \text{H}_2\text{O}$ (d) $\text{O}_3, \text{O}_2^+, \text{O}_2$

PART - II (CHEMISTRY)

41. Given that $\Delta H_f(\text{H}) = 218 \text{ kJ/mol}$, express the H—H bond energy in kcal/mol.
 (a) 52.15 (b) 911
 (c) 104 (d) 52153

50. The type of bonds present in sulphuric anhydride are
 (a) 3σ and three $p\pi-d\pi$
 (b) 3σ , one $p\pi-p\pi$ and two $p\pi-d\pi$
 (c) 2σ and three $p\pi-d\pi$
 (d) 2σ and two $p\pi-d\pi$

51. In Gattermann reaction, a diazonium group is replaced by X using Y. X and Y are

$$\begin{array}{ll} \text{X} & \text{Y} \\ \text{(a)} \quad \text{Cl}^\ominus & \text{Cu/HCl} \\ \text{(b)} \quad \text{Cl}^\oplus & \text{CuCl}_2/\text{HCl} \\ \text{(c)} \quad \text{Cl}^\ominus & \text{CuCl}_2/\text{HCl} \\ \text{(d)} \quad \text{Cl}_2 & \text{Cu}_2\text{O}/\text{HCl} \end{array}$$

52. Which pair of oxyacids of phosphorus contains 'P—H' bonds?
 (a) H_3PO_4 , H_3PO_3 (b) H_3PO_5 , $\text{H}_4\text{P}_2\text{O}_7$
 (c) H_3PO_3 , H_3PO_2 (d) H_3PO_2 , HPO_3

53. Dipole moment of $\text{HCl} = 1.03 \text{ D}$, $\text{HI} = 0.38 \text{ D}$.
 Bond length of $\text{HCl} = 1.3 \text{ \AA}$ and $\text{HI} = 1.6 \text{ \AA}$. The ratio of fraction of electric charge, δ , existing on each atom in HCl and HI is
 (a) 12:1 (b) 2.7:1
 (c) 3.3:1 (d) 1:3.3

54. SiCl_4 on hydrolysis forms 'X' and HCl . Compound 'X' loses water at 1000°C and gives 'Y'. Compounds 'X' and 'Y' respectively are
 (a) H_2SiCl_6 , SiO_2 (b) H_4SiO_4 , Si
 (c) SiO_2 , Si (d) H_4SiO_4 , SiO_2

55. 1.5 g of CdCl_2 was found to contain 0.9 g of Cd. Calculate the atomic weight of Cd.
 (a) 118 (b) 112
 (c) 106.5 (d) 53.25

56. Aluminium reacts with NaOH and forms compound 'X'. If the coordination number of aluminium in 'X' is 6, the correct formula of X is
 (a) $[\text{Al}(\text{H}_2\text{O})_4(\text{OH})_2]^+$ (b) $[\text{Al}(\text{H}_2\text{O})_3(\text{OH})_3]$
 (c) $[\text{Al}(\text{H}_2\text{O})_2(\text{OH})_4]^-$ (d) $[\text{Al}(\text{H}_2\text{O})_6](\text{OH})_3$

57. The average kinetic energy of one molecule of an ideal gas at 27°C and 1 atm pressure is
 (a) $900 \text{ cal K}^{-1}\text{mol}^{-1}$
 (b) $6.21 \times 10^{-21} \text{ JK}^{-1} \text{ molecule}^{-1}$
 (c) $336.7 \text{ JK}^{-1} \text{ molecules}^{-1}$
 (d) $3741.3 \text{ JK}^{-1} \text{ mol}^{-1}$

58. **Assertion (A) :** K, Rb and Cs form superoxides.
Reason (R) : The stability of the superoxides increases from 'K' to 'Cs' due to decrease in lattice energy.

The correct answer is

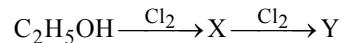
(a) Both (A) and (R) are true and (R) is the correct explanation of (A)
 (b) Both (A) and (R) are true but (R) is not the correct explanation of (A)
 (c) (A) is true but (R) is not true
 (d) (A) is not true but (R) is true

59. How many mL of perhydrol is required to produce sufficient oxygen which can be used to completely convert 2 L of SO_2 gas to SO_3 gas?
 (a) 10 mL (b) 5 mL
 (c) 20 mL (d) 30 mL

60. pH of a buffer solution decreases by 0.02 units when 0.12 g of acetic acid is added to 250 mL of a buffer solution of acetic acid and potassium acetate at 27°C . The buffer capacity of the solution is
 (a) 0.1 (b) 10
 (c) 1 (d) 0.4

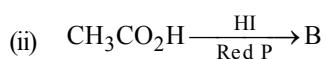
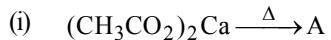
61. Match the following

List I	List II
(A) Flespar	(I) $[\text{Ag}_3\text{Sb}_3]$
(B) Asbestos	(II) $\text{Al}_2\text{O}_3 \cdot \text{H}_2\text{O}$
(C) Pyrargyrite	(III) $\text{MgSO}_4 \cdot \text{H}_2\text{O}$
(D) Diaspore	(IV) KAlSi_3O_8
	(V) $\text{CaMg}_3(\text{SiO}_3)_4$


The correct answer is

(A) (B) (C) (D)
 (a) IV V II I
 (b) IV V I II
 (c) IV I III II
 (d) II V IV I

62. Which one of the following order is correct for the first ionisation energies of the elements?



(a) $\text{B} < \text{Be} < \text{N} < \text{O}$ (b) $\text{Be} < \text{B} < \text{N} < \text{O}$
 (c) $\text{B} < \text{Be} < \text{O} < \text{N}$ (d) $\text{B} < \text{O} < \text{Be} < \text{N}$

63. What are X and Y in the following reaction sequence?

(a) $\text{C}_2\text{H}_5\text{Cl}$, CH_3CHO
 (b) CH_3CHO , $\text{CH}_3\text{CO}_2\text{H}$
 (c) CH_3CHO , CCl_3CHO
 (d) $\text{C}_2\text{H}_5\text{Cl}$, CCl_3CHO

64. What are A, B, C in the following reactions?

65. One per cent composition of an organic compound A is, carbon : 85.71% and hydrogen 14.29%. Its vapour density is 14. Consider the following reaction sequence

$$A \xrightarrow{\text{Cl}_2/\text{H}_2\text{O}} B \xrightarrow{\substack{\text{(i) KCN/EtOH} \\ \text{(ii) H}_3\text{O}^+}} C$$

Identify C.

- $\text{CH}_3 - \underset{\text{OH}}{\text{CH}} - \text{CO}_2\text{H}$
- $\text{HO} - \text{CH}_2 - \text{CH}_2 - \text{CO}_2\text{H}$
- $\text{HO} - \text{CH}_2 - \text{CO}_2\text{H}$
- $\text{CH}_3 - \text{CH}_2 - \text{CO}_2\text{H}$

66. How many tripeptides can be prepared by linking the amino acids glycine, alanine and phenyl alanine?

- One
- Three
- Six
- Twelve

67. A codon has a sequence of A and specifies a particular B that is to be incorporated into a C. What are A, B, C?

A	B	C
(a) 3 bases	amino acid	carbohydrate
(b) 3 acids	carbohydrate	protein
(c) 3 bases	protein	amino acid
(d) 3 bases	amino acid	protein

68. Parkinson's disease is linked to abnormalities in the levels of dopamine in the body. The structure of dopamine is

-
-
-
-

69. During the depression in freezing point experiment, an equilibrium is established between the molecules of

- liquid solvent and solid solvent
- liquid solute and solid solvent
- liquid solute and solid solute
- liquid solvent and solid solute

70. Consider the following reaction,

$$\text{C}_2\text{H}_5\text{Cl} + \text{AgCN} \xrightarrow{\text{EtOH/H}_2\text{O}} \text{X} \text{ (major)}$$

Which one of the following statements is true for X?

- It gives propionic acid on hydrolysis
- It has an ester functional group
- It has a nitrogen linked to ethyl carbon
- It has a cyanide group

- IV
- III
- II
- I

71. For the following cell reaction,

$$\text{Ag} | \text{Ag}^+ | \text{AgCl} | \text{Cl}^\ominus | \text{Cl}_2, \text{Pt}$$

$$\Delta G_f^\circ(\text{AgCl}) = -109 \text{ kJ/mol}$$

$$\Delta G_f^\circ(\text{Cl}^\ominus) = -129 \text{ kJ/mol}$$

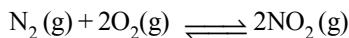
$$\Delta G_f^\circ(\text{Ag}^+) = 78 \text{ kJ/mol}$$

E° of the cell is

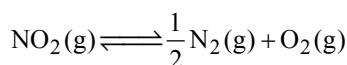
- 0.60 V
- 0.60 V
- 6.0 V
- None of these

72. The synthesis of crotonaldehyde from acetaldehyde is an example of reaction.

- nucleophilic addition
- elimination
- electrophilic addition
- nucleophilic addition-elimination


73. At 25°C, the molar conductances at infinite dilution for the strong electrolytes NaOH , NaCl and BaCl_2 are 248×10^{-4} , 126×10^{-4} and $280 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$ respectively, $\lambda_m^\circ \text{ Ba}(\text{OH})_2$ in $\text{Sm}^2 \text{ mol}^{-1}$ is

- 52.4×10^{-4}
- 524×10^{-4}
- 402×10^{-4}
- 262×10^{-4}


74. The cubic unit cell of a metal (molar mass = 63.55 g mol⁻¹) has an edge length of 362 pm. Its density is 8.92 g cm⁻³. The type of unit cell is

- primitive
- face centred
- body centred
- end centred

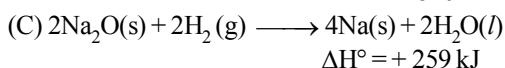
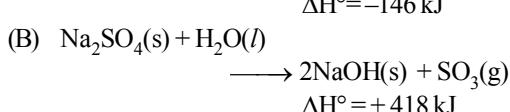
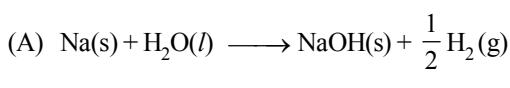
75. The equilibrium constant for the given reaction is 100.

What is the equilibrium constant for the reaction given below?

(a) 10 (b) 1
(c) 0.1 (d) 0.01

76. For a first order reaction at 27°C, the ratio of time required for 75% completion to 25% completion of reaction is

(a) 3.0 (b) 2.303
(c) 4.8 (d) 0.477




77. The concentration of an organic compound in chloroform is 6.15 g per 100 mL of solution. A portion of this solution in a 5cm polarimeter tube causes an observed rotation of -1.2° . What is the specific rotation of the compound?

(a) $+12^\circ$ (b) -3.9°
(c) -39° (d) $+61.5^\circ$

78. 20 ml of 0.1 M acetic acid is mixed with 50 mL of potassium acetate. K_a of acetic acid $= 1.8 \times 10^{-5}$ at 27°C. Calculate concentration of potassium acetate if pH of the mixture is 4.8.

(a) 0.1 M (b) 0.04 M
(c) 0.4 M (d) 0.02 M

79. Calculate ΔH° for the reaction,
 $Na_2O(s) + SO_3(g) \longrightarrow Na_2SO_4(g)$
 given the following :

(a) +823 kJ (b) -581 kJ
(c) -435 kJ (d) +531 kJ

80. Which one of the following is the most effective in causing the coagulation of an As_2S_3 sol?

(a) KCl (b) $AlCl_3$
(c) $MgSO_4$ (d) $K_3Fe(CN)_6$

PART - III (MATHEMATICS)

81. If $f: [2, 3] \rightarrow R$ is defined by $f(x) = x^3 + 3x - 2$, then the range $f(x)$ is contained in the interval

(a) $[1, 12]$ (b) $[12, 34]$
(c) $[35, 50]$ (d) $[-12, 12]$

82. The number of subsets of $\{1, 2, 3, \dots, 9\}$ containing at least one odd number is

(a) 324 (b) 396
(c) 496 (d) 512

83. A binary sequence is an array of 0's and 1's. The number of n -digit binary sequences which contain even number of 0's is

(a) 2^{n-1} (b) $2^n - 1$
(c) $2^{n-1} - 1$ (d) 2^n

84. If x is numerically so small so that x^2 and higher powers of x can be neglected, then

$$\left(1 + \frac{2x}{3}\right)^{3/2} \cdot (32 + 5x)^{-1/5}$$

is approximately equal to

(a) $\frac{32 + 31x}{64}$ (b) $\frac{31 + 32x}{64}$
(c) $\frac{31 - 32x}{64}$ (d) $\frac{1 - 2x}{64}$

85. The roots of

$$(x-a)(x-a-1) + (x-a-1)(x-a-2) + (x-a)(x-a-2) = 0$$

$a \in R$ are always

(a) equal (b) imaginary
(c) real and distinct (d) rational and equal

86. Let $f(x) = x^2 + ax + b$, where $a, b \in R$. If $f(x) = 0$ has all its roots imaginary, then the roots of $f(x) + f'(x) + f''(x) = 0$ are

(a) real and distinct (b) imaginary
(c) equal (d) rational and equal

87. If $f(x) = 2x^4 - 13x^2 + ax + b$ is divisible by $x^2 - 3x + 2$, then (a, b) is equal to

(a) $(-9, -2)$ (b) $(6, 4)$
(c) $(9, 2)$ (d) $(2, 9)$

88. If x, y, z are all positive and are the p^{th} , q^{th} and r^{th} terms of a geometric progression respectively, then the value of the determinant

$$\begin{vmatrix} \log x & p & 1 \\ \log y & q & 1 \\ \log z & r & 1 \end{vmatrix} \text{ equals}$$

(a) $\log xyz$ (b) $(p-1)(q-1)(r-1)$
(c) pqr (d) 0

89. The locus of z satisfying the inequality $\left| \frac{z+2i}{2z+i} \right| < 1$, where $z = x+iy$, is

(a) $x^2 + y^2 < 1$ (b) $x^2 - y^2 < 1$
 (c) $x^2 + y^2 > 1$ (d) $2x^2 + 3y^2 < 1$

90. If n is an integer which leaves remainder one when divided by three, then $(1+\sqrt{3}i)^n + (1-\sqrt{3}i)^n$ equals

(a) -2^{n+1} (b) 2^{n+1}
 (c) $-(-2)^n$ (d) -2^n

91. The period of $\sin^4 x + \cos^4 x$ is

(a) $\frac{\pi^4}{2}$ (b) $\frac{\pi^2}{2}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$

92. If $3\cos x \neq 2\sin x$, then the general solution of $\sin^2 x - \cos 2x = 2 - \sin 2x$ is

(a) $n\pi + (-1)^n \frac{\pi}{2}, n \in \mathbb{Z}$
 (b) $\frac{n\pi}{2}, n \in \mathbb{Z}$
 (c) $(4n \pm 1) \frac{\pi}{2}, n \in \mathbb{Z}$
 (d) $(2n-1)\pi, n \in \mathbb{Z}$

93. $\cos^{-1}\left(\frac{-1}{2}\right) - 2\sin^{-1}\left(\frac{1}{2}\right) + 3\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right) - 4\tan^{-1}(-1)$ equals

(a) $\frac{19\pi}{12}$ (b) $\frac{35\pi}{12}$ (c) $\frac{47\pi}{12}$ (d) $\frac{43\pi}{12}$

94. In a ΔABC

$$\frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4b^2c^2}$$

equals

(a) $\cos^2 A$ (b) $\cos^2 B$
 (c) $\sin^2 A$ (d) $\sin^2 B$

95. The angle between the lines whose direction cosines satisfy the equations $l+m+n=0$, $l^2+m^2-n^2=0$ is

(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

96. If m_1, m_2, m_3 and m_4 are respectively the magnitudes of the vectors $\vec{a}_1 = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{a}_2 = 3\hat{i} - 4\hat{j} - 4\hat{k}$, $\vec{a}_3 = \hat{i} + \hat{j} - \hat{k}$, and $\vec{a}_4 = -\hat{i} + 3\hat{j} + \hat{k}$, then the correct order of m_1, m_2, m_3 and m_4 is

(a) $m_3 < m_1 < m_4 < m_2$
 (b) $m_3 < m_1 < m_2 < m_4$
 (c) $m_3 < m_4 < m_1 < m_2$
 (d) $m_3 < m_4 < m_2 < m_1$

97. If X is a binomial variate with the range $\{0, 1, 2, 3, 4, 5, 6\}$ and $P(X=2) = 4P(X=4)$, then the parameter p of X is

(a) $\frac{1}{3}$ (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$

98. The area (in square unit) of the circle which touches the lines $4x + 3y = 15$ and $4x + 3y = 5$ is

(a) 4π (b) 3π
 (c) 2π (d) π

99. The area (in square unit) of the triangle formed by $x + y + 1 = 0$ and the pair of straight lines $x^2 - 3xy + 2y^2 = 0$ is

(a) $\frac{7}{12}$ (b) $\frac{5}{12}$ (c) $\frac{1}{12}$ (d) $\frac{1}{6}$

100. The pairs of straight lines $x^2 - 3xy + 2y^2 = 0$ and $x^2 - 3xy + 2y^2 + x - 2 = 0$ form a

(a) square but not rhombus
 (b) rhombus
 (c) parallelogram
 (d) rectangle but not a square

101. The equations of the circle which pass through the origin and makes intercepts of lengths 4 and 8 on the x and y -axes respectively are

(a) $x^2 + y^2 \pm 4x \pm 8y = 0$
 (b) $x^2 + y^2 \pm 2x \pm 4y = 0$
 (c) $x^2 + y^2 \pm 8x \pm 16y = 0$
 (d) $x^2 + y^2 \pm x \pm y = 0$

102. The point $(3, -4)$ lies on both the circles $x^2 + y^2 - 2x + 8y + 13 = 0$ and $x^2 + y^2 - 4x + 6y + 11 = 0$. Then, the angle between the circles is

(a) 60° (b) $\tan^{-1}\left(\frac{1}{2}\right)$
 (c) $\tan^{-1}\left(\frac{3}{5}\right)$ (d) 135°

103. The equation of the circle which passes through the origin and cuts orthogonally each of the circles $x^2 + y^2 - 6x + 8 = 0$ and $x^2 + y^2 - 2x - 2y - 7 = 0$ is

(a) $3x^2 + 3y^2 - 8x - 13y = 0$
 (b) $3x^2 + 3y^2 - 8x + 29y = 0$
 (c) $3x^2 + 3y^2 + 8x + 29y = 0$
 (d) $3x^2 + 3y^2 - 8x - 29y = 0$

104. The number of normals drawn to the parabola $y^2 = 4x$ from the point $(1, 0)$ is
 (a) 0 (b) 1 (c) 2 (d) 3

105. If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points (x_i, y_i) for $i = 1, 2, 3$ and 4, then $y_1 + y_2 + y_3 + y_4$ equals
 (a) 0 (b) c (c) a (d) c^4

106. The mid point of the chord $4x - 3y = 5$ of the hyperbola $2x^2 - 3y^2 = 12$ is
 (a) $\left(0, -\frac{5}{3}\right)$ (b) $(2, 1)$
 (c) $\left(\frac{5}{4}, 0\right)$ (d) $\left(\frac{11}{4}, 2\right)$

107. The perimeter of the triangle with vertices at $(1, 0, 0), (0, 1, 0)$ and $(0, 0, 1)$ is
 (a) 3 (b) 2
 (c) $2\sqrt{2}$ (d) $3\sqrt{2}$

108. If a line in the space makes angle α, β and γ with the coordinate axes, then

$$\cos 2\alpha + \cos 2\beta + \cos 2\gamma + \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$$
 equals
 (a) -1 (b) 0 (c) 1 (d) 2

109. The radius of the sphere $x^2 + y^2 + z^2 = 12x + 4y + 3z$ is
 (a) $13/2$ (b) 13 (c) 26 (d) 52

110. $\lim_{x \rightarrow \infty} \left(\frac{x+5}{x+2} \right)^{x+3}$ equals
 (a) e (b) e^2 (c) e^3 (d) e^5

111. If $f: R \rightarrow R$ is defined by

$$f(x) = \begin{cases} \frac{2 \sin x - \sin 2x}{2x \cos x}, & \text{if } x \neq 0 \\ a, & \text{if } x = 0 \end{cases}$$
,
 then the value of a so that f is continuous at 0 is
 (a) 2 (b) 1 (c) -1 (d) 0

112. $x = \cos^{-1} \left(\frac{1}{\sqrt{1+t^2}} \right)$,
 $y = \sin^{-1} \left(\frac{t}{\sqrt{1+t^2}} \right) \Rightarrow \frac{dy}{dx}$ is equal to

(a) 0 (b) $\tan t$
 (c) 1 (d) $\sin t \cos t$

113. $\frac{d}{dx} \left[a \tan^{-1} x + b \log \left(\frac{x-1}{x+1} \right) \right] = \frac{1}{x^4 - 1}$
 $\Rightarrow a - 2b$ is equal to
 (a) 1 (b) -1 (c) 0 (d) 2

114. $y - e^{a \sin^{-1} x} \Rightarrow (1-x^2)y_{n+2} - (2n+1)xy_{n+1}$ is equal to
 (a) $-(n^2 + a^2)y_n$ (b) $(n^2 - a^2)y_n$
 (c) $(n^2 + a^2)y_n$ (d) $-(n^2 - a^2)y_n$

115. The function $f(x) = x^3 + ax^2 + bx + c$, $a^2 \leq 3b$ has
 (a) one maximum value
 (b) one minimum value
 (c) no extreme value
 (d) one maximum and one minimum value

116. $\int \left(\frac{2 - \sin 2x}{1 - \cos 2x} \right) e^x dx$ is equal to
 (a) $-e^x \cot x + c$ (b) $e^x \cot x + c$
 (c) $2e^x \cot x + c$ (d) $-2e^x \cot x + c$

117. If $I_n = \int \sin^n x dx$, then $nI_n - (n-1)I_{n-2}$ equals
 (a) $\sin^{n-1} x \cos x$ (b) $\cos^{n-1} x \sin x$
 (c) $-\sin^{n-1} x \cos x$ (d) $-\cos^{n-1} x \sin x$

118. The line $x = \frac{\pi}{4}$ divides the area of the region bounded by $y = \sin x$, $y = \cos x$ and x-axis $\left(0 \leq x \leq \frac{\pi}{2}\right)$ into two regions of areas A_1 and A_2 . Then $A_1 : A_2$ equals
 (a) 4:1 (b) 3:1 (c) 2:1 (d) 1:1

119. The solution of the differential equation $\frac{dy}{dx} = \sin(x+y) \tan(x+y) - 1$ is
 (a) $\operatorname{cosec}(x+y) + \tan(x+y) = x + c$
 (b) $x + \operatorname{cosec}(x+y) = c$
 (c) $x + \tan(x+y) = c$
 (d) $x + \sec(x+y) = c$

120. If $p \Rightarrow (\sim p \vee q)$ is false, the truth value of p and q are respectively
 (a) F, T (b) F, F (c) T, F (d) T, T