
SOLVED PAPER

VITEEE

PART-I (PHYSICS)

- 1. When a hydrogen atom is raised from ground energy level to excited energy level, then
 - (a) potential energy increases and kinetic energy decreases
 - (b) kinetic energy increases and potential energy decreases
 - (c) Both KE and PE increase
 - (d) Both KE and PE decrease
- 2. The half life for α -decay of uranium $_{92}U^{228}$ is 4.47×10^8 yr. If a rock contains 60% of original $_{92}U^{228}$ atoms, then its age is [take log 6 = 0.778, log 2 = 0.3]
 - (a) $1.2 \times 10^7 \text{ yr}$
- (b) $3.3 \times 10^8 \text{ yr}$
- (c) $4.2 \times 10^9 \text{ yr}$
- (d) $6.5 \times 10^9 \, \text{yr}$
- 3. A nuclear transformation is given by $Y(n, \alpha) \rightarrow {}_{3}\text{Li}^{7}$. The nucleus of element Y is
 - (a) ₅Be¹¹
- (b) ${}_{5}B^{10}$
- (c) ${}_{5}B^{9}$
- (d) ${}_{6}C^{12}$
- 4. The angular momentum of an electron in Bohr's hydrogen atom whose energy is -3.4 eV, is
 - (a) $\frac{5h}{2\pi}$
- (b) $\frac{h}{2\pi}$
- (c) $\frac{h}{\pi}$
- (d) $\frac{2h}{3\pi}$
- 5. When the momentum of a photon is changed by an amount p' then the corresponding change in the de-Broglie wavelength is found to be 0.20%. Then, the original momentum of the photon was
 - (a) 300 p'
- (b) $500 p^{2}$
- (c) 400p'
- (d) 100p'
- 6. Suppose a beam of electrons with each electron having energy E_0 incident on a metal surface kept in an evacuated chamber. Then,

- (a) electrons can be emitted with any energy with a maximum of E_0
- (b) no electrons will be emitted as only photons can emit electrons
- (c) electrons can be emitted but all with an energy E_0
- (d) electrons can be emitted with any energy with a maximum of $E_{\theta}-\varphi$, where φ being work function
- 7. An *n*-type semiconductor is
 - (a) neutral
 - (b) positively charged
 - (c) negatively charged
 - (d) negatively or positively charged depending on the amount of impurity added
- 8. In the half wave rectifier circuit operating with 50 Hz mains frequency. The fundamental frequency in the ripple will be
 - (a) 100 Hz
- (b) 20 Hz
- (c) 50 Hz
- (d) 25 Hz
- 9. The input resistance of a common emitter amplifier is 330 Ω and the load resistance is 5 k Ω . A change of base current is 15 μ A results in the change of collector current by 1mA. The voltage gain of amplifier is
 - (a) 1000
- (b) 10001
- (c) 1010
- (d) 1100
- 10. To get an output y = 0 from the circuit shown in the figure, the input C must be

- (a) 0
- (b) 1
- (c) either 0 or 1
- (d) None of these

- Equal charges q each are placed at the vertices of an equilateral triangle of side r. The magnitude of electric field intensity at any vertex is

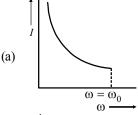
 - (a) $\frac{2q}{4\pi\epsilon_0 r^2}$ (b) $\frac{q}{4\pi\epsilon_0 r^2}$

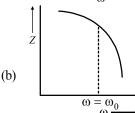
 - (c) $\frac{\sqrt{3}q}{4\pi\epsilon_0 r^2}$ (d) $\frac{\sqrt{2}q}{4\pi\epsilon_0 r^2}$
- **12.** Two points masses, m each carrying charges -q and +q are attached to the ends of a massless rigid non-conducting wire of length 'L'. When this arrangement is placed in a uniform electric field, then it deflects through an angle i. The minimum time needed by rod to align itself along the field is

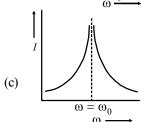
 - (a) $2\pi\sqrt{\frac{mL}{qE}}$ (b) $\frac{\pi}{2}\sqrt{\frac{mL}{2qE}}$

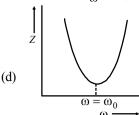
 - (c) $\pi \sqrt{\frac{2mL}{aE}}$ (d) $2\pi \sqrt{\frac{3mL}{aE}}$
- 13. A condenser of capacitance C is fully charged by a 200V supply. It is then discharged through a small coil of resistance wire embedded in thermally insulated block of specific heat 250 J/kg-K and of mass 100 g. If the temperature of the block rises by 0.4 K, then the value of C is
 - (a) $300 \mu F$
- (b) $200 \mu F$
- (c) $400 \mu F$
- (d) 500µF
- 14. The capacitance of a parallel plate capacitor with air as medium is 3 µF. As a dielectric is introduced between the plates, the capacitance becomes 15 μF. The permittivity of the medium in $C^2N^{-1}m^{-2}$ is
 - (a) 8.15×10^{-11}
- (b) 0.44×10^{-10}
- (c) 15.2×10^{12}
- (d) 1.6×10^{-14}
- **15.** The masses of three copper wires are in the ratio 2:3:5 and their lengths are in the ratio 5:3:2. Then, the ratio of their electrical resistances is
 - (a) 1:9:15
- (c) 2:3:5
- (b) 5:3:2
- (d) 125:30:8
- **16.** A 30V-90W lamp is operated on a 120 V DC line. A resistor is connected in series with the lamp in order to glow it properly. The value of resistance

is


- 10Ω (a)
- (b) 30Ω
- (c) 20Ω
- (d) 40Ω
- In a potentiometer experiment, the balancing 17. length of a cell is 560 cm. When an external resistance of 10 Ω is connected in parallel to the cell, the balancing length changes by 60 cm. The internal resistance of a cell is
 - (a) 1.4Ω
- (b) 1.6Ω
- (c) $0.12\,\Omega$
- (d) 1.2Ω
- 18. Two sources of equal emf are connected to a resistance R. The internal resistance of these sources are r_1 and r_2 ($r_1 > r_2$). If the potential difference across the source having internal resistance r_2 is zero, then


 - (a) $R = \frac{r_1 r_2}{r_2 r_1}$ (b) $R = r_2 \left(\frac{r_1 + r_2}{r_2 r_1}\right)$
 - (c) $R = \left(\frac{r_1 r_2}{r_2 + r_1}\right)$ (d) $R = r_2 r_1$
- An electron of mass 9.0×10^{-31} kg under the action of a magnetic field moves in a circle of radius 2 cm at a speed of 3×10^6 m/s. If a proton of mass 1.8×10^{27} kg was to move in a circle of same radius in the same magnetic field, then its speed will become
 - (a) 1.5×10^3 m/s (b) 3×10^6 m/s
 - (c) $6 \times 10^4 \,\text{m/s}$
- (d) 2×10^6 m/s
- A horizontal rod of mass 0.01kg and length 10 cm is placed on a frictionless plane inclined at an angle 60° with the horizontal and with the length of rod parallel to the edge of the inclined plane. A uniform magnetic field is applied 'Vertically downwards. If the current through the rod is 1.73 A, then the value of magnetic field induction B for which the rod remains stationary on the inclined plane is
 - (a) 1 T
- (c) 3 T
- (b) 2.5 T
- (d) 4 T
- 21. A current of 2 A is flowing in the sides of an equilateral triangle of side 9 cm. The magnetic field at the centroid of the triangle is
 - (a) $1.66 \times 10^{-5} \text{ T}$
- (b) $1.22 \times 10^{-4} \text{ T}$
- (c) $1.33 \times 10^{-5} \,\mathrm{T}$
- (d) $1.44 \times 10^{-4} \text{ T}$


- The direction of magnetic field dB due to current element \mathbf{dl} at a distance \mathbf{r} is the direction of
 - (a) $r \times dl$
- (b) $dl \times r$
- (c) (rdl)r
- (d) dl
- A galvanometer with a scale divided into 100 equal divisions has a current sensitivity of 10 divisions per milliampere and a voltage sensitivity of 2 divisions per millivolt. The galvanometer resistance will be
 - (a) 4Ω
- (b) 5Ω
- (c) 3Ω
- (d) 7Ω
- The earth is considered as a short magnet with its centre coinciding with the geometric centre of earth. The angle of dip \$\phi\$ related to the magnetic latitude αλas
 - $tan \varphi = \frac{1}{2 \tan \alpha}$ (b) $tan \lambda = 2 \tan \varphi$
 - $\tan \lambda = 2 \tan \phi$
- (d) $tan \phi = 2tan \lambda$
- 25. Which of the following statement related to hysteresis loop is incorrect?
 - The curve of B against H for a ferromagnetic material is called hysteresis
 - (b) The area of B-H curve is a measure of power dissipated per cycle per unit area of the specimen
 - (c) Coercitivity is a measure of the magnetic field required to destroy the residual magnetism of ferromagnetic material
 - The retentivity of a specimen is the measure of magnetic field remaining in the specimen when the magnetising field is removed
- A magnetic needle lying parallel to the magnetic field requires W units of work to turn it through an angle 45°. The torque required to maintain the needle in this position will be
- (c) $(\sqrt{2}-1)W$
- 27. An induced emf has
 - (a) a direction same as field direction
 - (b) a direction opposite to the field direction
 - (c) no direction of its own
 - (d) None of the above


- A coil of area 5 cm² having 20 turns is placed in a uniform magnetic field of 10³ gauss. The normal to the plane of coil makes an angle 30° with the magnetic field. The flux through the coil is

 - (a) 6.67×10^{-4} wb (b) 3.2×10^{-5} Wb
 - (c) $5.9 \times 10^{-4} \text{ wb}$
- (d) $8.65 \times 10^{-4} \text{ wb}$
- 29. The current graph for resonance in LC circuit is

- The value of inductance L for which the current is maximum in series LCR circuit with $C=10 \mu F$ and $\omega = 1000 \text{ rad/s}$
 - (a) 10mH
- (b) 50mH
- (c) 200 mH
- (d) 100mH
- 31. A ray of light is incident on a plane mirror at an angle of 30°. At what angle with the horizontal must a plane mirror be placed so that the reflected ray becomes vertically upwards?
 - 40° (a)
- (b) 20°
- (c) 30°
- (d) 60°

- **32.** A compound microscope having magnifying power 35 with its eye-piece of focal length 10 cm. Assume that the final image is at least distance of distinct vision then the magnification produced by the objective is
 - (a) -4
- (b) 5
- (c) 10
- (d) -10
- 33. The refractive index for a prism is given as

 $\mu = \cot \frac{A}{2}$. Then, angle of minimum deviation

in terms of angle of prism is

- (a) 90°-A
- (b) 2A
- (c) 180°-A
- (d) 180°-2A
- **34.** Two convex lenses of power 2D and 5D are separated by a distance $\frac{1}{3}$ m. The power of optical system formed is
 - (a) +2D
- (b) -2 D
- (c) -3 D
- (d) +3D
- 35. Two light rays having the same wavelength in vacuum are in phase initially. Then, the first ray travels a path L_1 through a medium of refractive index μ_1 while the second ray travels a path L_2 through a medium of refractive index μ_2 . The two waves are then combined to observe interference. The phase difference between the two waves is

(a)
$$\frac{2\pi}{\lambda} \left(\frac{L_1}{\mu_1} - \frac{L_2}{\mu_2} \right)$$
 (b) $\frac{2\pi}{\lambda} (L_2 - L_1)$

(c)
$$\frac{2\pi}{\lambda}(\mu_2 L_1 - \mu_1 L_2)$$
 (d) $\frac{2\pi}{\lambda}(\mu_1 L_1 - \mu_2 L_2)$

- **36.** Two polaroids are kept crossed to each other. If one of them is rotated an angle 60°, the percentage of incident light now transmitted through the system is
 - (a) 10%
- (b) 20%
- (c) 25%
- (d) 12.5%
- **37.** An electromagnetic wave propagating along north lies its electric field vertically upward. The magnetic field vector points towards
 - (a) downward
- (b) east
- (c) north
- (d) south

- **38.** Pick out the wrong statement.
 - (a) Gauss's law of magnetism is given by
 - $\alpha \oint \mathbf{B} \cdot \mathbf{ds} = 0$
 - (b) An EM wave is a wave radiated by a charge at rest and propagates through electric field only
 - (c) A time varying electric field is a source of changing magnetic field
 - (d) Faraday's law of EM induction is

$$\oint \mathbf{E.dl} = -\frac{d\Phi_B}{dt}$$

- **39.** When sunlight is scattered by atmospheric atoms and molecules the amount of scattering of light of wavelength 880nm is *A*. Then, the amount of scattering of light of wavelength 330 nm is approximately
 - (a) 10A
- (b) 20A
- (c) 40A
- (d) 50.5 A
- **40.** The ratio of volume occupied by an atom to the volume of the nucleus is
 - (a) $10^5:1$
- (b) $10^{20}:1$
- (c) $10^{15}:1$
- (d) 1:10¹⁵

PART-II(CHEMISTRY)

41. When copper is treated with a certain concentration of nitric acid, nitric oxide and nitrogen dioxide are liberated in equal volumes according to the equation,

$$x\text{Cu} + y\text{HNO}_3 \longrightarrow \text{Cu(NO}_3)_2 + \text{NO}_2 + \text{H}_2\text{O}$$
The second size of a second seco

The coefficients of x and y are respectively

- (a) 2 and 3
- (b) 2 and 6
- (c) 1 and 3
- (d) 3 and 8
- **42.** A saturated solution of $\rm H_2S$ in 0.1 M HCl at 25°C contains $\rm S^{2-}$ ion concentration of $\rm 10^{-23}$ mol $\rm L^{-1}$. The solubility product of some sulphides are $\rm CuS=10^{-44}$, $\rm FeS=10^{-14}$, $\rm MnS=10^{-15}$, $\rm CdS=10^{-25}$. If 0.01 M solution of these salts in 1M HCl are saturated with $\rm H_2S$, which of these will be precipitated?
 - (a) All
 - (b) All except MnS
 - (c) AU except MnS and FeS
 - (d) Only-CuS

43. Consider the water gas equilibrium reaction,

$$C(s) + H_2O(g) \iff CO(g) + H_2(g)$$

Which of the following statements is true at equilibrium?

- (a) If the amount of C(s) is increased, less water would be formed
- (b) If the amount of C(s) is increased, more CO and H₂ would be formed
- (c) If the pressure on the system is increased by halving the volume, more water would be formed
- (d) If the pressure on the system is increased by halving the volume, more CO and H₂ would be formed
- **44.** The chemical composition of slag formed during the smelting process in the extraction of copper is
 - (a) $Cu_2O + FeS$
- (b) FeSiO₃
- (c) CuFeS₂
- (d) $Cu_2S + FeO$
- 45. $X \operatorname{Cl}_2 (\operatorname{excess}) + Y \operatorname{Cl}_2 \longrightarrow X \operatorname{Cl}_4 + Y \downarrow$

$$YO \xrightarrow{\Delta \atop >400^{\circ}C} \frac{1}{2}O_2 + Y$$

Ore of Y would be,

- (a) siderite
- (b) malachite
- (c) hornsilver
- (d) cinnabar
- **46.** For the given reaction,

$$H_2(g) + Cl_2(g) \longrightarrow 2H^+(aq) + 2Cl^-(aq);$$

 $\Delta G^\circ = -262.4kJ$

The value of free energy of formation

- (ΔG_f) for the ion Cl⁻¹ (aq), therefore will be
- (a) $-131.2 \text{ kJ mol}^{-1}$ (b) $+131.2 \text{ kJ mol}^{-1}$
- (c) $-262.4 \text{ kJ mol}^{-1}$ (d) $+262.4 \text{ kJ mol}^{-1}$
- **47.** The molarity of NO₃⁻ in the solution after 2L of 3M AgNO₃ is mixed with 3L of 1M BaCl₂ is
 - (a) 1.2 M
- (b) 1.8 M
- (c) $0.5 \,\mathrm{M}$
- (d) $0.4 \, \text{M}$
- 48. Amongest

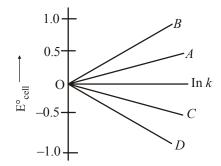
 NO_3^- , AsO_3^{3-} , CO_3^{2-} , ClO_3^- , SO_3^{2-} and BO_3^{3-} the non-planar species are

- (a) CO_3^{2-} , SO_3^{2-} and BO_3^{2-}
- (b) AsO_3^{3-} , ClO_3^{-} and SO_3^{2-}
- (c) NO_3^- , CO_3^{2-} and BO_3^{3-}
- (d) SO_3^{2-} , NO_3^- and BO_3^{3-}

49.
$$B \leftarrow \text{(i) } \text{B}_2\text{H}_6/\text{THF} \atop \text{(ii) } \text{H}_2\text{O}_2/\text{OH}^ C\text{H}_2 \longrightarrow A$$

A and B respectively are

(c)
$$CH_2OH$$
, CH_3OH


(d)
$$CH_3$$
 CH_2OH

- **50.** A certain metal when irradiated by light $(r=3.2 \times 10^{16} \text{Hz})$ emits photoelectrons with twice kinetic energy as did photoelectrons when the same metal is irradiated by light $(r=2.0 \times 10^{16} \text{Hz})$. The v_0 of metal is
 - (a) $1.2 \times 10^{14} \text{ Hz}$
- (b) $8 \times 10^{15} \,\text{Hz}$
- (c) $1.2 \times 10^{16} \,\text{Hz}$
- (d) $4 \times 10^{12} \text{ Hz}$
- **51.** Gaseous benzene reacts with hydrogen gas in presence of a nickel catalyst to form gaseous cyclohexane according to the reaction,

$$C_6H_6(g) + 3H_2(g) \longrightarrow C_6H_{12}(g)$$

A mixture of C_6H_6 and excess H_2 has a pressure of 60 mm of Hg in an unknown volume. After the gas had been passed over a nickel catalyst and all the benzene converted to cyclohexane, the pressure of the gas was 30 mm of Hg in the same volume at the same temperature. The fraction of C_6H_6 (by volume) present in the original volume is

- (a) 1/3
- (b) 1/4
- (c) 1/5
- (d) 1/6
- **52.** An alloy of copper, silver and gold is found to have copper atom constituting the ccp lattice. If silver atom occupy the edge centres and gold atom is present at body centred, the alloy has a formula
 - (a) Cu₄Ag₂Au
- (b) Cu₄Ag₄Au
- (c) Cu₄Ag₃Au
- (d) CuAgAu
- **53.** Given, $\Delta G^{\circ} = -nFE^{\circ}_{\text{cell}}$ and $\Delta G^{\circ} = -RT \ln k$. The value of n = 2 will be given by the slope of which line in the figure

- (a) *OA*
- (b) *OB*
- (c) OC
- (d) *OD*
- 54. The false statements among the following are
 - A primary carbocation is less stable than a tertiary carbocation.
 - A secondary propyl carbocation is less stable than allyl carbocation.
 - III. A tertiary free radical is more stable than a primary free radical.
 - Isopropyl carbanion is more stable than ethyl carbanion.
 - I and II
- (b) II and Ill
- (c) I and IV
- (d) II and IV
- **55.** A colourless water soluble solid A on heating gives equimolar quantities of B and C. B gives dense white fumes with HCl and C does so with NH₃. B gives brown precipitate with Nessler's reagent and C gives white precipitate with nitrates of Ag⁺, Pb⁺ and Hg⁺. A is
 - (a) NH₄Cl
- (b) NH₄CO₃
- (c) NH₄NO₂
- (d) FeSO₄

is

- (a) 4-ethyl-5,6,7,9-tetramethyldeca-2, 9-diene
- (b) 7-ethyl-2,4,5,6-tetramethyldeca-1, 8-diene
- (c) 7-ethyl-2,4,5,6-tetramethyldeca-1, 7-diene
- (d) 7-(1-propenyl)-2,3,4,5-tetramethyl non-1-ene
- Caffeine has a molecular weight of 194 u. If it contains 28.9% by mass of nitrogen, number of atom of nitrogen in one molecule of caffeine is
 - (a)
- (b) 6
- (c) 2
- (d) 3

- A compound X on heating gives a colourless gas. The residue is dissolved in water to obtain Y. Excess CO₂ is passed through aqueous solution of Y when Z is formed. Z on gentle heating gives back X. The compound X is
 - (a) $Ca(HCO_3)_2$
- (b) CaCO₃
- (c) NaHCO₃
- (d) Na₂ CO₃
- Which two sets of reactants best represents the amphoteric character of $Zn(OH)_2$?
 - Set I $Zn(OH)_2(s)$ and OH(aq)
 - Set II $Zn(OH)_2(s)$ and $H_2O(I)$
 - **Set** III $Zn(OH)_2(s)$ and $H^+(aq)$
 - Set IV $Zn(OH)_2(s)$ and $NH_3(aq)$
 - (a) III and II
- (b) I and III
- (c) IV and I
- (d) II and IV
- **60.** C_6H_5 — $NO_2 \xrightarrow{\text{Zn dust}} A$

A and B respectively are

(b)
$$\langle \bigcirc \rangle$$
 NH—NH— $\langle \bigcirc \rangle$ NH₂N— $\langle \bigcirc \rangle$ NH₂

$$(c) \bigotimes_{O} N = N - \bigotimes_{O}$$

- (d) None of the above
- Point out incorrect stability order
 - (a) $[Cu(NH_3)_4]^{2+} < [Cu(en)_2]^{2+} < [Cu$
 - (b) $[Fe(H_2O)_6]^{3+} < [Fe(NO_2)_6]^{3-} < [Fe(NH_3)_6]^{3+}$
 - (c) $[Co(H_2O)_6]^{3+} < [Rh(H_2O)_6]^{3+} < [Ir(H_2O)_6]^{3+}$
 - (d) $[Cr(NH_3)_6]^+ < [Cr(NH_3)_6]^{2+} < [Cr(NH_3)_6]^{3+}$
- **62.** Consider the following changes

$$M(s) \longrightarrow M(g)$$
 ...(1)

$$M(g) \longrightarrow M^{2+}(g) + 2e^- \dots (2)$$

$$M(g) \longrightarrow M^+(g) + e^-$$
 ...(3)

$$M^{+}(g) \longrightarrow M^{2+}(g) + e^{-} ...(4)$$

$$M(g) \longrightarrow M^{2+}(g) + 2e^{-} ...(5)$$

The second ionisation energy of M could be determined from the energy values associated with

- (a) 1+2+4
- (c) 1+5-3
- (b) 2+3-4
- (d) 5–3
- 63. In benzene, the triple bond consists of
 - (a) one sp-sp sigma bond and two p-p pi bonds
 - (b) two *sp-sp* sigma bonds and one *p-p* pi bond
 - (c) one sp^2 - sp^2 sigma bond, one p-p pi bond
 - (d) one sp^2 - sp^2 sigma bond, one sp^2 - sp^2 pi bond and one p-p pi bond
- **64.** In keto-enol tautomerism of dicarbonyl compounds; the enol-form is preferred in contrast to the keto-form, this is due to
 - (a) presence of carbonyl group on each side of $-CH_2$ group
 - (b) resonance stabilisation of enol form
 - (c) presence of methylene group
 - (d) rapid chemical exchange
- 65. An organic compound having carbon, hydrogen and sulphur contains 4% of sulphur. The minimum molecular weight of the compound is
 - (a) 200
- (b) 400
- (c) 600
- (d) 800
- **66.** Which one of the following is a case of negative adsorption?
 - (a) Acetic acid solution in contact with animal charcoal.
 - (b) Dilute KCl solution in contact with blood charcoal.
 - (c) Concentration KCl solution in contact with blood charcoal.
 - (d) H₂ gas in contact with charcoal at 300 K.
- **67.** The concentrations of the reactant A in the reacntion $A \rightarrow B$ at different times are given below

Concentration (M) Time (Minutes)

 0.069
 0

 0.052
 17

 0.035
 34

 0.018
 51

The rate constant of the reaction according to the correct order of reaction is

- (a) 0.001 M/min
- (b) $0.001 \,\mathrm{min^{-1}}$
- (c) 0.001 min/M
- (d) 0.001 M⁻¹ min⁻¹

- **68.** The ratio of slopes of K_{max} vs V and V_0 vs v curves in the photoelectric effects gives $(v = \text{frequency}, K_{\text{max}} = \text{maximum kinetic energy}, v_0 = \text{stopping potential})$
 - (a) the ratio of Planck's constant of electronic charge
 - (b) work function
 - (c) Planck's constant
 - (d) charge of electron
- **69.** With excess of water, both P_2O_5 and PCl_5 give
 - (a) H_3PO_3
- (b) H₃PO₂
- (c) H_3PO_4
- (d) $H_4P_2O_7$
- **70.** The dissolution of AI(OH)₃ by a solution of NaOH results in the formation of
 - (a) $[AI(H_2O)_4(OH)_2]^+$
 - (b) $[AI(H_2O)_3(OH)_3]$
 - (c) $[AI(H_2O)_2(OH)_4]^{-}$
 - (d) $[AI(H_2O)_6(OH)_3]$
- 71. Which of the following does not exist?
 - (a) $Kl+l_2 \longrightarrow Kl_3$
 - (b) $KF + F_2 \longrightarrow KF_3$
 - (c) $KBr + ICl_2 \longrightarrow K[BrlCl]$
 - (d) $KF+BrF_3 \longrightarrow K[BrF_4]$
- **72.** If the ionisation energy and electron affinity of an element are 275 and 86 kcal mol⁻¹ respectively, then the electronegativity of the element on the Mulliken scale is
 - (a) 2.8
- (b) 0.0
- (c) 4.0
- (d) 2.6
- **73.** Which of the following sets of reactants is used for preparation of paracetamol from phenol?
 - (a) HNO_3 , $H_2/Pd_1(CH_3CO)_2O$
 - (b) H₂SO₄,H₂/Pd, (CH₃CO)₂O
 - (c) C₆H₅N₂Cl, SnCl₂/HCl, (CH₃CO)₂O
 - (d) Br_2/H_2O , Zn/HCl, $(CH_3CO)_2O$
- **74.** A certain compound gives negative test with ninhydrin and positive test with Benedict's solution. The compound is
 - (a) a protein
- (b) a monosaccharide
- (c) a lipid
- (d) an amino acid
- 75. Super glue or crazy glue is
 - (a) poly (methyl methacrylate)
 - (b) poly (ethyl acrylate)
 - (c) poly (methyl α -cyanoacrylate)
 - (d) poly (ethyl methacrylate)

X and Y respectively are

- (a) picric acid, 2, 4, 6-tribromophenol
- (b) 5-nitrophenol acid, 5-bromosalicylic acid
- (c) o-nitrophenol, O-bromophenol
- (d) 3,5-dinitrosalicylic acid, 3,5-dibromosalicylic
- In the cannizzaro reaction given below

$$2\text{Ph}$$
—CHO $\xrightarrow{\text{OH}^-}$

$$Ph$$
— CH_2 — $OH + PhCO_2$

the slowest step is

- the attack of $\overline{O}H$ at the carbonyl group
- the transfer of hydride ion to the carbonyl group
- (c) the abstraction of a proton from the carboxylic acid
- (d) the deprotonation of Ph-CH₂OH
- The reaction of 1-bromo-3-chlorocyclobutane with metallic sodium in dioxane under reflux conditions gives

79. Identify Z in the following reaction sequence

$$\begin{array}{c} \mathrm{CH_{3}CH_{2}CH_{2}OH} \xrightarrow{\quad \text{Conc.H}_{2}\mathrm{SO}_{4} \\ \downarrow \\ \qquad \qquad \qquad \downarrow \\ Y \xrightarrow{\quad \text{(i) Alc. KOH} \\ \text{(ii) NaNH}_{2}} Z \end{array}$$

- (a) $CH_3 CH(NH_2) CN_2 NH_2$
- (b) CH₃ CHOH CH₂OH (c) CH₃ C(OH) = CH₂
- (d) $CH_3 C \equiv CH$

- 80 Which of the following reactions is used to prepare isobutane?
 - (a) Wurtz reaction of C₂H₅Br
 - (b) Hydrolysis of *n*-butylmagnesium iodide
 - Reduction of propanol with red phosphorus and HI
 - Decarboxylation of 3-methylbutanoic acid

PART-III (MATHEMATICS)

81. The differential equation

(3x+4y+1)dx+(4x+5y+1)dy=0represents a family of

- (a) circles
- (b) parabolas
- (c) ellipses
- (d) hyperbolas
- **82.** If $\Delta(r) = \begin{vmatrix} r & r^3 \\ 1 & n(n+1) \end{vmatrix}$, then $\sum_{r=1}^{n} \Delta(r)$ is
 - (a) $\sum_{r=1}^{n} r^2$ (b) $\sum_{r=1}^{n} r^3$
- - (c) $\sum_{n=1}^{n} r$ (d) $\sum_{n=1}^{n} r^4$
- If A, B, C are three events associated with a random experiment, then

$$P(A) P\left(\frac{B}{A}\right) P\left(\frac{C}{A} \cap B\right)$$
 is

- (a) $P(A \cup B \cap C)$ (b) $P(A \cap B \cap C)$
- (c) $P\left(\frac{C}{A} \cap B\right)$ (d) $P\left(\frac{B}{A}\right)$
- **84.** If $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & -1 \\ 3 & 0 & 1 \end{bmatrix}$, then rank (A) is equal to
 - (a) 4
- (c) 2
- (d) 3
- The probability of atleast one double six being thrown in n throws with two ordinary dice is greater than 99%.

Then, the least numerical value of n is

- (a) 100
- (b) 164
- (c) 170
- 184 (d)
- Find the value of *k* for which the simultaneous equations x + y + z = 3; x + 2y + 3z = 4 and x + 4y+kz = 6 will not have a unique solution.
 - (a) 0
- (b) 5
- (c) 6
- (d) 7

- If the complex number z lies on a circle with centre at the origin and radius $\frac{1}{4}$, then the complex number -1+8z lies on a circle with radius
 - (a) 4
- (b) 1
- (c) 3
- (d) 2
- If line y = 2x + c is a normal to the ellipse

$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$
, then

- (a) $c = \frac{2}{3}$ (b) $c = \sqrt{\frac{73}{5}}$
- (c) $c = \frac{14}{\sqrt{73}}$ (d) $c = \sqrt{\frac{5}{7}}$
- **89.** If $x^2 + x + 1 = 0$, then the value of $\sum_{n=1}^{6} \left(x^n + \frac{1}{x^n} \right)^2$ is
- (c) 9
- (d) 14
- **90.** If p: It rains today, q: I go to school, r: I shall meet my friends and s: I shall go for a movie, then which of the following is the proportion? If it does not rain or if I do not go to school, then I shall meet my friend and go for a movie.
 - (a) $(\sim p \land \sim q) \Rightarrow (r \land s)$
 - (b) $\sim (p \land q) \Rightarrow (r \land s)$
 - (c) $\sim (p \lor q) \Rightarrow (r \lor s)$
 - (d) None of these
- **91.** If the matrix $A = \begin{bmatrix} 1 & 3 & 1 \\ -1 & 2 & -3 \\ 0 & 1 & 2 \end{bmatrix}$ then adj (adj A) is
 - (a) $\begin{vmatrix} 12 & 36 & 12 \\ -12 & 24 & -36 \\ 0 & 12 & 24 \end{vmatrix}$ (b) $\begin{vmatrix} 12 & 26 & -12 \\ 24 & 36 & -36 \\ 0 & 12 & -24 \end{vmatrix}$
 - (c) $\begin{bmatrix} 12 & -12 & 36 \\ 24 & -24 & -36 \\ 0 & 12 & 24 \end{bmatrix}$ (d) None of there
- 92. Which of the following options is not the asymptote of the curve $3x^3 + 2x^2y - 7xy^2 + 2y^3 - 14xy + 7y^2 + 4x + 5y$
 - (a) $y = \frac{-1}{2}x \frac{5}{6}$ (b) $y = x \frac{7}{6}$
 - (c) $y = 2x + \frac{3}{7}$ (d) $y = 3x \frac{3}{2}$

- If N is a set of natural numbers, then under binary operation $a \cdot b = a + b$, (N, ·) is
 - (a) quasi-group
- (b) semi-group
- (c) monoid
- (d) group
- 94. $\int \frac{dx}{\cos x + \sqrt{3} \sin x}$ equals
 - (a) $\frac{1}{2}\log \tan \left(\frac{x}{2} + \frac{\pi}{12}\right) + C$
 - (b) $\frac{1}{3}\log \tan \left(\frac{x}{2} \frac{\pi}{12}\right) + C$
 - (c) $\log \tan \left(\frac{x}{2} + \frac{\pi}{6}\right) + C$
 - (d) $\frac{1}{2}\log\tan\left(\frac{x}{2}-\frac{\pi}{6}\right)+C$
- **95.** If (2, 7, 3) is one end of a diameter of the sphere $x^2 + y^2 + z^2 6x 12y 2z + 20 = 0$, then the coordinates of the other end of the diameter are
- (b) (4, 5, 1)
- (a) (-2, 5, -1)(c) (2, -5, 1)(d) (4, 5, -1)
- The two lines x = my + n, z = py + q and x = m'y + n', z = p'y + q' are perpendicular to each other, if
 - (a) mm' + pp' = 1 (b) $\frac{m}{m'} + \frac{p}{p'} = -1$
- - (c) $\frac{m}{m'} + \frac{p}{n'} = 1$
- (d) mm' + pp' = -1
- A tetrahedron has vertices at O(0, 0, 0), A(1,-2,1), B(-2,1,1) and C(1,-1,2). Then, the angle between the faces OAB and ABC will be

 - (a) $\cos^{-1} \left(\frac{1}{2} \right)$ (b) $\cos^{-1} \left(\frac{-1}{6} \right)$
 - (c) $\cos^{-1}\left(\frac{-1}{3}\right)$ (d) $\cos^{-1}\left(\frac{1}{4}\right)$
- If a line segment *OP* makes angles of $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with X-axis and Y-axis, respectively. Then, the direction cosines are
 - (a) $\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}}$ (b) $\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{\sqrt{2}}$

 - (c) $1, \sqrt{3}, 1$ (d) $1, \frac{1}{\sqrt{3}}, 1$

- **99.** If p, q, r are simple propositions with truth values T, F, T, then the truth value of $(\sim p \vee q) \wedge \sim r$ $\Rightarrow p$ is
 - (a) true
- (b) false
- (c) true, if r is false
- (d) true, if q is true
- **100.** On the interval [0, 1], the function $x^{25}(1-x)^{75}$ takes its maximum value at the point
 - (a) 0
- (c) $\frac{1}{2}$
- **101.** If $|z| \ge 3$, then the least value of $\left|z + \frac{1}{4}\right|$ is
- (c) 3
- **102.** The normal at the point $(at_1^2, 2at_1)$ on the parabola meets the parabola again in the point $(at_2^2, 2at_3)$, then
 - (a) $t_2 = -t_1 + \frac{2}{t_1}$ (b) $t_2 = -t_1 \frac{2}{t_1}$
 - (c) $t_2 = t_1 \frac{2}{t}$ (d) $t_2 = t_1 + \frac{2}{t}$
- 103. If $\mathbf{a} = \hat{\mathbf{i}} \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $\mathbf{b} = 2\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the angle θ between **a** and **b** is given by
 - (a) $\tan^{-1}(1)$ (b) $\sin^{-1}\left(\frac{1}{2}\right)$
- - (c) $\sec^{-1}(1)$
- (d) $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$
- **104.** The area bounded by the curves $y = \cos x$ and $y = \sin x$ between the ordinates x = 0 and $x = \frac{3\pi}{2}$ is
 - (a) $(4\sqrt{2}-2)$ sq units
 - (b) $(4\sqrt{2} + 2)$ sq units

- (c) $(4\sqrt{2}-1)$ sq units
- (d) $(4\sqrt{2}+1)$ sq units
- 105. If a, b and c are three non-coplanar vectors, then $(\mathbf{a} + \mathbf{b} - \mathbf{c}) \cdot [(\mathbf{a} - \mathbf{b}) \times (\mathbf{b} - \mathbf{c})]$ equals
 - (a) 0
- (b) $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$
- (c) $\mathbf{a}.\mathbf{c}\times\mathbf{b}$
- (d) $3\mathbf{a}.\mathbf{b}\times\mathbf{c}$
- 106. If there is an error of m\% in measuring the edge of cube, then the percent error in estimating its surface area is
 - (a) 2 m
- (b) 3 m
- (c) 1 m
- (d) 4m
- 107. If the rectangular hyperbola is $x^2 y^2 = 64$. Then, which of the following is not correct?
 - (a) The length of latus rectum is 16
 - (b) The eccentricity is $\sqrt{2}$
 - (c) The asymptotes are parallel to each other
 - (d) The directrices are $x = \pm 4\sqrt{2}$
- 108. The equation of tangents to the hyperbola $3x^2 - 2y^2 = 6$, which is perpendicular to the line x-3v=3, are
 - (a) $y = -3x \pm \sqrt{15}$ (b) $y = 3x \pm \sqrt{6}$
 - (c) $y = -3x \pm \sqrt{6}$ (d) $y = 2x \pm \sqrt{15}$
- 109. $\lim_{x \to \pi/4} \frac{\tan x 1}{\cos 2x}$ is equal to
 - (a) 1
- (b) 0
- (d) -1
- 110. The area of the region bounded by the curves $x^2 + y^2 = 9$ and x + y = 3 is

 - (a) $\frac{9\pi}{4} + \frac{1}{2}$ (b) $\frac{9\pi}{4} \frac{1}{2}$

 - (c) $9\left(\frac{\pi}{4} \frac{1}{2}\right)$ (d) $9\left(\frac{\pi}{4} + \frac{1}{2}\right)$
- 111. For any three vectors \mathbf{a} , \mathbf{b} and \mathbf{c} , [a+b,b+c,c+a]
 - (a) [a b c]
- (b) 3[abc]
- (c) 2 [a b c]
- 112. $\int_0^{\pi/2} \sin 2x \cdot \log \tan x \, dx$ is equal to
 - (a) 0
- (c) 4
- (d) 7
- 113. If the mean and variance of a binomial distribution are 4 and 2, respectively. Then, the probability of atleast 7 successes is

(a)
$$\frac{3}{214}$$
 (b) $\frac{4}{173}$

(b)
$$\frac{4}{173}$$

(c)
$$\frac{9}{256}$$

(d)
$$\frac{7}{231}$$

114. The shortest distance between the lines

$$\frac{x-7}{3} = \frac{y+4}{-16} = \frac{z-6}{7}$$

and
$$\frac{x-10}{3} = \frac{y-30}{8} = \frac{4-z}{5}$$
 is

(a)
$$\frac{234}{7}$$
 units

(a)
$$\frac{234}{7}$$
 units (b) $\frac{288}{21}$ units

(c)
$$\frac{221}{3}$$
 units

(c)
$$\frac{221}{3}$$
 units (d) $\frac{234}{21}$ units

- 115. If a plane passing through the point (2, 2, 1) and is perpendicular to the planes 3x + 2y + 4z + 1 = 0and 2x+y+3z+2=0. Then, the equation of the plane is
 - (a) 2x-y-z-1=0 (b) 2x+3y+z-1=0
 - (c) 2x+y+z+3=0 (d) x-y+z-1=0
- 116. From a city population, the probability of selecting a male or smoker is $\frac{7}{10}$, a male smoker is $\frac{2}{5}$ and a male, if a smoker is already selected, is $\frac{2}{3}$. Then, the probability of
 - (a) selecting a male is $\frac{3}{2}$
 - (b) selecting a smoker is $\frac{1}{5}$
 - (c) selecting a non-smoker is $\frac{2}{5}$
 - (d) selecting a smoker, if a male is first selected, is given by $\frac{8}{5}$

117. At
$$t = 0$$
, the function $f(t) = \frac{\sin t}{t}$ has

- (a) a minimum
- (b) a discontinuity
- (c) a point of inflexion
- (d) a maximum
- 118. Using Rolle's theorem, the equation $a_0 x^n + a_1 x^{n-1} + \dots + a_n = 0$ has atleast one root between 0 and 1, if

(a)
$$\frac{a_0}{n} + \frac{a_1}{n-1} + \dots + a_{n-1} = 0$$

(b)
$$\frac{a_0}{n-1} + \frac{a_1}{n-2} + \dots + a_{n-2} = 0$$

(c)
$$na_0 + (n-1)a_1 + \dots + a_{n-1} = 0$$

(d)
$$\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + a_n = 0$$

119. Which of the following inequality is true for

(a)
$$\log(1+x) < \frac{x}{1+x} < x$$

(b)
$$\frac{x}{1+x} < x < \log(1+x)$$

(c)
$$x < \log(1+x) < \frac{x}{1+x}$$

(d)
$$\frac{x}{1+x} < \log(1+x) < x$$

120. The solution of $\frac{d^2x}{dv^2} - x = k$, where k is a

non-zero constant, vanishes when y = 0 and tends of finite limit as y tends to infinity, is

(a)
$$x = k(1 + e^{-y})$$

(a)
$$x = k(1 + e^{-y})$$
 (b) $x = k(e^y + e^{-y} - 2)$

(c)
$$x = k(e^{-y}-1)$$
 (d) $x = k(e^y-1)$

(d)
$$x = k(e^y - 1)$$