GENERAL INSTRUCTIONS

This question paper contains total 125 questions divided into four parts:

Part I: Physics Q. No - 1 to 40

Part II: Chemistry Q. No - 41 to 80

Part III: Mathematics Q. No - 81 to 120

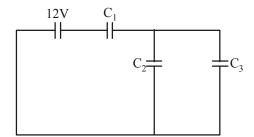
Part IV: English Q. No - 121 to 125

- All questions are multiple choice questions with four options, only one of them is correct.
- For each correct response, the candidate will get 1 mark.
- There is no negative marking for the wrong answer.
- The test is of 2½ hours duration.

PART - I (PHYSICS)

- 1. The potential energy of a system increases if work is done
 - (a) upon the system by a non conservative
 - (b) by the system against a conservative force
 - (c) by the system against a non conservative force
 - (d) upon the system by a conservative force
- 2. In photoelectric effect, initially when energy of electrons emitted is E₀, de-Broglie wavelength associated with them is λ_0 . Now, energy is doubled then associated de-Broglie wavelength λ' is

(a)
$$\lambda' = \frac{\lambda_o}{\sqrt{2}}$$
 (b) $\lambda' = \sqrt{2}\lambda_o$


(b)
$$\lambda' = \sqrt{2}\lambda_0$$

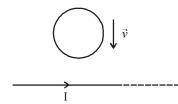
(c)
$$\lambda' = \lambda_0$$

(c)
$$\lambda' = \lambda_0$$
 (d) $\lambda' = \frac{\lambda_0}{2}$

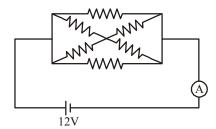
In Wheatstone bridge, 4 resistors $P = 10\Omega$, 3. $Q = 5\Omega$, $R = 4\Omega$, $S = 4\Omega$ are connected in cyclic order. To ensure no current through galvanometer

- (a) 5Ω resistance is connected in series with Q
- (b) 4Ω resistance is connected parallel to S
- (c) 10Ω resistance is connected in series with P
- (d) 4Ω resistance is connected in series with R
- In given circuit, $C_1 = C_2 = C_3 = C$ initially. Now, a 4. dielectric slab of dielectric constant $K = \frac{3}{2}$ is inserted in C_2 .

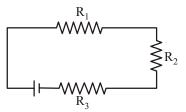
The equivalent capacitance become


(a)
$$\frac{5C}{7}$$

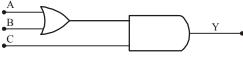
(b)
$$\frac{7C}{5}$$


(c)
$$\frac{2C}{3}$$

d)
$$\frac{C}{2}$$

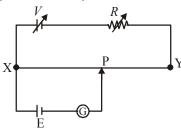

- 5. If the terminal speed of a sphere of gold (density = 19.5 kg/m^3) is 0.2 m/s in a viscous liquid (density = 1.5 kg/m^3), find the terminal speed of a sphere of silver (density = 10.5 kg/m^3) of the same size in the same liquid
 - (a) $0.4 \, \text{m/s}$
- (b) 0.133 m/s
- (c) 0.1 m/s
- (d) $0.2 \,\text{m/s}$
- **6.** In shown fig, the circular loop of wire is moved with velocity towards the infinite current carrying wire. Then

- (a) no current is induced in loop
- (b) current is induced in loop clockwise
- (c) current is induced in loop anticlockwise
- (d) extra charges are induced on the wire loop
- 7. For a current carrying inductor, emf associated is 20mV. Now, current through it changes from 6A to 2A in 2s. The coefficient of mutual inductance is
 - (a) 20mH
- (b) 10mH
- (c) 1mH
- (d) 2mH
- **8.** A square current carrying loop is changed to a circular loop in time t₁. Then
 - (a) emf is induced in loop for time $t < t_1$
 - (b) emf is induced in loop for time $t > t_1$
 - (c) no emf is induced in loop during whole process
 - (d) emf is induced due to change in magnetic field
- **9.** Hologram is based on phenomenon of
 - (a) diffraction
 - (b) polarisation
 - (c) interference
 - (d) total internal reflection
- 10. In given circuit, all resistances are of 10Ω . Current flowing through ammeter is



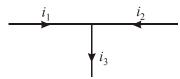
- (a) 3.6 A
- (b) 1.8A
- (c) 2A
- (d) 1 A
- 11. The wavelength of an electron for transition from a state n_1 to n_2 is $\frac{9}{8R}$. Which of the following wavelengths is possible for a transition from n_2 to n_1
 - (a) $\frac{16}{15R}$
- (b) $\frac{4}{3R}$
- (c) $\frac{9}{8R}$
- $(d) \quad \frac{36}{5R}$
- 12. Two solenoids are given 1st has 1 turn per unit length and 2nd has n turns per unit length. Ratio of magnetic fields at their centres is
 - (a) n:1
- (b) 1:n
- (c) $1: n^2$
- (d) $n^2:1$
- **13.** Which statement is correct for the given circuit?

- (a) I through $R_1 > I$ through R_2
- (b) I through $R_3 > I$ through R_2 and R_1
- (c) I through $R_2 > I$ through R_3 and R_1
- (d) I is same in R_1 , R_2 and R_3
- 14. A (+)vely charged particle is placed near an infinitely long straight conductor where there is zero gravity. Then
 - (a) the charged particle will not move
 - (b) it will move parallel to the straight conductor
 - (c) it will move perpendicular to the straight conductor
 - (d) it will move with constant acceleration
- **15.** A metallic bar is heated from 0°C to 100°C. The coeficient of linear expansion is 10^{-5} K⁻¹. What will be the percentage increase in length?
 - (a) 0.01%
- (b) 0.1%
- (c) 1%
- (d) 10%
- **16.** If the wavelength is brought down from 6000 Å to 4000 Å in a photoelectric experiment then what will happen?
 - (a) The work function of the metal will increase
 - (b) The threshold frequency will decrease
 - (c) No change will take place
 - (d) Cut off voltage will increase


17. For what value of A, B and C, the output Y = 1

- (a) 0 0 1
- (b) 1 0
- (c) 1 0
- (d) 0 1
- **18.** Let the energy of an emitted photoelectron be E and the wave-length of incident light be λ . What will be the change in E if λ is doubled?
 - (a) E
- (b) E/2
- (c) 2E
- (d) E/4
- **19.** A solid sphere of radius R carries a uniform volume charge density ρ. The magnitude of electric field inside the sphere at a distance r from the centre is
- (c) $\frac{R^2 \rho}{r \epsilon_0}$ (d) $\frac{R^3 \rho}{r^2 \epsilon_0}$
- **20.** Two point dipoles $p\hat{k}$ and $\frac{p}{2}\hat{k}$ are located at (0,0,0) and (1m,0,2m) respectively. The resultant electric field due to the two dipoles at the point (1m, 0, 0) is
 - (a) $\frac{9p}{32\pi \in_0} \hat{k}$ (b) $\frac{-7p}{32\pi \in_0} \hat{k}$
 - (c) $\frac{7p}{32\pi \in_0} \hat{k}$ (d) none of these
- 21. An iron rod of length 2m and cross-sectional area of 50 mm² stretched by 0.5 mm, when a mass of 250 kg is hung from its lower end. Young's modulus of iron rod is
 - (a) $19.6 \times 10^{20} \text{ N/m}^2$
 - (b) $19.6 \times 10^{18} \text{ N/m}^2$
 - (c) $19.6 \times 10^{10} \text{ N/m}^2$
 - (d) $19.6 \times 10^{15} \,\mathrm{N/m^2}$
- Two resistances equal at 0° C with temperature coefficient of resistance α_1 and α_2 joined in series

act as a single resistance in a circuit. The temperature coefficient of their single resistance will be


- (a) $\alpha_1 + \alpha_2$ (b) $\frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2}$ (c) $\frac{\alpha_1 \alpha_2}{2}$ (d) $\frac{\alpha_1 + \alpha_2}{2}$
- The current density varies with radial distance ras $J = a r^2$, in a cylindrical wire of radius R. The current passing through the wire between radial distance R/3 and R/2 is
 - (a) $\frac{65 \pi a R^4}{2592}$ (b) $\frac{25 \pi a R^4}{72}$
 - (c) $\frac{65 \pi a^2 R^3}{2938}$ (d) $\frac{81 \pi a^2 R^4}{1444}$
- A potentiometer circuit shown in the figure is set up to measure emf of cell E. As the point P moves from X to Y, the galvanometer G shows deflection always in one direction, but the deflection decreases continuously until Y is reached. The balance point between X and Y may be obtained by

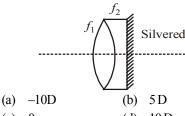
- decreasing the resistance R and decreasing V
- decreasing the resistance R and increasing V
- increasing the resistance R and increasing V
- (d) increasing the resistance R and decreasing V.
- A current I flows in the anticlockwise direction 25. through a square loop of side a lying in the xoy plane with its center at the origin. The magnetic induction at the center of the square loop is
 - (a) $\frac{2\sqrt{2}\mu_0 I}{\pi a} \hat{e}_x$ (b) $\frac{2\sqrt{2}\mu_0 I}{\pi a} \hat{e}_z$
 - (c) $\frac{2\sqrt{2}\mu_0 I}{\pi a^2} \hat{e}_z$ (d) $\frac{2\sqrt{2}\mu_0 I}{\pi a^2} \hat{e}_x$

- **26.** A particle of charge q and mass m moves in a circular orbit of radius r with angular speed ω. The ratio of the magnitude of its magnetic moment to that of its angular momentum depends on
 - (a) ω and q
- (b) ω , q and m
- (c) q and m
- (d) ω and m
- 27. A long straight wire of radius R carries current i. The magnetic field inside the wire at distance rfrom its centre is expressed as:

 - (a) $\left(\frac{\mu_0 i}{\pi R^2}\right) . r$ (b) $\left(\frac{2\mu_0 i}{\pi R^2}\right) . r$
 - (c) $\left(\frac{\mu_0 i}{2\pi R^2}\right) . r$ (d) $\left(\frac{\mu_0 i}{2\pi R}\right) . r$
- **28.** If $i_1 = 3 \sin \omega t$ and $i_2 = 4 \cos \omega t$, then i_3 is

- (a) $5 \sin (\omega t + 53^{\circ})$ (b) $5 \sin (\omega t + 37^{\circ})$
- (c) $5 \sin (\omega t + 45^\circ)$ (d) $5 \cos (\omega t + 53^\circ)$ 29. The equation of AC voltage is $E = 220 \sin (\omega t + 53^\circ)$

 $(\omega t + \pi/6)$ and the A.C. current is $I = 10 \sin \theta$


 $(\omega t + \pi/6)$. The average power dissipated is

- (a) 150 W
- (b) 550 W
- (c) 250 W
- (d) 50 W
- The current in an L-R circuit builds up to $(3/4)^{th}$ of its steady state value in 4 seconds. The time constant of this circuit is
 - (a) $\frac{1}{\ln 2}$ sec (b) $\frac{2}{\ln 2}$ sec

 - (c) $\frac{3}{\ln 2}$ sec (d) $\frac{4}{\ln 2}$ sec
- 31. The magnetic flux in a closed circuit of resistance 10 Ω varies with time as $\phi = (2t - 4t^2 + 1)$. The current in the loop will change its direction after a time of
 - (a) 0.25 sec
- (b) 0.5 sec
- (c) 1 sec
- (d) none
- A fish looking up through the water sees the outside world contained in a circular horizon. If

the refractive index of water is 4/3 and the fish is 12 cm below the surface, the radius of this circle (in cm) is

- (a) $36\sqrt{5}$
- (b) $4\sqrt{5}$
- (c) $36\sqrt{7}$
- (d) $36/\sqrt{7}$
- A metal ball of mass 2 kg moving with a velocity of 36 km/h has a head on collision with a stationary ball of mass 3 kg. If after the collision, the two balls move together, the loss in kinetic energy due to collision is
 - (a) 140 J
- (b) 100 J
- (c) 60 J
- (d) 40 J
- Two lenses of focal length $f_1 = 10$ cm and $f_2 = -$ 20 cm are kept as shown. The resultant power of combination will be

- (c) 0
- (d) 10 D
- When a plastic thin film of refractive index 1.45 is placed in the path of one of the interfering waves then the central fringe is displaced through width of five fringes. The thickness of the film, if the wavelength of light is 5890Å, will
 - (a) 6.544×10^{-4} cm (b) 6.544×10^{-4} m

 - (c) 6.54×10^{-4} cm (d) 6.5×10^{-4} cm
- An unpolarised beam of intensity I_0 is incident on a pair of nicols making an angle of 60° with each other. The intensity of light emerging from the pair is
 - (a) I_0
- (b) $I_0/2$
- (c) $I_0/4$
- (d) $I_0/8$
- 37. The half life of radioactive Radon is 3.8 days.

The time at the end of which $\frac{1}{20}$ th of the radon

sample will remain undecayed is (given $\log_{10} e = 0.4343$)

- (a) 3.8 days
- (b) 16.5 days
- (c) 33 days
- (d) 76 days.

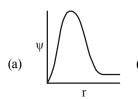
- **38.** If the nuclear radius of ²⁷Al is 3.6 Fermi, the approximate nuclear radius of ⁶⁴Cu in Fermi is
 - (a) 4.8
- (b) 3.6
- (c) 2.4
- (d) 1.2
- A hydrogen atom is in an excited state of principal quantum number (n), it emits a photon of wavelength (λ) , when it returns to the ground state. The value of n is

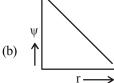
- A marble block of mass 2 kg lying on ice when given a velocity of 6 m/s is stopped by friction in 10 s. Then the coefficient of friction is (Take g = $10 \, \text{ms}^{-2}$
 - (a) 0.06
- (b) 0.03
- (c) 0.04
- (d) 0.01

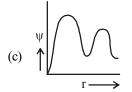
PART - II (CHEMISTRY)

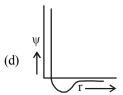
- 41. IUPAC name of valeric acid is
 - (a) Propanoic acid
- (b) Butanoic acid
- (c) Ethanoic acid
- (d) Pentanoic acid

42.
$$(O) \xrightarrow{\text{HNO}_3, \text{H}_2\text{SO}_4} ?$$

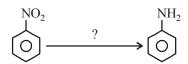

The product P for the above given reaction will be

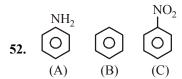

- *m*-nitroaniline (a)
- (b) o-nitroaniline
- *p*-nitroaniline
- (d) both o & p nitroaniline
- **43.** Coordination number of Co in [Co(NH₃)₆] Cl₃
 - (a) +2
- (b) +3
- (c) +5
- (d) + 8
- Which of the following complex will show fac & mer isomerism?
 - $[Co(NH_3)_3(NO_2)_3]$
 - (b) $\left[\text{CoCl}_2(\text{en})_2\right]^+$
 - (c) $[(Co(NH_3) Cl (en)_2]^{2+}$
 - (d) $[Co(NH_3)_2 Cl_2(en)]^+$


- Which of these undergo polymerisation?
 - (a) CH₃OH
- (b) C_2H_5OH


(c)
$$0$$
 \parallel $CH_3 - C - CH_2$

- (d) CH₃CHO
- Which of the following graph represents variation of 2p-orbital wave function with distance from the nucleus?

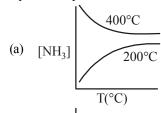


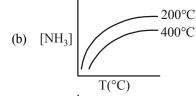


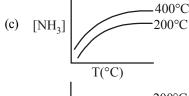
Name the catalyst used to bring down the reaction

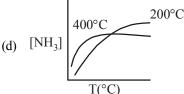
- (a) Sn/HCl
- (b) CuCl/HCl
- (c) Cu₂Cl₂/HCl
- (d) Zn-Hg/HCl
- The correct set of quantum numbers for Rb (atomic no. 37) is
 - (a) $5,0,0,-\frac{1}{2}$ (b) $5,1,0,\frac{1}{2}$
 - (c) $6,0,1,\frac{1}{2}$ (d) $5,1,1,\frac{1}{2}$
- **49.** XeF₄ disproportionate in water to give
 - (a) Xe + HF
- (b) Xe and XeO₃
- (c) XeOF₄ and HF
- (d) XeO₂Fe and HF
- An ionic compound has a unit cell consisting of A ions at the corners of a cube and B ions on the centres of the faces of the cube. The empirical formula for this compound would be
 - A_3B
- (b) AB₃
- (c) A₂B
- (d) AB

- **51.** Among the following the incorrect statement is
 - (a) Density of crystals remains unaffected due to Frenkel defect.
 - (b) In BCC unit cell the void space is 32%.
 - (c) Density of crystals decreases due to Schottky defect.
 - (d) Electrical conductivity of semiconductors and metals increases with increase in temperature.

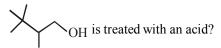

The correct order of electrophilic substitution for the compounds given above will be


- (a) A > B > C
- (b) C > B > A
- (c) B > C > A
- (d) B>A>C
- **53.** For mesotartaric acid, the correct configuration for chiral carbon is
 - (a) 2R, 3S
- (b) 2R, 3R
- (c) 2S, 3R
- (d) 1D,2L
- **54.** Which of the two acids form anhydrides?
 - (I) Oxalic acid
- (II) Succinic acid
- (III) Benzoic acid
- (IV) Phthalic acid
- (a) I & III
- (b) II & IV
- (c) II & III
- (d) III&IV
- **55.** By which reaction ketal is formed?
 - (a) Glycol with acetone
 - (b) Hydration of glycol
 - (c) Condensation of glycol
 - (d) Glycol with acetaldehyde
- **56.** Which one of the following show stereoisomerism?
 - (a) 2-Butene
 - (b) 3-Methyl but-1-ene
 - (c) 2-Methyl butene
 - (d) Butanol
- **57.** Acetophenone and Benzophenone can be distinguished by which of the following test
 - (a) Knoeveangel reaction
 - (b) Canizzaro's reaction
 - (c) Aldol condensation
 - (d) HVZ Reaction


58.
$$R - NC \xrightarrow{LiAlH_4} P$$


The product P in this reaction is

- (a) $R NH_2$
- (b) $R N CH_3$
- (c) $R CH_3$
- (d) $R N (CH_2)_2$
- **59.** The protein present in the hair is
 - (a) Lysine
- (b) Myosine
- (c) Keratin
- (d) Alanine
- **60.** One mole of an ideal gas at 300 K is expanded isothermally from an initial volume of 1 litre to 10 litres. Then ΔS (cal deg⁻¹ mol⁻¹) for this process is: $(R = 2 \text{ cal } K^{-1} \text{ mol}^{-1})$
 - (a) 7.12
- (b) 8.314
- (c) 4.6
- (d) 3.95
- 61. For a reaction A \rightarrow B; $\Delta H = 20 \text{ kJ mol}^{-1}$ the activation energy of the forward reaction is 85 kJ/mol. The activation energy of the backward reaction will be
 - (a) 105 kJ/mol
- (b) 65 kJ/mol
- (c) 45 kJ/mol
- (d) 75 kJ/mol
- 62. If the reaction $N_2 + 3H_2 = 2NH_3$ occurs at 200°C and 1000 atm then the graph showing the correct equilibrium yield at 400°C is



63. Group 15 elements have more electron gain enthalpy than group 16-elements. The correct reason for this is

- (a) Half-filled stability of gp. 15 elements.
- (b) Poor shielding in gp. 15
- (c) Poor shielding in gp. 16
- (d) Half-filled stability of gp. 16 elements
- **64.** t-butyl -CH = CH C OH can't give

decarboxylation while normally α - β unsaturated acid give this reaction because

- (a) t-butyl gp. has large size and does not let the COOH group to leave.
- (b) t-butyl gp. can't extract H from COOH.
- (c) t-butyl gp. stabilise carbanion formed.
- (d) t-butyl gp. does not allow this composition to convert to β-γ-unsaturated acid
- Which type of carbocation is/are formed when

- (a) 1°
- (b) 2°
- (c) 3°
- (d) All the three
- **66.** For hydrogen-oxygen fuel cell, the cell reaction is

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(\ell)$$

If $\Delta G_f^{\circ}(H_2O) = -237.2 \text{ kJ mol}^{-1}$, then emf of this cell is

- (a) +2.46 V
- (b) -2.46 V
- (c) +1.23 V
- (d) -1.23 V
- **67.** At 298 K, the conductivity of a saturated solution of AgCl in water is $2.6 \times 10^{-6} \, \text{S} \, \text{cm}^{-1}$. Its solubility product at 298 K.

Given: $\lambda^{\infty}(Ag^{+}) = 63.0 \text{ S cm}^{2}\text{mol}^{-1}$,

$$\lambda^{\infty}(Cl^{-}) = 67.0 \text{ S cm}^{2} \text{mol}^{-1}$$

- (a) $2.0 \times 10^{-5} M^2$
- (b) $4.0 \times 10^{-10} M^2$
- (c) $4.0 \times 10^{-16} M^2$
- (d) $2 \times 10^{-8} M^2$
- **68.** Standard entropy of X_2 , Y_2 and XY_3 are 60, 40 and 50 JK⁻¹ mol⁻¹, respectively. For the reaction,

 $\frac{1}{2}X_2 + \frac{3}{2}Y_2 \to XY_3, \Delta H = -30kJ$, to be at equilibrium, the temperature will be

- (a) 1250 K
- (b) 500 K
- (c) 750 K
- (d) 1000 K

- The enthalpy change for a given reaction at 298 K is -x J mol⁻¹. For the reaction to be spontaneous at 298 K, the entropy change at that temperature
 - (a) can be negative, but numerically greater

than
$$\frac{x}{298}$$
 Jk⁻¹

(b) can be negative, but numerically smaller

than
$$\frac{x}{298}$$
 Jk⁻¹.

- (c) can not be negative
- (d) can not be positive
- a moles of PCl₅ is heated in a closed container to equilibriate $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$ at a pressure of P atm. If x moles of PCl_5 dissociate at equilibrium, then

(a)
$$\frac{x}{a} = \frac{K_p}{K_p + P}$$

(a)
$$\frac{x}{a} = \frac{K_p}{K_p + P}$$
 (b) $\frac{x}{a} = \left(\frac{K_p + P}{K_p}\right)^{1/2}$

(c)
$$\frac{x}{a} = \left(\frac{K_p}{P}\right)^{1/2}$$

(c)
$$\frac{x}{a} = \left(\frac{K_p}{P}\right)^{1/2}$$
 (d) $\frac{x}{a} = \left(\frac{K_p}{K_p + p}\right)^{1/2}$

- **71.** A plot of $\ln K$ against $\frac{1}{T}$ (abscissa) is expected to be a straight line with intercept on ordinate axis equal to

- (d) $R \times \Delta S^{\circ}$
- In a reaction $A \rightarrow \text{Products}$, when start is made from $8.0 \times 10^{-2} M$ of A, half-life is found to be 120 minute. For the initial concentration 4.0×10^{-2} M, the half-life of the reaction becomes 240 minute. The order of the reaction is:
 - (a) zero
- (b) one
- (c) two
- (d) 0.5
- A reaction : $A_2 + B \rightarrow$ Products, involves the following mechanism:

$$A_2 \Longrightarrow 2A \text{ (fast)}$$

 $(\tilde{A} \text{ being the intermediate})$

 $A + B \xrightarrow{k_2}$ Products (slow). The rate law consistent to this mechanism is:

- (a) rate = $k[A_2][B]$ (b) rate = $k[A_2]^2[B]$
- (c) rate = $k[A_2]^{1/2}[B]$ (d) rate = $k[A_2][B]^2$

The following data were obtained for a given reaction at 300 K.

Reaction Energy of activation $(kJ \text{ mol}^{-1})$

(i) uncatalysed

76

- (ii) catalysed
- 57

The factor by which rate of catalysed reaction is increased, is

- (a) 21
- (b) 2100
- (c) 2000
- (d) 1200
- 75. The wave number of the first emission line in the Balmer series of H-Spectrum is:
 - (R = Rydberg constant):
- (b) $\frac{9}{400}R$
- (c) $\frac{7}{6}R$
- (d) $\frac{3}{4}R$
- **76.** Which one of the following reactions of xenon compounds is not feasible?
 - (a) $3 \text{Xe } \text{F}_4 + 6 \text{H}_2 \text{O} \longrightarrow$

$$2 \text{ Xe} + \text{ Xe O}_3 + 12 \text{HF} + 1.5 \text{O}_2$$

- (b) $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + O_2$
- (c) $Xe F_6 + RbF \longrightarrow Rb[Xe F_7]$ (d) $Xe O_3 + 6HF \longrightarrow Xe F_6 + 3H_2O$
- 77. Anisole is treated with HI under two different conditions.

$$C + D \leftarrow \stackrel{HI(g)}{\longleftarrow} C_6H_5OCH_3 \xrightarrow{conc.HI} A + B$$

The nature of A to D will be

- A and B are CH₃I and C₆H₅OH, while C and D are CH₃OH and C₆H₅I
- A and B are CH₃OH and C₆H₅I, while C and D are CH2I and C4H5OH
- (c) Both A and B as well as both C and D are CH₃I and C₆H₅OH
- (d) A and B are CH₃I and C₆H₅OH, while there is no reaction in the second case.
- Phenol undergoes electrophilic substitution more easily than benzene because
 - (a) -OH group exhibits +M effect and hence increases the electron density on the o- and p-positions.
 - (b) oxocation is more stable than the carbocation
 - (c) both (a) and (b)
 - (d) -OH group exhibits acidic character

- Which of the following name reaction is not 79. used for introducing a – COOH group?
 - (a) Cannizzaro reaction
 - (b) Benzilic acid rearrangement
 - Baeyer Villiger oxidation
 - Iodoform reaction
- Esterification of acid chloride with ethanol is usually carried out in the presence of pyridine. The function of pyridine is
 - to remove HCl formed in the reaction
 - to react with acid chloride to form an acylpyridinium ion
 - both (a) and (b)
 - (d) as a catalyst

PART - III (MATHEMATICS)

The solution of the differential equation

$$\left(1+y^2\right) + \left(x - e^{tan^{-1}y}\right) \frac{dy}{dx} = 0$$

(a)
$$(x-2) = ke^{-tan^{-1}y}$$

(b)
$$2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$$

(c)
$$xe^{\tan^{-1}y} = \tan^{-1}y + k$$

(d)
$$xe^{2 \tan^{-1} y} = e^{\tan^{-1} y} + k$$

- A tetrahedron has vertices at O(0, 0, 0), A(1, 2, 1)B(2, 1, 3) and C(-1, 1, 2). Then the angle between the faces OAB and ABC will be
- (b) $\cos^{-1}\left(\frac{17}{31}\right)$
- (c)
- The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{k^2} = 1$ and the

hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide then value

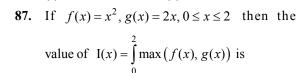
- of b^2 is
- (a) 1
- (c) 7
- (d) 9
- If the tangent to the function y = f(x) at (3,4)

makes an angle of $\frac{3\pi}{4}$ with the positive direction

of x-axis in anticlockwise direction then f'(3) is

(a) -1	(b) 1	
(c) $\frac{1}{\sqrt{3}}$	(d) $\sqrt{3}$	
The probability	of India winning a test match	1
against Australia	$\frac{1}{2}$ assuming independence	е
from match to m	atch. The probability that in a	a

85.


ng independence trom match to match. The probability that in a match series India's second win occurs at third

(a)
$$\frac{1}{8}$$
 (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{2}{3}$

86. If
$$|\vec{a}| = 3$$
, $|\vec{b}| = 2$, $|\vec{c}| = 1$ then the value of $|\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}|$ is (given that $\vec{a} + \vec{b} + \vec{c} = 0$)

(a) -7

(b) 7

(a)
$$\frac{10}{3}$$
 (b) $\frac{1}{3}$ (c) $\frac{11}{3}$ (d) 32

- If A and B are matrices and $B = ABA^{-1}$ then the value of (A + B) (A - B) is
 - (a) $A^2 + B^2$ (c) A+B
- (b) $A^2 B^2$ (d) A-B
- The value of $(1 + \omega \omega^2)^7$ is
 - (a) $128\omega^2$
- (b) $-128\omega^2$
- (c) 128ω
- (d) -128ω

90. The moment about the point
$$\hat{i} + 2\hat{j} + 3\hat{k}$$
 of a force represented by $\hat{i} + \hat{j} + \hat{k}$ acting through the point $2i + 3j + k$ is

- (a) $3\hat{i} + 3\hat{j}$
- (b) $3\hat{i} + \hat{j}$
- (c) $-\hat{i} + \hat{j}$
- (d) $3\hat{i} 3\hat{j}$

91. If
$$g(x)$$
 is a polynomial satisfying $g(x)g(y) = g(x) + g(y) + g(xy) - 2$ for all real x and y and $g(2) = 5$ then Lt $g(x)$ is

- (b) 10 (c) 25 (d) 20
- 92. The equation of one of the common tangents to the parabola $y^2 = 8x$ and $x^2 + y^2 - 12x + 4 = 0$
 - (a) y = -x + 2
- (b) y = x 2
- (c) y = x + 2
- (d) None of these

93. If
$$e^x = y + \sqrt{1 + y^2}$$
, then the value of y is

(a)
$$\frac{1}{2}(e^x + e^{-x})$$
 (b) $\frac{1}{2}(e^x - e^{-x})$

(c)
$$e^{x} - e^{\frac{-x}{2}}$$
 (d) $e^{x} + e^{\frac{-x}{2}}$

- What is the area of a loop of the curve $r = a \sin 3\theta$?
- (b) $\frac{\pi a^2}{8}$

- Convert the hexadecimal numeral ABCD into binary numeral
 - (a) $(10101011111001101)_2$
 - (b) $(10010000111111111)_{2}^{2}$
 - (c) $(11111110000010001)_2$
 - (d) $(1000100100111100)_2^2$
- The normal at the point $(at_1^2, 2at_1)$ on the parabola, cuts the parabola again at the point whose parameter is

(a)
$$t_2 = t_1 - \frac{2}{t_1}$$
 (b) $t_2 = t_1 + \frac{2}{t_1}$

- (c) $t_2 = -\left(t_1 + \frac{2}{t_1}\right)$ (d) None of these
- The distance moved by the particle in time t is given by $s = t^3 - 12t^2 + 6t + 8$. At the instant, when its acceleration is zero the velocity is:
 - (a) 42 (b) -42 (c) 48 (d) -48
- 98. The logical expression X, in its simplest form for the truth table

	X	b	a
	0	0	1
is	1	1	1
	0	1	0
	0	0	0

- (a) $X = a \cdot b$
- (b) X = a + b
- (c) X = a'.b
- (d) X = a.b'
- The value of $\cos\left(\frac{1}{2}\cos^{-1}\frac{1}{8}\right)$ is equal to
 - (a) -3/4
- (b) 3/4
- (c) 1/16
- (d) 1/4
- **100.** Consider the objective function Z = 40x + 50y. The minimum number of constraints that are required to maximize Z are
 - (a) 4
- (b) 2
- (c) 3
- (d) 1

In a culture the bacteria count is 1,00,000. The
number is increased by 10% in 2 hours. In how
many hours will the count reach 2,00,000 if the
rate of growth of bacteria is proportional to the
number present.

(a)
$$\frac{2}{\log \frac{11}{10}}$$

(a)
$$\frac{2}{\log \frac{11}{10}}$$
 (b) $\frac{2 \log 2}{\log \left(\frac{11}{10}\right)}$

(c)
$$\frac{\log 2}{\log 11}$$

(c)
$$\frac{\log 2}{\log 11}$$
 (d) $\frac{\log 2}{\log \left(\frac{11}{10}\right)}$

102. The value of
$$\sin^{-1}\left(\frac{1}{\sqrt{5}}\right) + \cot^{-1}(3)$$
 is

103. If $a = \cos 2\alpha + i \sin 2\alpha$, $b = \cos 2\beta + i \sin 2\beta$, $c = \cos 2\gamma + i \sin 2\gamma$ and $d = \cos 2\delta + i \sin 2\delta$, then

$$\sqrt{abcd} + \frac{1}{\sqrt{abcd}} =$$

- (a) $\sqrt{2}\cos(\alpha+\beta+\gamma+\delta)$
- (b) $2\cos(\alpha+\beta+\gamma+\delta)$
- (c) $\cos(\alpha + \beta + \gamma + \delta)$
- (d) None of these

104. If the mean of a binomial distribution is 25, then its standard deviation lies in the interval

- (a) [0,5)
- (b) (0,5]
- (c) [0, 25)
- (d) (0,25]

105. Number of ways of selecting three squares on a chessboard so that all the three be on a diagonal line of the board or parallel to it is

- (a) 196
- (b) 126
- (c) 252
- (d) 392

106. If A and B are two matrices such than rank of A = m and rank of B = n, then

- (a) $\operatorname{rank}(AB) = \operatorname{mn}$
- (b) $\operatorname{rank}(AB) \ge \operatorname{rank}(A)$
- (c) $\operatorname{rank}(AB) \ge \operatorname{rank}(B)$
- (d) $rank(AB) \le min(rank A, rank B)$

107. A variable plane remains at constant distance p from the origin. If it meets coordinate axes at points A, B, C then the locus of the centroid of Δ ABC is

(a)
$$x^{-2} + y^{-2} + z^{-2} = 9p^{-2}$$

(b)
$$x^{-3} + y^{-3} + z^{-3} = 9p^{-3}$$

(c)
$$x^2 + y^2 + z^2 = 9p^2$$

(d)
$$x^3 + y^3 + z^3 = 9p^3$$

108. While shuffling a pack of 52 playing cards, 2 are accidentally dropped. The probability that the missing cards to be of different colours is

- (a) $\frac{29}{52}$ (b) $\frac{1}{2}$ (c) $\frac{26}{51}$ (d) $\frac{27}{51}$

109. Which of the following is INCORRECT for the hyperbola $x^2 - 2y^2 - 2x + 8y - 1 = 0$

- (a) Its eccentricity is $\sqrt{2}$
- (b) Length of the transverse axis is $2\sqrt{3}$
- (c) Length of the conjugate axis is $2\sqrt{6}$
- (d) Latus rectum is $4\sqrt{3}$

110. A box contains 20 identical balls of which 10 are blue and 10 are green. The balls are drawn at random from the box one at a time with replacement. The probability that a blue ball is drawn 4th time on the 7th draw is

- (a) $\frac{27}{32}$ (b) $\frac{5}{64}$ (c) $\frac{5}{32}$ (d) $\frac{1}{2}$

111. The number of common tangents to the circles $x^2 + y^2 - 6x - 14y + 48 = 0$ and $x^2 + y^2 - 6x = 0$ is

(a) 1 (b) 2

- (c) 0
- (d) 4

112. The solution of the equation $\cos^2\theta + \sin\theta + 1 = 0$, lies in the interval

- (a) $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ (b) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$

- (c) $\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$ (d) $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$

113. If $f(x) = (1 + x)^{2/x}$ for $x \ne 0$ and $f(0) = e^2$ is

- (a) left continuous only at x = 0
- (b) right continuous only at x = 0
- (c) continuous at x = 0
- (d) discontinuous at x = 0

114. If $y = 2^{x/\ln x}$ then $\frac{dy}{dx}$ at x = e is

- (a) e
- (b) $2^{e} \log 2$
- (c) log 2
- (d) 0

115.
$$\int \frac{1}{x^2(x^4+1)^{3/4}} dx$$
 is equal to

(a)
$$\left(1 + \frac{1}{x^4}\right)^{1/4} + C$$
 (b) $(x^4 + 1)^{1/4} + C$

(c)
$$\left(1 - \frac{1}{x^4}\right)^{1/4} + C$$
 (d) $-\left(1 + \frac{1}{x^4}\right)^{1/4} + C$

- 116. If the letters of the word KRISNA are arranged in all possible ways and these words are written out as in a dictionary, then the rank of the word KRISNA is
 - (a) 324
- (b) 341
- (c) 359
- (d) None of these
- 117. The shortest distance between the lines x = y + 2 = 6z 6 and x + 1 = 2y = -12z is
 - (a) $\frac{1}{2}$
- (b) 2
- (c) 1
- (d) $\frac{3}{2}$
- 118. The domain and range of the function f given by f(x) = 2 |x 5| is
 - (a) Domain = R^+ , Range = $(-\infty, 1]$
 - (b) Domain = R, Range = $(-\infty, 2]$
 - (c) Domain = R, Range = $(-\infty, 2)$
 - (d) Domain = R^+ , Range = $(-\infty, 2]$
- 119. The number of surjective functions from A to B where $A = \{1, 2, 3, 4\}$ and $B = \{a, b\}$ is
 - (a) 14
- (b) 1°
- (c) 2
- (d) 15
- **120.** If f(a+b-x) = f(x), then $\int_{a}^{b} x f(x) dx$ is

equal to

(a)
$$\frac{a+b}{2} \int_{a}^{b} f(b-x) dx$$

(b)
$$\frac{a+b}{2} \int_{a}^{b} f(b+x) dx$$

(c)
$$\frac{b-a}{2} \int_{a}^{b} f(x) dx$$

(d)
$$\frac{a+b}{2} \int_{a}^{b} f(x) dx$$

PART - IV (ENGLISH)

Direction (Qs. 121-123) Read the passage carefully and anser the questions given below.

Laws of nature are not commands but statements of acts. The use of the word "law" in this context is rather unfortunate. It would be better to speak of uniformities in nature. This would do away with the elementary fallacy that a law implies a law giver. If a piece of matter does not obey a law of nature it is punished. On the contrary, we say that the law has been incorrectly started.

- **121.** If a piece of matter violates nature's law, it is not punished because
 - (a) it is not binding to obey it
 - (b) there is no superior being to enforce the law of nature
 - (c) it cannot be punished
 - (d) it simply means that the facts have not been correctly stated by law
- 122. Laws of nature differ from man-made laws because
 - (a) the former state facts of Nature
 - (b) they must be obeyed
 - (c) they are natural
 - (d) unlike human laws, they are systematic
- **123.** The laws of nature based on observation are
 - (a) conclusion about the nature of the universe.
 - (b) true and unfalsifiable.
 - (c) figments of the observer imagination.
 - (d) subject to change in the light of new facts.
- 124. Direction: This question presents a sentence, part of which or all of which is underlined. Beneath the sentence you will find four ways of phrasing the underlined part. The first of these repeats the original; the other three are different. If you think the original is best, choose the first answer; otherwise choose one of the others.

The administration discussed whether the number of students studying European languages was likely to decline when the senior lecturer retired.

- (a) whether the number of students studying European languages was likely
- (b) whether the number of students studying European languages were likely
- (c) if the students studying European languages were likely
- (d) if the number of European language students were likely
- **125.** Choose the best pronunciation of the word, Restaurant, from the following options.
 - (a) res-trawnt
- (b) res-tuh-rawnt
- (c) rest-rant
- (d) resto-raunt