

VITEEE 2010 Question Paper

PART - I (PHYSICS)

1. A straight wire carrying current i is turned into a circular loop. If the magnitude of magnetic moment associated with it in MKS unit is M , the length of wire will be

(a) $\frac{4\pi}{M}$ (b) $\sqrt{\frac{4\pi M}{i}}$
 (c) $\sqrt{\frac{4\pi i}{M}}$ (d) $\frac{M\pi}{i}$

2. The ratio of the amounts of heat developed in the four arms of a balance Wheatstone bridge, when the arms have resistances $P=100\Omega$, $Q=10\Omega$, $R=300\Omega$ and $S=30\Omega$ respectively is
 (a) $3:30:1:10$ (b) $30:3:10:1$
 (c) $30:10:1:3$ (d) $30:1:3:10$

3. An electric kettle takes 4 A current at 220V . How much time will it take to boil 1 kg of water from temperature 20°C ? The temperature of boiling water is 100°C .
 (a) 12.6 min (b) 4.2 min
 (c) 6.3 min (d) 8.4 min

4. Magnetic field at the centre of a circular loop of area A is B . The magnetic moment of the loop will be

(a) $\frac{BA^2}{\mu_0\pi}$ (b) $\frac{BA^{3/2}}{\mu_0\pi}$
 (c) $\frac{BA^{3/2}}{\mu_0\pi^{1/2}}$ (d) $\frac{2BA^{3/2}}{\mu_0\pi^{1/2}}$

5. In Young's double slit experiment, the spacing between the slits is d and wavelength of light used is 6000 \AA . If the angular width of a fringe formed on a distance screen is 1° , then value of d is

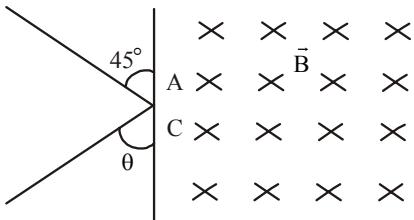
(a) 1 mm (b) 0.05 mm
 (c) 0.03 mm (d) 0.01 mm

6. An electric dipole consists of two opposite charges of magnitude $q=1\times 10^{-6}\text{ C}$ separated by 2.0 cm . The dipole is placed in an external field of $1\times 10^5\text{ NC}^{-1}$. What maximum torque does the field exert on the dipole? How much work must an external agent do to turn the dipole end to end, starting from position of alignment ($\theta=0^\circ$)?

(a) $4.4\times 10^6\text{ N-m}, 3.2\times 10^{-4}\text{ J}$
 (b) $-2\times 10^{-3}\text{ N-m}, -4\times 10^3\text{ J}$
 (c) $4\times 10^3\text{ N-m}, 2\times 10^{-3}\text{ J}$
 (d) $2\times 10^{-3}\text{ N-m}, 4\times 10^{-3}\text{ J}$

7. The electron of hydrogen atom is considered to be revolving round a proton in circular orbit of radius h^2/me^2 with velocity e^2/h , where $h=\hbar/2\pi$. The current i is

(a) $\frac{4\pi^2 me^5}{h^2}$ (b) $\frac{4\pi^2 me^5}{\hbar^3}$
 (c) $\frac{4\pi^2 m^2 e^2}{\hbar^3}$ (d) $\frac{4\pi^2 m^2 e^5}{\hbar^3}$

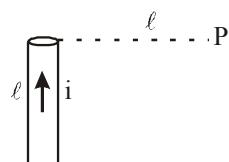

8. In a double slit experiment, 5^th dark fringe is formed opposite to one of the slits, the wavelength of light is

(a) $\frac{d^2}{6D}$ (b) $\frac{d^2}{5D}$
 (c) $\frac{d^2}{15D}$ (d) $\frac{d^2}{9D}$

9. Which of the following rays is emitted by a human body?

(a) X-rays (b) UV rays
 (c) Visible rays (d) IR rays

10. A proton of mass 1.67×10^{-27} kg enters a uniform magnetic field 1T of at point A shown in figure with a speed of 10^7 ms $^{-1}$.


The magnetic field is directed normal to the plane of paper downwards. The proton emerges out of the magnetic field at point C, then the distance AC and the value of angle θ will respectively be

(a) 0.7 m, 45° (b) 0.7 m, 90°
(c) 0.14 m, 90° (d) 0.14 m, 45°

11. A neutral water molecule (H_2O) in its vapour state has an electric dipole moment of magnitude 6.4×10^{-30} C-m. How far apart are the molecule's centres of positive and negative charges?

(a) 4m (b) 4mm
(c) $4\mu\text{m}$ (d) 4pm

12. Figure shows a straight wire length l carrying current i . The magnitude of magnetic field produced by the current at point P is

(a) $\frac{\sqrt{2}\mu_0 i}{\pi l}$ (b) $\frac{\mu_0 i}{4\pi l}$
(c) $\frac{\sqrt{2}\mu_0 i}{8\pi l}$ (d) $\frac{\mu_0 i}{2\sqrt{2}\pi l}$

13. Zener diode is used for

(a) producing oscillations in an oscillator
(b) amplification
(c) stabilisation
(d) rectification

14. Two light sources are said to be coherent if they are obtained from

(a) two independent point sources emitting light of the same wavelength
(b) a single point source
(c) a wide source
(d) two ordinary bulbs emitting light of different wavelengths

15. A small coil is introduced between the poles of an electromagnet so that its axis coincides with the magnetic field direction. The number of turns is n and the cross-sectional area of the coil is A . When the coil turns through 180° about its diameter, the charge flowing through the coil is Q . The total resistance of the circuit is R . What is the magnitude of the magnetic induction?

(a) $\frac{QR}{nA}$ (b) $\frac{2QR}{nA}$
(c) $\frac{Qn}{2RA}$ (d) $\frac{QR}{2nA}$

16. The attenuation in optical fibre is mainly due to

(a) absorption (b) scattering
(c) neither absorption nor scattering
(d) Both (a) and (b)

17. An arc of radius r carries charge. The linear density of charge is λ and the arc subtends an

angle $\frac{\pi}{3}$ at the centre. What is electric potential at the centre?

(a) $\frac{\lambda}{4\epsilon_0}$ (b) $\frac{\lambda}{8\epsilon_0}$
(c) $\frac{\lambda}{12\epsilon_0}$ (d) $\frac{\lambda}{16\epsilon_0}$

18. Sinusoidal carrier voltage of frequency 1.5 MHz and amplitude 50 V is amplitude modulated by sinusoidal voltage of frequency 10 kHz producing 50% modulation. The lower and upper side-band frequencies in kHz are

(a) 1490, 1510 (b) 1510, 1490
(c) $\frac{1}{1490}, \frac{1}{1510}$ (d) $\frac{1}{1510}, \frac{1}{1490}$

19. 50Ω and 100Ω resistors are connected in series. This connection is connected with a battery of 2.4 V. When a voltmeter of 100Ω resistance is connected across 100Ω resistor, then the reading of the voltmeter will be

(a) 1.6V (b) 1.0V
(c) 1.2V (d) 2.0V

20. In space charge limited region, the plate current in a diode is 10 mA for plate voltage 150V. If the plate voltage is increased to 600V, then the plate current will be

(a) 10 mA (b) 40 mA
(c) 80 mA (d) 160 mA

21. Light of wavelength λ strikes a photo-sensitive surface and electrons are ejected with kinetic energy E . If the kinetic energy is to be increased to $2E$, the wavelength must be changed to λ' where

(a) $\lambda' = \frac{\lambda}{2}$ (b) $\lambda' = 2\lambda$
 (c) $\frac{\lambda}{2} < \lambda' < \lambda$ (d) $\lambda' > \lambda$

22. The maximum velocity of electrons emitted from a metal surface is v , when frequency of light falling on it is f . The maximum velocity when frequency becomes $4f$ is

(a) $2v$ (b) $> 2v$
 (c) $< 2v$ (d) between $2v$ and $4v$

23. The collector plate in an experiment on photoelectric effect is kept vertically above the emitter plate. Light source is put on and a saturation photo-current is recorded. An electric field is switched on which has a vertically downward direction, then

(a) the photo-current will increase
 (b) the kinetic energy of the electrons will increase
 (c) the stopping potential will decrease
 (d) the threshold wavelength will increase

24. A cylindrical conductor of radius R carries a current i . The value of magnetic field at a point which is $\frac{R}{4}$ distance inside from the surface is 10 T. The value of magnetic field at point which is $4R$ distance outside from the surface

(a) $\frac{4}{3}T$ (b) $\frac{8}{3}T$
 (c) $\frac{40}{3}T$ (d) $\frac{80}{3}T$

25. The power of a thin convex lens (${}_{a}n_g = 1.5$) is 5.0 D. When it is placed in a liquid of refractive index ${}_{a}n_l$, then it behaves as a concave lens of focal length 100 cm. The refractive index of the liquid ${}_{a}n_l$ will be

(a) $5/3$ (b) $4/3$
 (c) $\sqrt{3}$ (d) $5/4$

26. Find the value of magnetic field between plates of capacitor at a distance 1 m from centre, where electric field varies by 10^{10} V/m per second.

(a) 5.56×10^{-8} T (b) 5.56×10^{-3} T
 (c) $5.56 \mu\text{T}$ (d) 5.55 T

27. Using an AC voltmeter the potential difference in the electrical line in a house is read to be 234 V. If line frequency is known to be 50 cycles/s, the equation for the line voltage is

(a) $V=165\sin(100 \pi t)$
 (b) $V=331\sin(100 \pi t)$
 (c) $V=220\sin(100 \pi t)$
 (d) $V=440\sin(100 \pi t)$

28. There are a 25W – 220 V bulb and a 100W – 220V line. Which electric bulb will glow more brightly?

(a) 25W bulb
 (b) 100W bulb
 (c) Both will have equal incandescence
 (d) Neither 25 W nor 100 W bulb will give light

29. Silver has a work function of 4.7 eV. When ultraviolet light of wavelength 100 nm is incident upon it, potential of 7.7 V is required to stop photoelectrons from reaching the collector plate. The potential required to stop electrons when light of wavelength 200 nm is incident upon silver is

(a) 1.5V (b) 1.85V
 (c) 1.95V (d) 2.37V

30. Two particles X and Y having equal charges, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describe circular paths of radii R_1 and R_2 , respectively. The ratio of masses of X and Y is

(a) $(R_1/R_2)^{-2}$ (b) (R_2/R_1)
 (c) $(R_1/R_2)^2$ (d) (R_1/R_2)

31. According to the Bohr's theory of hydrogen atom, the speed of the electron, energy and the radius of its orbit vary with the principal quantum number n , respectively, as

(a) $\frac{1}{n}, \frac{1}{n^2}, n^2$ (b) $\frac{1}{n}, n^2, \frac{1}{n^2}$
 (c) $n^2, \frac{1}{n^2}, n^2$ (d) $n, \frac{1}{n^2}, \frac{1}{n^2}$

32. In the hydrogen atom, the electron is making 6.6×10^{15} rps. If the radius of orbit is 0.53×10^{-10} m, then magnetic field produced at the centre of the orbit is

(a) 140 T (b) 12.5 T
 (c) 1.4 T (d) 0.14 T

33. Two identical light sources S_1 and S_2 emit light of same wavelength λ . These light rays will exhibit interference if

- their phase differences remain constant
- their phases are distributed randomly
- their light intensities remain constant
- their light intensities change randomly

34. In Meter bridge or Wheatstone bridge for measurement of resistance, the known and the unknown resistances are interchanged. The error so removed is

- end correction
- index error
- due to temperature effect
- random error

35. A fish, looking up through the water, sees the outside world contained in a circular horizon. If the refractive index of water is $4/3$ and the fish is 12cm below the surface of water, the radius of the circle in centimetre is

- $\frac{12 \times 3}{\sqrt{5}}$
- $12 \times 3 \times \sqrt{5}$
- $\frac{12 \times 3}{\sqrt{7}}$
- $12 \times 3 \times \sqrt{7}$

36. Radio waves diffract around building although light waves do not. The reason is that radio waves

- travel with speed larger than c
- have much larger wavelength than light
- carry news
- are not electromagnetic waves

37. In the Bohr model of a hydrogen atom, the centripetal force is furnished by the coulomb attraction between the proton and the electron. If a_0 is the radius of the ground state orbit, m is the mass and e is charge on the electron and ϵ_0 is the vacuum permittivity, the speed of the electron is

- 0
- $\frac{e}{\sqrt{\epsilon_0 a_0 m}}$
- $\frac{e}{\sqrt{4\pi\epsilon_0 a_0 m}}$
- $\frac{\sqrt{4\pi\epsilon_0 a_0 m}}{e}$

38. A potential difference of 2V is applied between the opposite faces of a Ge crystal plate of area 1 cm^2 and thickness 0.5 mm. If the concentration of electrons in Ge is $2 \times 10^{19}/\text{m}^2$ and mobilities of electrons and holes are $0.36\text{ m}^2\text{V}^{-1}\text{s}^{-1}$ and $0.14\text{ m}^2\text{V}^{-1}\text{s}^{-1}$ respectively, then the current flowing through the plate will be

- 0.25 A
- 0.45 A
- 0.56 A
- 0.64 A

39. An AM wave has 1800 W of total power content. For 100% modulation the carrier should have power content equal to

- 1000 W
- 1200 W
- 1500 W
- 1600 W

40. Two light rays having the same wavelength λ in vacuum are in phase initially. Then the first ray travels a path l_1 through a medium of refractive index n_1 while the second ray travels a path of length l_2 through a medium of refractive index n_2 . The two waves are then combined to observe interference. The phase difference between the two waves is

- $\frac{2\pi}{\lambda}(l_2 - l_1)$
- $\frac{2\pi}{\lambda}(n_1 l_2 - n_2 l_1)$
- $\frac{2\pi}{\lambda}(n_2 l_2 - n_1 l_1)$
- $\frac{2\pi}{\lambda}\left(\frac{l_1}{n_1} - \frac{l_2}{n_2}\right)$

PART - II (CHEMISTRY)

41. The correct formula of the complex tetraammineaquachlorocobalt (III) chloride is

- $[\text{Cl}(\text{H}_2\text{O})(\text{NH}_3)_4\text{Co}] \text{Cl}$
- $[\text{CoCl}(\text{H}_2\text{O})(\text{NH}_3)_4] \text{Cl}$
- $[\text{Co}(\text{NH}_3)_4(\text{H}_2\text{O})\text{Cl}] \text{Cl}$
- $[\text{CoCl}(\text{H}_2\text{O})(\text{NH}_3)_4] \text{Cl}_2$

42. The equivalent conductance at infinite dilution of a weak acid such as HF

- can be determined by extrapolation of measurements on dilute solutions of HCl, HBr and HI
- can be determined by measurement on very dilute HF solutions
- can best be determined from measurements on dilute solutions of NaF, NaCl and HCl
- is an undefined quantity

43. $\text{C}_2\text{H}_5\text{I} \xrightarrow[\text{KOH}]{\text{Alcoholic}} \text{X} \xrightarrow[\text{CCl}_4]{\text{Br}_2} \text{Y} \xrightarrow{\text{KCN}} \text{Z}$
 $\text{A} \leftarrow \text{H}_3\text{O}^+$

The product 'A' is

- succinic acid
- melonic acid
- oxalic acid
- maleic acid

44. For a reaction of type $\text{A} + \text{B} \rightarrow \text{products}$, it is observed that doubling concentration of A causes the reaction rate to be four times as great, but doubling amount of B does not affect the rate. The unit of rate constant is

- s^{-1}
- $\text{s}^{-1} \text{ mol L}^{-1}$
- $\text{s}^{-1} \text{ mol}^{-1} \text{ L}$
- $\text{s s}^{-1} \text{ mol}^{-2} \text{ L}^2$

45. A chemical reaction was carried out at 320 K and 300 K. The rate constants were found to be k_1 and k_2 respectively. Then

- $k_2 = 4k_1$
- $k_2 = 2k_1$
- $k_2 = 0.25 k_1$
- $k_2 = 0.5 k_1$

46. The formula of ethyl carbinol is

- CH_3OH
- $\text{CH}_3\text{CH}_2\text{OH}$
- $\text{CH}_3\text{CH}_2\text{CH}_2\text{OH}$
- $(\text{CH}_3)_3\text{COH}$

47. Which of the following gives red colour in Victor Meyer's test?

- n-propyl alcohol
- Isopropyl alcohol
- tert-butyl alcohol
- sec-butyl alcohol

48. Enthalpy of a compound is equal to its

- heat of combustion
- heat of formation
- heat of reaction
- heat of solution

49. For which one of the following reactions will there be a positive ΔS ?

- $\text{H}_2\text{O}(\text{g}) \rightarrow \text{H}_2\text{O}(\text{l})$
- $\text{H}_2 + \text{I}_2 \rightarrow 2\text{HI}$
- $\text{CaCO}_3(\text{s}) \rightarrow \text{CaO}(\text{s}) + \text{CO}_2(\text{g})$
- $\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightarrow 2\text{NH}_3(\text{g})$

50. Across the lanthanide series, the basicity of the lanthanide hydroxides

- increases
- decreases
- first increases and then decreases
- first decreases and then increases

51. When p-nitrobromobenzene reacts with sodium ethoxide, the product obtained is

- p-nitroanisole
- ethyl phenyl ether
- p-nitrophenetole
- no reaction occurs

52. A radioactive element X emits 3α , 1β and 1γ particles and forms ${}_{76}^{\text{Y}}\text{Y}^{235}$. Element X is

- ${}_{81}^{\text{X}}\text{X}^{247}$
- ${}_{80}^{\text{X}}\text{X}^{247}$
- ${}_{81}^{\text{X}}\text{X}^{246}$
- ${}_{80}^{\text{X}}\text{X}^{246}$

53. For the reaction,

$$2\text{A}(\text{g}) + \text{B}_2(\text{g}) \rightleftharpoons 2\text{AB}_2(\text{g})$$

the equilibrium constant, K_p at 300 K is 16.0. The value of K_p for $\text{AB}_2(\text{g}) \rightleftharpoons \text{A}(\text{g}) + 1/2 \text{B}_2(\text{g})$ is

- 8
- 0.25
- 0.125
- 32

54. Frenkel defect is generally observed in

- AgBr
- AgI
- ZnS
- All of the above

55. Most crystals show good cleavage because their atoms, ions or molecules are

- weakly bonded together
- strongly bonded together

56. $[\text{Co}(\text{NH}_3)_4\text{Cl}_2]\text{NO}_2$ and $[\text{Co}(\text{NH}_3)_4\text{ClNO}_2]\text{Cl}$ exhibit which type of isomerism?

- Geometrical
- Optical
- Linkage
- Ionisation

57. Which of the following compounds is not coloured?

- $\text{Na}_2[\text{Cu}(\text{Cl}_4)]$
- $\text{Na}[\text{Cd}(\text{Cl})_4]$
- $\text{K}_4[\text{Fe}(\text{CN})_6]$
- $\text{K}_3[\text{Fe}(\text{CN})_6]$

58. Which of the following is a Gattermann aldehyde synthesis?

(a) $\text{COCl} \xrightarrow[\text{BaSO}_4]{\text{H}_2/\text{Pd}} \img[alt="Benzene ring with CHO group"]{}$

(b) $\text{H} + \text{CO} + \text{HCl} \xrightarrow{\text{AlCl}_3} \img[alt="Benzene ring with CHO group"]{}$

(c) $\text{HCl} + \text{HCN} \xrightarrow[\text{(ii) H}_3\text{O}^+]{\text{(i) Anhy. AlCl}_3} \img[alt="Benzene ring with CHO group"]{}$

(d) $\text{CrO}_2\text{Cl}_2 \rightarrow \img[alt="Benzene ring with CHO group"]{}$

59. Aldol is

- β -hydroxybutyraldehyde
- α -hydroxybutanal
- β -hydroxypropanal
- None of the above

60. Nitrobenzene can be converted into azobenzene by reduction with

- $\text{Zn, NH}_4\text{Cl, } \Delta$
- $\text{Zn/NaOH, CH}_3\text{OH}$
- Zn/NaOH
- LiAlH_4 , ether

61. The one which is least basic is

- NH_3
- $\text{C}_6\text{H}_5\text{NH}_2$
- $(\text{C}_6\text{H}_5)_3\text{N}$
- $(\text{C}_6\text{H}_5)_2\text{NH}$

62. Coordination number of Ni in $[\text{Ni}(\text{C}_2\text{O}_4)_3]^{4-}$ is

- 3
- 6
- 4
- 5

63. Mg is an important component of which biomolecule occurring extensively in living world?

- Haemoglobin
- Chlorophyll
- Florigen
- ATP

64. Sterling silver is
 (a) AgNO_3
 (b) Ag_2S
 (c) Alloy of 80% Ag + 20% Cu
 (d) AgCl

65. Identify the statement which is not correct regarding CuSO_4
 (a) It reacts with KI to give iodine
 (b) It reacts with KCl to give Cu_2Cl_2
 (c) It reacts with NaOH and glucose to give Cu_2O
 (d) It gives CuO on strong heating in air

66. Transition metals usually exhibit highest oxidation states in their
 (a) chlorides (b) fluorides
 (c) bromides (d) iodides

67. The number of Faradays needed to reduce 4 g equivalents of Cu^{2+} to Cu metal will be
 (a) 1 (b) 2
 (c) $\frac{1}{2}$ (d) 4

68. Which one of the following cells can convert chemical energy of H_2 and O_2 directly into electrical energy?
 (a) Mercury cell (b) Daniel cell
 (c) Fuel cell (d) Lead storage cell

69. On treatment of propanone with dilute $\text{Ba}(\text{OH})_2$, the product formed is
 (a) aldol
 (b) phorone
 (c) propionaldehyde
 (d) 4-hydroxy-4-methyl-2-pentanone

70. Which of the following converts CH_3CONH_2 to CH_3NH_2 ?
 (a) NaBr (b) NaOBr
 (c) Br_2 (d) None of the above

71. Which metal aprons are worn by radiographer to protect him from radiation?
 (a) Mercury coated apron
 (b) Lead apron
 (c) Copper apron
 (d) Aluminimised apron

72. The standard Gibb's free energy change, ΔG° is related to equilibrium constant, K_p as
 (a) $K_p = -RT \ln \Delta G^\circ$ (b) $K_p = \left[\frac{e}{RT} \right]^{\Delta G^\circ}$
 (c) $K_p = -\frac{\Delta G}{RT}$ (d) $K_p = e^{-\Delta G^\circ/RT}$

73. The yield of the product in the reaction

$$\text{A}_2(\text{g}) + 2\text{B}(\text{g}) \rightleftharpoons \text{C}(\text{g}) + \text{Q kJ}$$
 would be higher at
 (a) high temperature and high pressure
 (b) high temperature and low pressure
 (c) low temperature and high pressure
 (d) low temperature and low pressure

74. In which of the following case, does the reaction go farthest to completion?
 (a) $K = 10^2$ (b) $K = 10$
 (c) $K = 10^{-2}$ (d) $K = 1$

75. Formation of cyanohydrin from a ketone is an example of
 (a) electrophilic addition
 (b) nucleophilic addition
 (c) nucleophilic substitution
 (d) electrophilic substitution

76. Glycerol on treatment with oxalic acid at 110°C forms
 (a) formic acid (b) allyl alcohol
 (c) CO_2 and CO (d) acrolein

77. The activity of an old piece of wood is just 25% of the fresh piece of wood. If $t_{1/2}$ of C-14 is 6000 yr, the age of piece of wood is
 (a) 6000 yr (b) 3000 yr
 (c) 9000 yr (d) 12000 yr

78. The radius of Na^+ is 95 pm and that of Cl^- ion is 181 pm. Hence, the coordination number of Na^+ will be
 (a) 4 (b) 6
 (c) 8 (d) unpredictable

79. The reaction, $\text{ROH} + \text{H}_2\text{CN}_2$ in the presence of HBF_4 , gives the following product
 (a) ROCH_3 (b) RCH_2OH
 (c) ROHCN_2N_2 (d) RCH_2CH_3

80. The fatty acid which shows reducing property is
 (a) acetic acid (b) ethanoic acid
 (c) oxalic acid (d) formic acid

PART - III (MATHEMATICS)

81. If F is function such that $F(0) = 2$, $F(1) = 3$, $F(x+2) = 2F(x) - F(x+1)$ for $x \geq 0$, then $F(5)$ is equal to
 (a) -7 (b) -3
 (c) 17 (d) 13

82. Let S be a set containing n elements. Then, number of binary operations on S is
 (a) n^n (b) 2^{n^2}
 (c) n^{n^2} (d) n^2

83. The numerically greatest term in the expansion of $(3-5x)^{11}$ when $x = \frac{1}{5}$, is

(a) 55×3^9 (b) 55×3^6
 (c) 45×3^9 (d) 45×3^6

84. The number of solutions of the equation $\sin(e^x) = 5^x + 5^{-x}$, is

(a) 0 (b) 1
 (c) 2 (d) infinitely many

85. If $a^x = b^y = c^z = d^u$ and a, b, c, d are in GP, then x, y, z, u are in

(a) AP (b) GP
 (c) HP (d) None of these

86. If z satisfies the equation $|z| - z = 1 + 2i$, then z is equal to

(a) $\frac{3}{2} + 2i$ (b) $\frac{3}{2} - 2i$
 (c) $2 - \frac{3}{2}i$ (d) $2 + \frac{3}{2}i$

87. If $z = \frac{1-i\sqrt{3}}{1+i\sqrt{3}}$, then $\arg(z)$ is

(a) 60° (b) 120°
 (c) 240° (d) 300°

88. If $f(x) = \sqrt{\log_{10} x^2}$. The set of all values of x for which $f(x)$ is real, is

(a) $[-1, 1]$ (b) $[1, \infty]$
 (c) $(-\infty, -1]$ (d) $(-\infty, -1] \cup [1, \infty)$

89. For what values of m can the expression $2x^2 + mxy + 3y^2 - 5y - 2$ be expressed as the product of two linear factors?

(a) 0 (b) ± 1
 (c) ± 7 (d) 49

90. If B is a non-singular matrix and A is a square matrix, then $\det(B^{-1}AB)$ is equal to

(a) $\det(A^{-1})$ (b) $\det(B^{-1})$
 (c) $\det(A)$ (d) $\det(B)$

91. If $f(x)$, $g(x)$ and $h(x)$ are three polynomials of degree 2 and

$$\Delta(x) = \begin{vmatrix} f(x) & g(x) & h(x) \\ f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \end{vmatrix}$$

then $\Delta(x)$ is a polynomial of degree

(a) 2 (b) 3
 (c) 0 (d) atmost 3

92. The chances of defective screws in three boxes A, B, C are $\frac{1}{5}, \frac{1}{6}, \frac{1}{7}$ respectively. A box is selected at random and a screw drawn from it at random is found to be defective. Then, the probability that it came from box A, is

(a) $\frac{16}{29}$ (b) $\frac{1}{15}$
 (c) $\frac{27}{59}$ (d) $\frac{42}{107}$

93. The value of $\frac{\cos \theta}{1 + \sin \theta}$ is equal to

(a) $\tan\left(\frac{\theta}{2} - \frac{\pi}{4}\right)$ (b) $\tan\left(-\frac{\pi}{4} - \frac{\theta}{2}\right)$
 (c) $\tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$ (d) $\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$

94. If $3\sin \theta + 5\cos \theta = 5$, then the value of $5\sin \theta - 3\cos \theta$ is equal to

(a) 5 (b) 3
 (c) 4 (d) None of these

95. The principal value of $\sin^{-1} \left\{ \sin \frac{5\pi}{6} \right\}$ is

(a) $\frac{\pi}{6}$ (b) $\frac{5\pi}{6}$
 (c) $\frac{7\pi}{6}$ (d) None of these

96. A rod of length l slides with its ends on two perpendicular lines. Then, the locus of its mid point is

(a) $x^2 + y^2 = \frac{l^2}{4}$ (b) $x^2 + y^2 = \frac{l^2}{2}$
 (c) $x^2 - y^2 = \frac{l^2}{4}$ (d) None of these

97. The equation of straight line through the intersection of line $2x + y = 1$ and $3x + 2y = 5$ and passing through the origin is

(a) $7x + 3y = 0$ (b) $7x - y = 0$
 (c) $3x + 2y = 0$ (d) $x + y = 0$

98. The line joining $(5, 0)$ to $(10 \cos \theta, 10 \sin \theta)$ is divided internally in the ratio 2:3 at P. If θ varies, then the locus of P is

(a) a straight line
 (b) a pair of straight lines
 (c) a circle
 (d) None of the above

99. If $2x + y + k = 0$ is a normal to the parabola $y^2 = -8x$, then the value of k , is
 (a) 8
 (b) 16
 (c) 24
 (d) 32

100. $\lim_{n \rightarrow \infty} \left[\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} \right]$ is equal to
 (a) 1
 (b) -1
 (c) 0
 (d) None of these

101. The condition that the line $lx + my = 1$ may be normal to the curve $y^2 = 4ax$, is
 (a) $al^3 - 2alm^2 = m^2$ (b) $al^2 + 2alm^3 = m^2$
 (c) $al^3 + 2alm^2 = m^3$ (d) $al^3 + 2alm^2 = m^2$

102. If $\int f(x)dx = f(x)$, then $\int \{f(x)\}^2 dx$ is equal to
 (a) $\frac{1}{2}\{f(x)\}^2$ (b) $\{f(x)\}^3$
 (c) $\frac{\{f(x)\}^3}{3}$ (d) $\{f(x)\}^2$

103. $\int \sin^{-1} \left\{ \frac{(2x+2)}{\sqrt{4x^2 + 8x + 13}} \right\} dx$ is equal to
 (a) $(x+1) \tan^{-1} \left(\frac{2x+2}{3} \right) - \frac{3}{4} \log \left(\frac{4x^2 + 8x + 13}{9} \right) + c$
 (b) $\frac{3}{2} \tan^{-1} \left(\frac{2x+2}{3} \right) - \frac{3}{4} \log \left(\frac{4x^2 + 8x + 13}{9} \right) + c$
 (c) $(x+1) \tan^{-1} \left(\frac{2x+2}{3} \right) - \frac{3}{2} \log(4x^2 + 8x + 13) + c$
 (d) $\frac{3}{2}(x+1) \tan^{-1} \left(\frac{2x+2}{3} \right) - \frac{3}{4} \log(4x^2 + 8x + 13) + c$

104. If the equation of an ellipse is $3x^2 + 2y^2 + 6x - 8y + 5 = 0$, then which of the following are true?
 (a) $e = \frac{1}{\sqrt{3}}$
 (b) centre is $(-1, 2)$
 (c) foci are $(-1, 1)$ and $(-1, 3)$
 (d) All of the above

105. The equation of the common tangents to the two hyperbolas $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$, are
 (a) $y = \pm x \pm \sqrt{b^2 - a^2}$
 (b) $y = \pm x \pm \sqrt{a^2 - b^2}$
 (c) $y = \pm x \pm \sqrt{a^2 + b^2}$
 (d) $y = \pm x \pm \sqrt{a^2 - b^2}$

106. Domain of the function $f(x) = \log_x \cos x$, is
 (a) $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right) - \{1\}$ (b) $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] - \{1\}$
 (c) $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ (d) None of these

107. Range of the function $y = \sin^{-1} \left(\frac{x^2}{1+x^2} \right)$, is
 (a) $\left(0, \frac{\pi}{2} \right)$ (b) $\left[0, \frac{\pi}{2} \right)$
 (c) $\left[0, \frac{\pi}{2} \right]$ (d) $\left[0, \frac{\pi}{2} \right]$

108. If $x = \sec \theta - \cos \theta$, $y = \sec^n \theta - \cos^n \theta$, then $(x^2 + 4) \left(\frac{dy}{dx} \right)^2$ is equal to
 (a) $n^2(y^2 - 4)$ (b) $n^2(4 - y^2)$
 (c) $n^2(y^2 + 4)$ (d) None of these

109. If $y = \sqrt{x + \sqrt{y + \sqrt{x + \sqrt{y + \dots \infty}}}}$, then $\frac{dy}{dx}$ is equal to
 (a) $\frac{y+x}{y^2 - 2x}$ (b) $\frac{y^3 - x}{2y^2 - 2xy - 1}$
 (c) $\frac{y^3 + x}{2y^2 - x}$ (d) None of these

110. If $\int_1^x \frac{dt}{|t| \sqrt{t^2 - 1}} = \frac{\pi}{6}$, then x can be equal to
 (a) $\frac{2}{\sqrt{3}}$ (b) $\sqrt{3}$
 (c) 2 (d) None of these

111. The area bounded by the curve $y=|\sin x|$, x-axis and the lines $|x|=\pi$, is

(a) 2 sq unit (b) 1 sq unit
(c) 4 sq unit (d) None of these

112. The degree of the differential equation of all curves having normal of constant length c is

(a) 1 (b) 3
(c) 4 (d) None of these

113. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$,

then $\vec{a} + t\vec{b}$ is perpendicular to \vec{c} , if t is equal to
(a) 2 (b) 4
(c) 6 (d) 8

114. The distance between the line

$\vec{r} = 2\hat{i} - 2\hat{j} + 3\hat{k} + \lambda(\hat{i} - \hat{j} + 4\hat{k})$ and the plane

$\vec{r} \cdot (\hat{i} + 5\hat{j} + \hat{k}) = 5$, is

(a) $\frac{10}{3}$ (b) $\frac{10}{\sqrt{3}}$
(c) $\frac{10}{3\sqrt{3}}$ (d) $\frac{10}{9}$

115. The equation of sphere concentric with the sphere $x^2 + y^2 + z^2 - 4x - 6y - 8z - 5 = 0$ and which passes through the origin, is

(a) $x^2 + y^2 + z^2 - 4x - 6y - 8z = 0$
(b) $x^2 + y^2 + z^2 - 6y - 8z = 0$
(c) $x^2 + y^2 + z^2 = 0$
(d) $x^2 + y^2 + z^2 - 4x - 6y - 8z - 6 = 0$

116. If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and

$\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then the value of k , is

(a) $\frac{3}{2}$ (b) $\frac{9}{2}$

(c) $-\frac{2}{9}$ (d) $-\frac{3}{2}$

117. The two curves $y = 3^x$ and $y = 5^x$ intersect at an angle

(a) $\tan^{-1}\left(\frac{\log 3 - \log 5}{1 + \log 3 \log 5}\right)$

(b) $\tan^{-1}\left(\frac{\log 3 + \log 5}{1 - \log 3 \log 5}\right)$

(c) $\tan^{-1}\left(\frac{\log 3 + \log 5}{1 + \log 3 \log 5}\right)$

(d) $\tan^{-1}\left(\frac{\log 3 - \log 5}{1 - \log 3 \log 5}\right)$

118. The equation $\lambda x^2 + 4xy + y^2 + \lambda x + 3y + 2 = 0$

represents a parabola, if λ is

(a) 0 (b) 1
(c) 2 (d) 4

119. If two circles $2x^2 + 2y^2 - 3x + 6y + k = 0$ and

$x^2 + y^2 - 4x + 10y + 16 = 0$ cut orthogonally, then the value of k is

(a) 41 (b) 14
(c) 4 (d) 1

120. If A (-2, 1), B (2, 3) and C (-2, -4) are three points. Then, the angle between BA and BC is

(a) $\tan^{-1}\left(\frac{2}{3}\right)$ (b) $\tan^{-1}\left(\frac{3}{2}\right)$

(c) $\tan^{-1}\left(\frac{1}{3}\right)$ (d) $\tan^{-1}\left(\frac{1}{2}\right)$