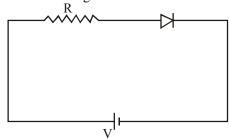
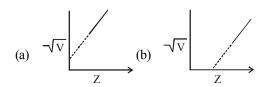
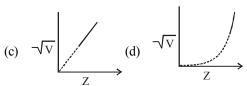

SOLVED PAPER


VITEEE 2012

PART - I (PHYSICS)

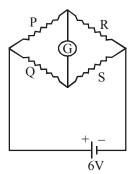
 A square loop, carrying a steady current I, is placed in horizontal plane near a long straight conductor carrying a steady current I₁ at a distance of d from the conductor as shown in figure. The loop will experience


- (a) a net repulsive force away from the conductor
- (b) a net torque acting upward perpencicular to the horizontal plane
- (c) a net torque acting downward normal to the horizontal plane
- (d) a net attractive force towards the conductor 2. The threshold frequency for a photo-sensitine metal is 3.3×10^{14} Hz. If light of frequency 8.2×10^{14} Hz is incident on this metal, the cut-off voltage for the photo-electric emission is nearly
 - (a) 2V
- (b) 3V
- (c) 5V
- (d) 1V
- 3. For the given circuit of p-n junction diode which of the following is correct

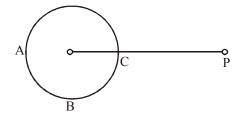


- (a) In forward biasing the voltage across R is V
- (b) In forward biasing the voltage across R is 2V
- (c) In reverse biasing the voltage across R is V
- (d) In reverse biasing the voltage across R is
- 4. If the binding energy per nuclear in Li⁷ and He⁴ nuclei are respectively 5.60 MeV and 7.06 MeV, then energy of reactor

 $Li^7 + P \rightarrow 2$ ₂ He^4 is


- (a) $19.6 \,\text{MeV}$
- (b) 2.4 MeV
- (c) 8.4 MeV
- (d) 17.3 MeV
- 5. The graph between the square root of the frequency of a specific line of characterstic spectrum of X-ray and the atomic number of the ttarget will be

- 6. A resistor R, an inductor L and capacitor C are connected in series to an oscillator of frequency n. If the resonant frequency is n_r, then the current lags behind voltage, when
 - (a) n=0
- (b) $n < n_r$
- (c) $n = n_{\rm r}$
- (d) $n > n_r$
- A parallel plate capacitor has capacitance C. If it is equally filled the parallel layers of materials of dielectric constant K₁ and K₂ its capacity becomes C₁. The ratio of C₁ and C is


- (a) $K_1 + K_2$ (b) $\frac{K_1 K_2}{K_1 + K_2}$
- (c) $\frac{K_1 + K_2}{K_1 K_2}$ (d) $\frac{2K_1 K_2}{K_1 + K_2}$
- The potential of the electric field produced by point charge at any point (x, y, z) is given by $V = 3x^2 + 5$, where x, y are in metres and V is in volts. The intensity of the electric field at (-2, 1, 0)is
 - (a) $+17 \,\mathrm{Vm}^{-1}$
- (b) $-17 \,\mathrm{Vm}^{-1}$
- (c) $+12 \text{ Vm}^{-1}$
- (d) -12 Vm^{-1}
- The potential of a large liquid drop when eight liquid drops are combined is 20 V. Then the potential of each single drop was
 - (a) 10 V
- (b) 7.5 V
- (c) 5V
- (d) 2.5 V
- 10 A and B are two metals with threshold frequencies 1.8×10^{14} Hz and 2.2×10^{4} Hz. Two identical photons of energy 0.825 eV each are incident on them. Then photoelectrons are emitted by (Take h = 6.6×10^{-34} J-s)
 - (a) B alone
- (b) A alone
- (c) Neither A nor B (d) Both A and B
- In the Wheatstone's network given, $P = 10\Omega$, $Q = 20\Omega$, $R = 15\Omega$, $S = 30\Omega$, the current passing through the battery (of negligible internal resistance) is

- (a) 0.36A
- (b) Zero
- (c) 0.18A
- (d) 0.72A
- Three resistors 1Ω , 2Ω and 3Ω are connected to form a triangle. Across 3Ω resistor a 3V battery is connected. The current through 3Ω resistor is
 - (a) $0.75 \, A$
- (b) 1 A
- (d) 1.5A
- In a common emitter amplifier the input signal is 13. applied across

- (a) anywhere
- (b) emitter-collector
- (c) collector-base
- (d) base-emitter
- The kinetic energy of an electron get tripled then the de-Broglie wavelength associated with it changes by a factor

- (d) 3
- 15 A radioactive substance contains 10000 nuclei and its half-life period is 20 days. The number of nuclei present at the end of 10 days is
 - (a) 7070
- (b) 9000
- (c) 8000
- (d) 7500
- A direct X-ray photograph of the intenstines is not generally taken by radiologists because
 - (a) intenstines would burst an exposure to X-rays
 - (b) the X-rays would be not pass through the intenstines
 - the X-rays will pass through the intenstines without causing a good shadow for any useful diagnosis
 - (d) a very small exposure of X-rays causes cancer in the intenstines
- 17. Charge passing through a conductor of crosssection area $A = 0.3 \text{ m}^2$ is given by $q = 3t^2 + 5t + 2$ in coulomb, where t is in second. What is the value of drift velocity at t = 2s? (Given, $m = 2 \times 10^{25}/m^3$)
 - (a) 0.77×10^{-5} m/s (b) 1.77×10^{-5} m/s
 - (c) $2.08 \times 10^{-5} \,\text{m/s}$
- (d) $0.57 \times 10^{-5} \,\text{m/s}$
- Two capacitors of capacities 1 µF and C µF are connected in series and the combination is charged to a potential difference of 120 V. If the charge on the combination is 80 µC, the energy stored in the capacitor of capacity C in µJ is
 - (a) 1800
- (b) 1600
- (c) 14400
- (d) 7200
- 19. A hollow conducting sphere is placed in an electric field produced by a point charg placed at P as shown in figure. Let V_A , V_B , V_C be the potentials at points A, B and C respectively. Then

(a)	$V_C > V_B$
(-)	17 - 17

 $\begin{array}{ccc} \text{(b)} & V_{\text{B}} > V_{\text{C}} \\ \text{(d)} & V_{\text{A}} = V_{\text{C}} \end{array}$

- In a hydrogen discharged tube it is observed that through a given cross-section 3.13×10^{15} electrons are moving from right to left and 3.12×10^{15} protons are moving from left to right. What is the electric current in the discharge tube and what is its direction?
 - (a) 1 mA towards right
 - (b) 1 mA towards left
 - (c) 2 mA towards left
 - (d) 2 mA towards right
- 21. In CuSO₄ solution when electric current equal to 2.5 faraday is passed, the gm equivalent deposited on the cathode is

(a) 1

(b) 1.5

(c) 2

(d) 2.5

- In hydrogen a atom, an electron is revolving in the orbit of radius 0.53 Å with 6.6×10^{15} radiations/s. Magnetic field produced at the centre of the orbit is
 - (a) 0.125 Wb/m^2

(b) 1.25 Wb/m^2

(c) 12.5 Wb/m^2

(d) 125 Wb/m^2

- The dipole moment of the short bar magnet is 12.5 A-m². The magnetic field on its axis at a distance of 0.5 m from the centre of the magnet is
 - $1.0 \times 10^{-4} \text{ N/A-m}$ (b) $4 \times 10^{-2} \text{ N/A-m}$
 - $2 \times 10^{-6} \text{ N/A-m}$ (d) $6.64 \times 10^{-8} \text{ N/A-m}$

- The turn ratio of transformers is given as 2:3. If the current through the primary coil is 3 A, thus calculate the current through load resistance
 - (a) 1A

(b) 4.5 A

(c) 2A

(d) 1.5 A

- In an AC circuit, the potential across an inductance and resistance joined in series are respectively 16 V and 20 V. The total potential difference across the circuit is
 - (a) 20.0 V

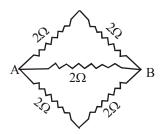
(b) 25.6 V

(c) 31.9 V

(d) 33.6 V

- If hydrogen atom is its ground state absorbs 10.2 eV of energy. The orbital angular momentum is increase by
 - (a) 1.05×10^{-34} J/s (b) 3.16×10^{-34} J/s

(c) $2.11 \times 10^{-34} \text{ J/s}$ (d) $4.22 \times 10^{-34} \text{ J/s}$


Highly energetic electrons are bombarded on a target of an element containing 30 neutrons. The ratio of radii of nucleus to that of Helium nucleus is $(14)^{1/3}$. The atomic number of nucleus will be (a) 25

(b) 26

(c) 56

(d) 30

Each resistance shown in figure is 2 Ω . The egivalent resistance between A and B is

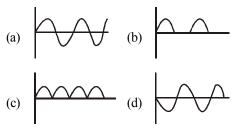
(a) 2 Ω

(b) 4Ω

(c) 8Ω

(d) 1Ω

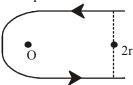
If in a triode value amplification factor is 20 and plate resistance is 10 k Ω , then its mutual conductance is


(a) 2 milli mho

(b) 20 milli mho

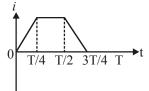
(c) (1/2) milli mho

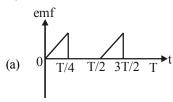
(d) 200 milli mho

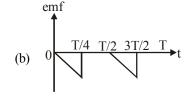

The output wave form of full-wave rectifier is

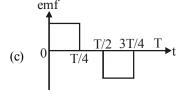
31. Calculate the energy released when three α -particles combined to form a ¹²C nucleus, the mass defect is

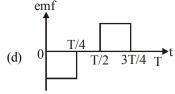
(Atomic mass of ₂He⁴ is 4.002603 u)

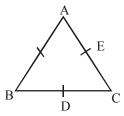

- (a) 0.007809 u
- (b) 0.002603 u
- (c) 4.002603 u
- (d) 0.5 u
- In the figure shown, the magnetic field induction as the point O will be




(b) $\left(\frac{\mu_0}{4\pi}\right)\left(\frac{i}{r}\right)(\pi+2)$


 $\left(\frac{\mu_0}{4\pi}\right)\left(\frac{i}{r}\right)(\pi+1)$ (d) $\frac{\mu_0}{4\pi}\frac{i}{r}(\pi-2)$


- 33. In photoelectric emission process from a metal of work function 1.8 eV, the kinetic energy of most energetic electrons is 0.5 eV. The corresponding stopping potential is
 - (a) 1.3 V
- (b) 0.5 V
- (c) 2.3 V
- (d) 1.8V
- 34. A current of 2 A flows through a 2 Ω resistor when connected across a battery. The same battery supplies a current of 0.5 A when connected across a 9 Ω resistor. The internal resistance of the battery is
 - (a) $1/3 \Omega$
- (b) $1/4 \Omega$
- (c) 1 Ω
- (d) 0.5Ω
- 35. The current i in a coil varies with time as shown in the figure. The variation of induced emf with time would be



36. A transistor is operated in common emitter configuration at $V_C = 2$ V such that a change in the base current from 100 μ A to 300 μ A produces

- a change in the collector current from 10 mA to 20 mA. The current gain is
- (a) 75
- (b) 100
- (c) 25
- (d) 50
- 37. A uniform electric field and a uniform magnetic field are acting along the same direction in a certain region. If an electron is projected in the region such that its velocity is pointed along the direction of fields, then the electron
 - (a) speed will decrease
 - (b) speed will increase
 - (c) will turn towards left of direction of motion
 - (d) will turn towards right of direction a motion
- 38. Charge q is uniformly spread on a thin ring of radius R. The ring rotates about its axis with a uniform frequency f Hz. The magnitude of magnetic induction at the centre of the ring is
 - (a) $\frac{\mu_0 qf}{2R}$
- (b) $\frac{\mu_0 q}{2fR}$
- $\text{(c)} \quad \frac{\mu_0 q}{2\pi f R}$
- (d) $\frac{\mu_0 qf}{2\pi R}$
- 39. A galvanometer of resistance, G is shunted by a resistance S ohm. To keep the main current in the circuit unchanged, the resistance to be put in series with the galvanometer is
 - (a) $\frac{S^2}{(S+G)}$
- (b) $\frac{SG}{(S+G)}$
- (c) $\frac{G^2}{(S+G)}$
- (d) $\frac{G}{(S+G)}$
- Three charges, each + q, are placed at the corners of an isosceles triagle ABC of sides BC and AC,
 D and E are the mid-points of BC and CA. The work done in taking a charge Q from D to E is

- (a) $\frac{\text{eqQ}}{8\pi\epsilon_0 a}$
- (b) $\frac{qQ}{4\pi\epsilon_0 a}$
- (c) Zero
- (d) $\frac{3qQ}{4\pi\epsilon_0 a}$

PART - II (CHEMISTRY)

- A bubble of air is underwater at temperature 15°C and the pressure 1.5 bar. If the bubble rises to the surface where the temperature is 25°C and the pressure is 1.0 bar, what will happen to the volume of the bubble?
 - Volume will become greater by a factor of
 - Volume will become greater by a factor of (b)
 - Volume will become smaller by a factor of
 - Volume will become greater by a factor of (d)
- 42. Match List-I with List-II for the compositions of substances and select the correct answer using the codes given below the lists.

List-I		List-II		
(Substances)		(Composition)	
A.	Plaster of Paris	1.	CaSO ₄ .2H ₂ O	
B.	Epsomite	2.	$CaSO_4.\frac{1}{2}H_2O$	
C.	Kieserite	3.	$MgSO_4.7H_2O$	
D.	Gypsum	4.		
		5.	CaSO ₄	

Codes:

- C D Α В 4 1 2 3 (a) (b) 2 3 4 (c) 1 3 (d) 4
- The pairs of species of oxygen and their magnetic behaviours are noted below. Which of the following presents the correct description?
 - (a) O_2^-, O_2^{2-} Both diamagnetic
 - (b) O^+, O_2^{2-} Both paramagnetic
 - (c) O_2^+, O_2 Both paramagnetic
 - (d) O, O_2^{2-} Both paramagnetic
- Consider the reactions
 - $(CH_3)_2CH CH_2Br \xrightarrow{C_2H_5OH}$ $(CH_3)_2CH - CH_2OC_2H_5 + HBr$
 - (ii) $(CH_3)_2CH CH_2Br \xrightarrow{C_2H_5O^-}$

$$(CH_3)_2CH - CH_2OC_2H_5 + Br^{-1}$$

The mechanisms of reactions (i) and (ii) are respectively

- (b) $S_N 1$ and $S_N 1$ (d) $S_N 2$ and $S_N 1$
- (a) $S_N 1$ and $S_N 2$ (c) $S_N 2$ and $S_N 2$
- Which of the following complex compounds will exhibit highest paramagnetic behaviour?
 - (At. no. Ti = 22, Cr = 24, Co = 27, Zn = 30)
 - (a) $[Ti(NH_3)_6]^{3+}$
- (b) $[Cr(NH_3)_6]^{3+}$
- (c) $[Co(NH_3)_6]^{3+}$
- (d) $[Zn(NH_3)_6]^{2+}$
- Which of the following oxide is amphoteric?
 - (a) SnO_2
- (b) CaO
- (c) SiO₂
- (d) CO_2
- 47. The following reactions take place in the blast furnace in the preparation of impure iron. Identify the reaction pertaining to the formation of the slag.

(a)
$$Fe_2O_3(s) + 3CO(g) \longrightarrow$$

$$2Fe(1) + 3CO2(g)$$

- (b) $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$
- $CaO(s) + SiO_2(s) \longrightarrow CaSiO_3(s)$
- $2C(s) + O_2(g) \longrightarrow 2CO(g)$
- Among the elements Ca, Mg, P and Cl, the order of increasing atomic radii is
 - (a) Mg < Ca < Cl < P (b) Cl < P < Mg < Ca
 - (c) P < Cl < Ca < Mg (d) Ca < Mg < P < Cl
- The reaction,

$$2A(g) + B(g) \Longrightarrow 3C(g) + D(g)$$

is begun with the concentrations of A and B both at an initial value of 1.00 M. When equilibrium is reached, the concentration of D is measured and found to be 0.25 M. The value for the equilibrium constant for this reaction is given by the expression

- (a) $[(0.75)^3(0.25)] \div [(1.00)^2(1.00)]$
- (b) $[(0.75)^3(0.25)] \div [(0.50)^2(0.75)]$
- (c) $[(0.75)^3(0.25)] \div [(0.50)^2(0.25)]$
- (d) $[(0.75)^3(0.25)] \div [(0.75)^2(0.25)]$
- Which of the following expressions correctly represents the equivalent conductance at infinite dilution of $Al_2(SO_4)_3$? Given that $\Lambda_{\Lambda 1^{3+}}^{\circ}$ and $\Lambda_{SO_4^{2-}}^{\circ}$ are the equivalent conductances at

infinite dilution of the respective ions?

(a)
$$2\Lambda_{Al^{3+}}^{\circ} + 3\Lambda_{SO_4^{2-}}^{\circ}$$

(b)
$$\Lambda_{Al^{3+}}^{\circ} + \Lambda_{SO_4^{2-}}^{\circ}$$

(c)
$$\left(\Lambda_{Al^{3+}}^{\circ} + 3\Lambda_{SO_4^{2-}}^{\circ}\right) \times 6$$

(d)
$$\frac{1}{3}\Lambda_{Al^{3+}}^{\circ} + \frac{1}{2}\Lambda_{SO_4^{2-}}^{\circ}$$

51. The pressure exerted by 6.0g of methane gas in a0.03 m³ vessel at 129°C is

(Atomic masses : C =12.01, H = 1.01 and $R = 8.314 \, JK^{-1} \, mol^{-1}$)

- (a) 215216 Pa
- (b) 13409 Pa
- (c) 41648 Pa
- (d) 31684 Pa
- 52. Match List I (Equations) with List II (Types of process) and select the correct option.

List-I		List-II
(Equations)	(Ty	pes of process)
A. $K_p > Q$	1.	Non-spontaneous
B. $\Delta G^{\circ} < RT \ln Q$	2.	Equilibrium
$C. K_p = Q$	3.	Spontaneous and endothermic
D. $T > \frac{\Delta H}{\Delta S}$	4.	Spontaneous

Codes:					
	Α	В	C	D	
(a)	1	2	3	4	
(b)	3	4	2	1	
(c)	4	1	2	3	
	_			_	

(d) 2 1 4 3 Among the following which one has the highest

cation of anion size ratio?

- (a) CsI
- (b) CsF
- (c) LiF

53.

- (d) NaF
- 54. Which of the following species is not electrophilic in nature?
 - (a) ⊕ Cl
- (b) BH₃
- (c) H₃O ⊕
- (d) $\stackrel{\oplus}{NO}_2$
- 55. Match List I (Substances) with List II (Processes employed in the manufacture of the substances) and select the correct option.

(Sı	List-I ubstances)		List-II (Processes)
A.	Sulphuric acid	1.	Haber's process
B.	Steel	2.	Bessemer's process
C.	Sodium hydroride	3.	Leblanc process
D.	Ammonia	4.	Contact process

Codes:

- C D Α В 2 4 3 (a) 1 3 (b) 1 2 4 (c) 4 1 2 3 (d) 4
- 56. When glycerol is treated with excess of HI, it produces
 - (a) 2-iodopropane
- (b) allyliodide
- (c) propene
- (d) glycerol triiodide
- 57. Some statements about heavy water are given below.
 - Heavy water is used as moderator in nuclear reactors
 - (ii) Heavy water is more associated than ordinary water
 - (iii) Heavy water is more effective solvent than ordinary water

Which of the above statements are correct?

(a) (i) and (ii)

(b) H₃C

- (b) (i), (ii) and (iii)
- (c) (ii) and (iii)
- (d) (i) and (iii)
- 58. Which one of the following compounds will be most readily dehydrated?

OH

- Which one of the following complexes is not expected to exhibit isomerism?
 - (a) $[Ni(NH_3)_4(H_2O)_2]^{2+}$
 - (b) $[Pt(NH_3)_2Cl_2]$
 - (c) $[Ni(NH_3)_2Cl_2]$
 - (d) $[Ni(en)_2]^{2+}$
- Which of the following conformers for ethylene glycol is most stable?

$$(d) \quad \underset{H}{\overset{OH}{\underset{H}{\longleftrightarrow}}} \quad \underset{H}{\overset{OH}{\longleftrightarrow}}$$

- The IUPAC name of the compound $CH_2CH = CHC \equiv CH is$
 - (a) pent-4-yn-2-ene (b) pent-3-en-1-yne
 - (c) pent-2-en-4-yne (d) pent-1-yn-3-ene
- Which of the following oxidation states is the most common among the lanthanoids?
 - (a) 4
- (b) 2
- (d) 3 (c) 5
- Some of the properties of the two species, NO₂ and H₂O⁺ are described below. Which one of them is correct?
 - Dissimilar in hybridisation for the central atom with different structures

- (b) Isostructural with same hybridisation for the central atom
- Isostructural with different hybridisation for the central atom
- (d) Similar in hybridisation for the central atom with different structures
- Following compounds are given
 - CH₃CH₅OH
- (ii) CH₃COCH₂

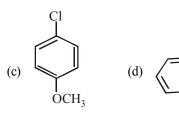
(iii)
$$CH_3 - CHOH$$
 (iv) CH_3OH CH_3

Which of the above compound(s) on being warmed with iodine solution and NaOH, will give iodoform?

- (a) (i), (iii) and (iv)
- (b) Only(ii)
- (c) (i), (ii) and (iii)
- (d) (i) and (ii)
- Fructose reduces Tollen's reagent due to 65.
 - (a) asymmetric carbons
 - (b) primary alcoholic group
 - (c) secondary alcoholic group
 - (d) enolisation of fructose followed by conversion to aldehyde by base
- In the following reaction,

$$C_6H_5CH_2Br \xrightarrow{\quad (i) Mg, Ether \\ \quad (ii) H_3O^+ } X,$$

the product 'X' is


- (a) $C_6H_5CH_2OCH_2C_6H_5$
- (b) $C_6H_5CH_2OH$
- (c) $C_6H_5CH_3$
- (d) $C_6H_5CH_2CH_2C_6H_5$
- Which of the following is not a fat soluble vitamin?
 - Vitamin-B complex (a)
 - Vitamin-D (b)
 - Vitamin-E (c)
 - (d) Vitamin-A
- Which of the statements about 'Denaturation' given below are correct?

Statements:

- denaturation of proteins causes loss of secondary and tertiary structures of the protein.
- Denaturation leads to the conversion of double strand of DNA into single strand'.
- (iii) Denaturation affects primary structure which gets destroyed.
- (a) (ii) and (iii)
- (b) (i) and (iii)
- (c) (i) and (ii)
- (d) (i), (ii) and (iii)

- 69. Which has the maximum number of molecules among the following?
 - (a) $44 g CO_2$
- (b) $48 g O_3$
- (c) 8 g H,
- (d) 64 g SO_2
- 70. Which of the following compounds undergoes nucleophilic substitution reaction most easily?

(b)
$$CI$$
 CH_3

- 71. A 0.1 molal aqueous solution of a weak acid is 30% ionised. If K_f for water is 1.86° C/m, the freezing point of the solution will be
 - (a) -0.18°C
- (b) -0.54°C
- (c) -0.36°C
- (d) -0.24°C
- Which of the following carbonyls will have the strongest C – O bond?
 - (a) $Mn(CO)_6^+$
- (b) $Cr(CO)_6$
- (d) $Fe(CO)_{\varepsilon}$
- (c) $V(CO)_6^-$ (d) $Fe(CO)_5$ The order of reactivity of phenyl magnesium bromide (PhMgBr) with the following compounds

- (I)
- (II)
- (III)

- (a) III > II > I
- (b) II > I > III
- (c) I > III > II
- (d) I > II > III
- A solid compound XY has NaCl structure. If the radius of the cation is 100 pm, the radius of the anion (Y-) will be
 - (a) 275.1 pm
- (b) 322.5 pm
- (c) 241.5 pm
- (d) 165.7 pm

Consider the following processes 75. $\Delta H (kJ/mol)$

$$\frac{1}{2}A \longrightarrow B+150$$

$$3B \longrightarrow 2C + D - 125$$

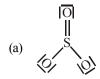
$$E + A \longrightarrow 2D + 350$$

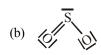
For $B + D \longrightarrow E + 2C$, ΔH will be

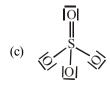
- (a) 525 kJ/mol
- (b) -175 kJ/mol
- (c) -325 kJ/mol
- (d) 325 kJ/mol
- Match the compounds given in List-I with List-II and select the suitable option using the codes given below

	List-I		List-II
A.	Benzaldehyde	1.	Phenolphthalein
B.	Phthalic anhydride	2.	Benzoin condensation
C.	Phenyl benzoate	3.	Oil of wintergreen
D.	Methyl salicylate	4.	Fries rearrangement

Codes:


	A	В	C	D
(a)	4	1	3	2
(b)	4	2	3	1
(c)	2	3	4	1
(d)	2	1	4	3


77. Which of the following compound is the most basic?


(a)
$$O_2N$$
 NH_2

(c)
$$N$$
-COCH₃

Which of the following structures is the most preferred and hence of lowest energy for SO₃?

- What is the value of electron gain enthalpy of Na^+ if IE_1 of Na = 5.1 eV?
 - (a) $-5.1 \, \text{eV}$
- (b) $-10.2 \,\text{eV}$
- (c) $+2.55 \,\text{eV}$
- (d) $+10.2 \,\text{eV}$
- The unit of rate constant for a zero order reaction
 - (a) $\text{mol } L^{-1}s^{-1}$
- (b) $L \text{ mol}^{-1} \text{s}^{-1}$
- (c) $L^2 \text{mol}^{-2} \text{s}^{-1}$
- (d) s^{-1}

PART - III (MATHEMATICS)

81. The solution of the differential equation

$$\frac{dy}{dx} + \frac{2yx}{1+x^2} = \frac{1}{(1+x^2)^2}$$
 is

- (a) $y(1+x^2) = C + \tan^{-1}x$
- (b) $\frac{y}{1+x^2} = C + \tan^{-1}x$
- (c) $y \log (1 + x^2) = C + \tan^{-1} x$
- (d) $y(1+x^2) = C + \sin^{-1}x$
- 82. If x, y and z are all distinct and

$$\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0$$
, then the value of xyz is

- (a) -2
- (b) -1
- (c) -3
- (d) None of these
- The probability that atleast one of the events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then

$$P(\overline{A}) + P(\overline{B})$$
 is

- (a) 0.4
- (b) 0.8
- (c) 1.2
- (d) 1.4

- If 3p and 4p are resultant of a force 5p, then the angle between 3p and 5p is
 - (a) $\sin^{-1}\left(\frac{3}{5}\right)$ (b) $\sin^{-1}\left(\frac{4}{5}\right)$
- (d) None of these
- If $2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x)$, then the value 85.
- (c)
- (d) None of these
- Let a be any element in a boolean algebra B. If a + x = 1 and ax = 0, then
 - (a) x = 1
- (b) x = 0
- (c) x = a
- (d) x = a'
- Dual of (x + y). (x + 1) = x + x. y + y is
 - (a) $(x \cdot y) + (x \cdot 0) = x \cdot (x + y) \cdot y$
 - (b) (x+y)+(x.1)=x.(x+y).y
 - (c) $(x \cdot y)(x \cdot 0) = x \cdot (x + y) \cdot y$
 - (d) None of the above
- 88. The function $f: R \to R$ defined by
 - f(x) = (x-1)(x-2)(x-3) is
 - (a) one-one but not onto
 - (b) onto but not one-one
 - (c) both one-one and onto
- (d) neither one-one nor onto If the complex numbers z_1 , z_2 and z_3 are in AP, then they lie on a
 - (a) a circle
- (b) a parabola
- (c) line
- (d) ellipse
- Let a, b and c be in AP and |a| < 1, |b| < 1, |c| < 1. If $x = 1 + a + a^2 + ...$ to ∞ ,

$$y = 1 + b + b^2 + ... \text{ to } \infty,$$

 $z = 1 + c + c^2 + ...$ to ∞ , then x, y and z are in

- (a) AP
- (b) GP
- (c) HP
- (d) None of these
- The number of real solutions of the equation

$$\left(\frac{9}{10}\right) = -3 + x - x^2$$
 is

- (b) 1
- (c) 2
- (d) None of these
- The lines 2x 3y 5 = 0 and 3x 4y = 7 are diameters of a circle of area 154 sq units, then the equation of the circle is
 - (a) $x^2 + y^2 + 2x 2y 62 = 0$

 - (b) $x^2 + y^2 + 2x 2y 47 = 0$ (c) $x^2 + y^2 2x + 2y 47 = 0$ (d) $x^2 + y^2 2x + 2y 62 = 0$

The angle of depressions of the top and the foot of a chimney as seen from the top of a second chimney, which is 150 m high and standing on the same level as the first are θ and ϕ respectively, then the distance between their tops when

$$\tan \theta = \frac{4}{3}$$
 and $\tan \phi = \frac{5}{2}$ is

- (a) $\frac{150}{\sqrt{3}}$ m
- (b) $100\sqrt{3} \text{ m}$
- (c) 150 m
- 94. If one root is square of the other root of the equation $x^2 + px + q = 0$, then the relations between p and q is
 - (a) $p^3 (3p 1) q + q^2 = 0$ (b) $p^3 q (3p + 1) + q^2 = 0$ (c) $p^3 + q (3p 1) + q^2 = 0$ (d) $p^3 + q (3p + 1) + q^2 = 0$
- The coefficient of x^{53} in the following expansions 95.

$$\sum_{m=0}^{100} {}^{100}C_m (x-3)^{100-m}.2^m \text{ is}$$
(a) ${}^{100}C$ (b) ${}^{100}C$

- (a) $^{100}C_{47}$ (b) $^{100}C_{53}$ (c) $^{-100}C_{53}$ (d) $^{-100}C_{100}$ If (-3, 2) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$, which is concentric with the circle

$$x^2 + y^2 + 6x + 8y - 5 = 0$$
, then c is equal to

- (a) 11 (c) 24
- (b) -11
- (d) 100
- If $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and $\mathbf{c} = 7\mathbf{i} + 9\mathbf{j} + 11\mathbf{k}$, then the area of Parallelogram having diagonals $\mathbf{a} + \mathbf{b}$ and $\mathbf{b} + \mathbf{c}$ is
 - (a) $4\sqrt{6}$ sq. units (b) $\frac{1}{2}\sqrt{21}$ sq. units
 - (c) $\frac{\sqrt{6}}{2}$ sq. units (d) $\sqrt{6}$ sq. units
- 98. If $A = \begin{bmatrix} 1 & -5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9 \end{bmatrix}$, then trace of matrix A is
 - (a) 17

- The value of the determinant

$$\begin{vmatrix} \cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos(\alpha + \beta) & -\sin(\alpha + \beta) & 1 \end{vmatrix}$$
 is

- (a) independent of α
- (b) independent of β
- (c) independent of α and β
- (d) None of the above
- 100. The maximum value of $4 \sin^2 x 12 \sin x + 7 \sin x$
 - (a) 25
- (b) 4
- (c) does not exist (d) None of these
- 101. A straight line through the point A(3, 4) is such that its intercept between the axes is bisected at A, its equation is
 - (a) 3x-4y+7=0(b) 4x + 3y = 24
 - (c) 3x + 4y = 25(d) x + y = 7
- 102. The tangent at (1, 7) to the curve $x^2 = y 6$ touches the circle $x^2 + y^2 + 16x + 12y + c = 0$ at
 - (a) (6,7)
- (c) (6,-7)
- (b) (-6, 7) (d) (-6, -7)
- 103. The equation of straight line through the intersection of the lines x - 2y = 1 and x + 3y = 2and parallel 3x + 4y = 0 is

 - (a) 3x+4y+5=0 (b) 3x+4y-10=0 (c) 3x+4y-5=0 (d) 3x+4y+6=0
- 104. $\int \frac{dx}{\sin x \cos x + \sqrt{2}}$ equals to
 - (a) $-\frac{1}{\sqrt{2}}\tan\left(\frac{x}{2} + \frac{\pi}{8}\right) + C$
 - (b) $\frac{1}{2} \tan \left(\frac{x}{2} + \frac{\pi}{8} \right) + C$
 - (c) $\frac{1}{\sqrt{2}}\cot\left(\frac{x}{2} + \frac{\pi}{8}\right) + C$
 - (d) $-\frac{1}{\sqrt{2}}\cot\left(\frac{x}{2}+\frac{\pi}{8}\right)+C$
- 105. The value of integral $\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} dx$ is

 - (a) $\frac{\pi}{2} + 1$ (b) $\frac{\pi}{2} 1$ (c) -1 (d) 1
- 106. The value of $I = \int_{0}^{1} x \left| x \frac{1}{2} \right| dx$ is

- (d) None of these

107. The eccentricity of the ellipse, which meets the straight line $\frac{x}{7} + \frac{y}{2} = 1$ on the axis of x and the

straight line $\frac{x}{3} - \frac{y}{5} = 1$ on the axis of y and whose axes lie along the axes of coordinates, is

(a)
$$\frac{3\sqrt{2}}{7}$$
 (b) $\frac{2\sqrt{6}}{7}$

(b)
$$\frac{2\sqrt{6}}{7}$$

(c)
$$\frac{\sqrt{3}}{7}$$

(d) None of there

108. If $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) and $x^2 - y^2 = c^2$ cut at

- right angles, then (a) $a^2 + b^2 = 2c^2$ (b) $b^2 a^2 = 2c^2$ (c) $a^2 b^2 = 2c^2$ (d) $a^2b^2 = 2c^2$

- 109. The equation of the conic with focus at (1, -1)directrix along x - y + 1 = 0 and with eccentricity

$$\sqrt{2}$$
 is

- (a) $x^2 y^2 = 1$ (b) xy = 1(c) 2xy 4x + 4y + 1 = 0(d) 2xy + 4x 4y 1 = 0
- 110. There are 5 letters and 5 different envelopes. The number of ways in which all the letters can be put in wrong envelope, is
 - (a) 119
- (c) 59
- 111. The sum of the series

$$1 + \frac{1^2 + 2^2}{2!} + \frac{1^2 + 2^2 + 3^2}{3!} + \frac{1^2 + 2^2 + 3^2 + 4^2}{4!} + \dots$$

- (a) 3e (b) $\frac{17}{6}$ e (c) $\frac{13}{6}$ e (d) $\frac{19}{6}$ e 112. The coefficient of x^n in the expansion of $\log_{2}(1+x)$ is

 - (a) $\frac{(-1)^{n-1}}{n}$ (b) $\frac{(-1)^{n-1}}{n}\log_a e$
 - $(c) \quad \frac{(-1)^{n-1}}{n}log_e\,a \quad \ (d) \quad \frac{(-1)^n}{n}log_a\,e$
- 113. If a plane meets the coordinate axes at A, B and C in such a way that the centroid of $\triangle ABC$ is at the point (1, 2, 3), then equation of the plane is
 - (a) $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1$ (b) $\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1$
- - (c) $\frac{x}{1} + \frac{y}{2} + \frac{z}{2} = \frac{1}{3}$ (d) None of these

- 114. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$, the line $x = \sqrt{3}y$ and x-axis

 - (a) π sq units (b) $\frac{\pi}{2}$ sq units
 - (c) $\frac{\pi}{3}$ sq units (d) None of these
- 115. The value of $\lim_{x\to\infty} \left(\frac{\pi}{2} \tan^{-1} x\right)^{1/x}$ is
- (a) 0 (c) -1
- 116. If $f(x) = \begin{cases} mx + 1, & x \le \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2} \end{cases}$ is continuous at

$$x = \frac{\pi}{2}$$
, then

- (a) m=1, n=0 (b) $m=\frac{n\pi}{2}+1$
- (c) $n = m\frac{\pi}{2}$ (d) $m = n = \frac{\pi}{2}$
- 117. The domain of the function $f(x) = \frac{\sqrt{4-x^2}}{\sin^{-1}(2-x)}$

 - (a) [0,2]
- (b) [0,2)
- (c) [1,2]
- (d) [1, 2]
- 118. The general solution of the differential equation

 - $(1+y^2) dx + (1+x^2) dy = 0$ is (a) x-y=C(1-xy) (b) x-y=C(1+xy)(c) x+y=C(1-xy) (d) x+y=C(1+xy)
- 119. The order and degree of the differential equation

$$\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}} \text{ are, respectively}$$

- (a) 2, 2
- (b) 2,3
- (c) 2, 1
- (d) None of these
- The relation R defined on the set of natural numbers as $\{(a, b) : a \text{ differs from } b \text{ by } 3\}$ is given
 - (a) {(1,4),(2,5),(3,6),...} (b) {(4,1),(5,2),(6,3),...}

 - $\{(1,3),(2,6),(3,9),\dots\}$ (c)
 - (d) None of the above