VITEEE 2018 Question Paper

GENERAL INSTRUCTIONS

This question paper contains total 125 questions divided into four parts:

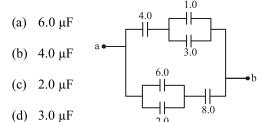
Part I: Physics Q. No - 1 to 40

Part II: Chemistry Q. No - 41 to 80

Part III: Mathematics Q. No - 81 to 120

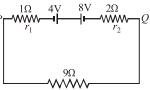
Part IV: English Q. No - 121 to 125

- All guestions are multiple choice questions with four options, only one of them is correct.
- For each correct response, the candidate will get 1 mark.
- There is no negative marking for the wrong answer.
- The test is of 2½ hours duration.


PART - I (PHYSICS)

- The resistance of a wire is 'R' ohm. If it is melted and stretched to 'n' times its original length, its new resistance will be
 - (a) $\frac{R}{n}$ (b) n^2R (c) $\frac{R}{n^2}$ (d) nR
- A coil of 40 henry inductance is connected in series with a resistance of 8 ohm and the combination is joined to the terminals of a 2 volt battery. The time constant of the circuit is
 - (a) 20 seconds
- (b) 5 seconds
- (c) 1/5 seconds
- (d) 40 seconds
- Which of the following is the correct lens 3. formula?

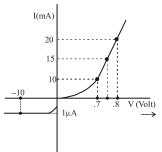
 - (a) $\frac{1}{v} \frac{1}{u} = \frac{1}{f}$ (b) $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$
 - (c) v u = f
- (d) v + u = f
- The magnetic field at a point due to a current carrying conductor is directly proportional to
 - (a) resistance of the conductor
 - (b) thickness of the conductor
 - (c) current flowing through the conductor
 - (d) distance from the conductor


- 5. A metallic sphere is placed in a uniform electric field. The line of force follow the path (s) shown in the figure as
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- 6. Electron in hydrogen atom first jumps from third excited state to second excited state and then from second excited to the first excited state. The ratio of the wavelength $\lambda_1 : \lambda_2$ emitted in the two cases is
 - (a) 7/5
- (b) 27/20 (c) 27/5 (d) 20/7
- 7. In a common emitter transistor amplifier $\beta = 60$, $R_0 = 5000 \Omega$ and internal resistance of a transistor is 500 Ω . The voltage amplification of amplifier will be
 - (a) 500
- (b) 460
- (c) 600
- A machine gun has a mass 5 kg. It fires 50 gram 8. bullets at the rate of 30 bullets per minute at a speed of 400 ms⁻¹. What force is required to keep the gun in position?
 - (a) 10 N (b) 5 N (c) 15 N (d) 30 N

- 9. The activity of a radioactive sample is measured as 9750 counts per minute at t = 0 and as 975 counts per minute at t = 5 minutes. The decay constant is approximately
 - (a) 0.922 per minute (b) 0.691 per minute
 - (c) 0.461 per minute (d) 0.230 per minute
- The equivalent capacitance between a and b for the combination of capacitors shown in figure where all capacitances are in microfarad is

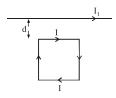
- 11. Two coils have a mutual inductance 0.005 H. The current changes in the first coil according to equation $I = I_0 \sin \omega t$, where $I_0 = 10A$ and $\omega =$ $100 \,\pi$ radian/sec. The maximum value of e.m.f. in the second coil is
 - (a) 2π
- (b) 5π
- (c) π
- (d) 4π
- 12. In Young's double slit experiment intensity at a point is (1/4) of the maximum intensity. Angular position of this point is (separation between slits is d
 - (a) $\sin^{-1}(\lambda/d)$
- (b) $\sin^{-1}(\lambda/2d)$
- (c) $\sin^{-1}(\lambda/3d)$
- (d) $\sin^{-1}(\lambda/4d)$
- Two batteries of emf 4 V and 8V with internal resistance 1 Ω

and 2 Ω are connected in a circuit with a resistance of 9 Ω as shown in figure.



The current and potential difference between the points P and Q are

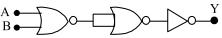
- (a) $\frac{1}{3}A$ and 3 V (b) $\frac{1}{6}A$ and 4 V (c) $\frac{1}{9}A$ and 9 V (d) $\frac{1}{12}A$ and 12 V
- 14. The horizontal component of the earth's magnetic field is 3.6×10^{-5} tesla where the dip angle is 60°. The magnitude of the earth's magnetic field is


- (a) 2.8×10^{-4} tesla (b) 2.1×10^{-4} tesla
- (c) 7.2×10^{-5} tesla
 - (d) 3.6×10^{-5} tesla
- 15. The velocity of water in a river is 18 km/hr near the surface. If the river is 5 m deep, find the shearing stress between the horizontal layers of water. The co-efficient of viscosity of water = 10^{-2} poise.
 - (a) 10^{-1} N/m^2
- (b) 10^{-2} N/m^2
- (c) 10^{-3} N/m^2
- (d) 10^{-4} N/m^2
- The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength is
 - (a) 3 V/m (b) 6 V/m (c) 9 V/m (d) 12 V/m
- 17. The V-I characteristic of a diode is shown in the figure.

The ratio of forward to reverse bias resistance

- (a) 10
- (b) 10^{-6} (c) 10^{6}
- (d) 100
- 18. The principle of conservation of linear momentum can be strictly applied during a collision between two particles provided the time of impact
 - (a) is extremely small
 - (b) is moderately small
 - (c) is extremely large
 - (d) depends on particular case
- 19. The current sensitivity of a moving coil galvanometer depends on
 - (a) the number of turns in the coil
 - (b) moment of inertia of the coil
 - (c) current sent through galvanometer
 - (d) eddy current in Al frame
- The length of elastic string, obeying Hooke's law is ℓ_1 metres when the tension 4N and ℓ_2 metres when the tension is 5N. The length in metres when the tension is 9N is -
- (a) $5\ell_1 4\ell_2$ (b) $5\ell_2 4\ell_1$ (c) $9\ell_1 8\ell_2$ (d) $9\ell_2 8\ell_1$

21. A square loop, carrying a steady current I, is placed in a horizontal plane near a long straight conductor carrying a steady current I₁ at a distance d from the


conductor as shown in figure. The loop will

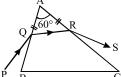
- (a) a net repulsive force away from the conductor
- (b) a net torque acting upward perpendicular to the horizontal plane
- (c) a net torque acting downward normal to the horizontal plane
- (d) a net attractive force towards the conductor
- The tempertaure of equal masses of three different liquids A, B and C are 12°C, 19°C and 28°C respectively. The temperature when A and B are mixed is 16°C and when B and C are mixed is 23°C. The temperature when A and C are mixed is
 - (a) 18.2°C(b) 22°C (c) 20.2°C (d) 25.2°C
- An alternating voltage of 220 V, 50 Hz frequency is applied across a capacitor of capacitance 2 µF. The impedence of the circuit is
 - (a) $\frac{}{5000}$
- (c) 500π
- 24. The molar specific heats of an ideal gas at constant pressure and volume are denoted by C_n

and C_v , respectively. If $\gamma = \frac{C_p}{C_v}$ and R is the universal gas constant, then C_v is equal to

- (a) $\frac{R}{(\gamma 1)}$ (b) $\frac{(\gamma 1)}{R}$
- (c) yR
- (d) $\frac{1+\gamma}{1-\gamma}$
- The ratio of radii of the first three Bohr orbits is
 - (a) $1:\frac{1}{2}:\frac{1}{3}$
- (b) 1:2:3
- (c) 1:4:9
- (d) 1:8:27

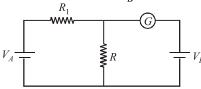
26. The given electrical network is equivalent to:

- (a) OR gate
- (b) NOR gate
- (c) NOT gate
- (d) AND gate
- A large number of liquid drops each of radius r coalesce to from a single drop of radius R. The energy released in the process is converted into kinetic energy of the big drop so formed. The speed of the big drop is (given, surface tension of liquid T, density ρ)


- Find the magnetic field at P due to the arrangement shown
 - (a) $\frac{\mu_0 i}{\sqrt{2}\pi d} \left(1 \frac{1}{\sqrt{2}}\right) \otimes$
 - (b) $\frac{2\mu_0 i}{\sqrt{2}\pi d} \otimes$
 - (c) $\frac{\mu_0 i}{\sqrt{2}\pi d} \otimes$
 - (d) $\frac{\mu_0 i}{\sqrt{2}\pi d} \left(1 + \frac{1}{\sqrt{2}}\right) \otimes$
- The Binding energy per nucleon of ${}_{3}^{7}$ Li and ⁴₂He nuclei are 5.60 MeV and 7.06 MeV, respectively.

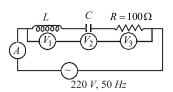
In the nuclear reaction ${}_{3}^{7}\text{Li} + {}_{1}^{1}\text{H} \rightarrow 2 {}_{2}^{4}\text{He} + Q$, the value of energy O released is:

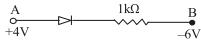
- (a) 19.6 MeV
- (b) -2.4 MeV
- (c) 8.4 MeV
- (d) 17.3 MeV
- 30. A ray PQ incident on the refracting face BA is refracted in the prism BAC as shown in the figure and emerges from the other refracting face AC as RS such that AQ = AR. If the angle of prism $A = 60^{\circ}$ and the refractive index of the material


of prism is $\sqrt{3}$, then the angle of deviation of the ray is

- (a) 60°
- (b) 45°
- (c) 30°
- (d) None of these

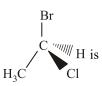
- 31. In a photoelectric effect measurement, the stopping potential for a given metal is found to be V_0 volt when radiation of wavelength λ_0 is used. If radiation of wavelength $2\,\lambda_0$ is used with the same metal then the stopping potential (in volt) will be
 - (a) $\frac{V_0}{2}$


- (c) $V_0 + \frac{hc}{2e\lambda_0}$ (d) $V_0 \frac{hc}{2e\lambda_0}$
- In the circuit shown the cells A and B have negligible resistances. For $V_A = 12 \text{V}, R_1 = 500 \Omega$ and $R = 100\Omega$ the galvanometer (G) shows no deflection. The value of V_R is :


- (a) 4 V (b) 2 V
 - (c) 12 V (d) 6 V
- A steel wire of length ℓ has a magnetic moment M. It is then bent into a semicircular arc. The new magnetic moment is
 - (a) $\frac{M}{\pi}$ (b) $\frac{2M}{\pi}$ (c) $\frac{3M}{\pi}$ (d) $\frac{4M}{\pi}$
- A running man has half the kinetic energy of that of a boy of half of his mass. The man speeds up by 1m/s so as to have same K.E. as that of the boy. The original speed of the man will be
- (b) $(\sqrt{2}-1)_{m/s}$
- (c) $\frac{1}{(\sqrt{2}-1)}$ m/s (d) $\frac{1}{\sqrt{2}}$ m/s
- 35. In Young's double slit experiment the two slits are illuminated by light of wavelenght 5890Å and the distance between the fringes obtained on the screen is 0.2°. If the whole apparatus is immersed in water then the angular fringe width will be, if the refractive index of water is 4/3.
 - (a) 0.30° (b) 0.15° (c) 15°
- Four point charges -Q, -q, 2q and 2Q are placed, one at each corner of the square. The relation between Q and q for which the potential at the centre of the square is zero is

- (a) Q = -q (b) $Q = -\frac{1}{q}$ (c) Q = q (d) $Q = \frac{1}{q}$

In the given circuit the reading of voltmeter V_1 and V_2 are 300 volt each. The reading of the voltmeter V_3 and ammeter A are respectively


- (a) 150 V and 2.2 A (b) 220 V and 2.2 A
- (c) 220 V and 2.0 A (d) 100 V and 2.0 A
- A body cools from 50.0°C to 49.9°C in 5s. How **38.** long will it take to cool from 40.0°C to 39.9°C? Assume the temperature of surroundings to be 30.0°C and Newton's law of cooling to be valid (a) 2.5 s (b) 10 s (c) 20 s (d) 5 s
- Consider the junction diode as ideal. The value of current flowing through AB is

- (a) 0A
- (b) 10^{-2} A
- (c) 10^{-1} A
- (d) 10^{-3} A
- A metal disc of radius 100 cm is rotated at a 40. constant angular speed of 60 rad/s in a plane at right angles to an external field of magnetic induction 0.05 Wb/m². The emfinduced between the centre and a point on the rim will be
- (b) 1.5 V (c) 6 V

PART - II (CHEMISTRY)

- Ionisation energy of He⁺ is 19.6×10^{-18} J atom⁻¹. The energy of the first stationary state (n = 1) of Li²⁺ is
 - (a) $4.41 \times 10^{-16} \text{ J atom}^{-1}$
 - (b) $-4.41 \times 10^{-17} \text{ J atom}^{-1}$
 - (c) $-2.2 \times 10^{-15} \text{ J atom}^{-1}$
 - (d) $8.82 \times 10^{-17} \,\mathrm{J \ atom^{-1}}$
- The chirality of the compound

- (a) R
- (b) S

(c) E

(d) Z

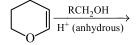
- **43.** Which of the following compounds is formed when a mixture of K₂Cr₂O₇ and NaCl is heated with conc. H₂SO₄?
 - (a) CrO₂Cl₂
- (b) CrCl₃
- (c) $Cr_2(SO_4)_3$
- (d) Na₂CrO₄
- **44.** For the process $H_2O(l)$ (1 bar, 373 K) \rightarrow $H_2O(g)$ (1 bar, 373 K), the correct set of thermodynamic parameters is
 - (a) $\Delta G = 0$, $\Delta S = +ve$
 - (b) $\Delta G = 0$, $\Delta S = -ve$
 - (c) $\Delta G = +ve, \Delta S = 0$
 - (d) $\Delta G = -ve, \Delta S = +ve$
- **45.** Compound 'A' of molecular formula C₄H₁₀O on treatment with Lucas reagent at room temperature gives compound 'B'. When compound 'B' is heated with alcoholic KOH, it gives isobutene. Compound 'A' and 'B' are respectively
 - (a) 2-methyl-2-propanol and 2-methyl-2-chloropropane
 - (b) 2-methyl-1 -propanol and 1-chloro-2-methylpropane
 - (c) 2-methyl-1 -propanol and 2-methyl-2-chloropropane
 - (d) butan-2-ol and 2-chlorobutane
- **46.** The reagent (s) which can be used to distinguish acetophenone from benzophenone is (are)
 - (a) 2,4-dinitrophenylhydrazine
 - (b) aqueous solution of NaHSO₃
 - (c) benedict reagent
 - (d) I₂and Na₂CO₃.
- **47.** In the extraction of Cu, the metal is formed in the bessemer converter due to the reaction :
 - (a) $Cu_2S + 2Cu_2O \longrightarrow 6Cu + SO_2$
 - (b) $Cu_2S \longrightarrow 2Cu + S$
 - (c) Fe + $Cu_2O \longrightarrow 2Cu + FeO$
 - (d) $2Cu_2O \longrightarrow 4Cu + O_2$
- **48.** For which one of the following systems at equilibrium, at constant temperature will the doubling of the volume cause a shift to the right?
 - (a) $H_2(g)+Cl_2(g) \rightleftharpoons 2HCl(g)$
 - (b) $2CO(g)+O_2(g) \rightleftharpoons 2CO_2(g)$
 - (c) $N_2(g)+3H_2(g) \rightleftharpoons 2NH_3(g)$
 - (d) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

49. The molecular formula of diphenyl methane,

$$CH_2$$
, is $C_{13}H_{12}$.

How many structural isomers are possible when one of the hydrogens is replaced by a chlorine atom?

- (a) 6 (b) 4
- (c) 8
- (d) 7
- 50. Calculate enthalpy change for the change $8S(g) \longrightarrow S_8(g)$, given that


$$H_2S_2(g) \longrightarrow 2H(g) + 2S(g),$$

 $\Delta H = 239.0 \text{ k cal mol}^{-1}$

$$H_2S(g) \longrightarrow 2H(g) + S(g),$$

 $\Delta H = 175.0 \,\mathrm{k \, cal \, mol}^{-1}$

- (a) +512.0 k cal
- (b) -512.0 k cal
- (c) 508.0 k cal (d
 - (d) -508.0 k cal
- **51.** Which of the following is best method for reducing 3-bromopropanal to 1-bromopropane—
 - (a) Wolf-Kishner reduction
 - (b) Clemmenson reduction
 - (c) Either (a) or (b)
 - (d) Stephen's reduction
- **52.** Which one of the following has an optical isomer?
 - (a) $[Zn(en) (NH_3)_2]^{2+}$
 - (b) $[Co(en)_3]^{3+}$
 - (c) $[Co(H_2O)_4(en)]^{3+}$
 - (d) $[Zn(en)_2]^{2+}$
 - (en = ethylenediamine)
- 53. An element occurring in the bcc structure has 12.08×10^{23} unit cells. The total number of atoms of the element in these cells will be
 - (a) 24.16×10^{23}
- (b) 36.18×10^{23}
- (c) 6.04×10^{23}
- (d) 12.08×10^{23}
- **54.** The major product of the following reaction is

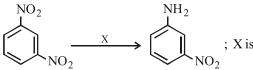
- (a) a hemiacetal
- (b) an acetal
- (c) an ether
- (d) an ester
- **55.** Standard cell voltage for the cell

Pb | Pb²⁺ || Sn²⁺ | Sn is - 0.01 V. If the cell is to exhibit $E_{\rm cell}$ = 0, the value of

- $\left[Sn^{2+}\right]/\left[Pb^{2+}\right]$ should be antilog of –
- (a) +0.3 (b) 0.5
- (c) 1.5
- (d) -0.5

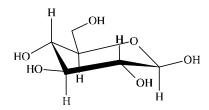
- **56.** HBr reacts with $CH_2 = CH OCH_3$ under anhydrous conditions at room temperature to give
 - (a) $BrCH_2 CH_2 OCH_2$
 - (b) $H_3C CHBr OCH_3$
 - (c) CH₃CHO and CH₃Br
 - (d) BrCH₂CHO and CH₂OH
- Acetic anhydride reacts with diethyl ether in the presence of anhydrous AlCl₃ to give:
 - (a) CH₃CH₂COOH (b) CH₃CH₂COOC₂H₅

 - (c) CH₃COOCH₃ (d) CH₃COOC₂H₅
- **58.** The resistance of 0.01 N solution of an electrolyte was found to be 220 ohm at 298 K using a conductivity cell with a cell constant of 0.88cm⁻¹. The value of equivalent conductance of solution is -
 - (a) $400 \text{ mho cm}^2 \text{ g eq}^{-1}$
 - (b) 295 mho cm² g eq⁻¹
 - (c) $419 \text{ mho cm}^2 \text{ g eq}^{-1}$
 - (d) $425 \text{ mho cm}^2 \text{ g eq}^{-1}$
- **59.** p-cresol reacts with chloroform in alkaline medium to give the compound A which adds hydrogen cyanide to form, the compound B. The latter on acidic hydrolysis gives chiral carboxylic acid. The structure of the carboxylic acid is


- The radius of La^{3+} (Atomic number of La = 57) is 1.06Å. Which one of the following given values will be closest to the radius of Lu³⁺ (Atomic number of Lu = 71)?
 - (a) 1.40 Å
- (b) 1.06 Å
- (c) 0.85 Å
- (d) 1.60 Å
- In a compound, atoms of element Y form ccp lattice and those of element X occupy 2/3rd of tetrahedral voids. The formula of the compound will be
 - (a) X_4Y_3
- (b) X_2Y_3
- (c) X₂Y
- (d) X_3Y_4
- **62.** An organic compound (C₂H₀N) (A), when treated with nitrous acid, gave an alcohol and N₂ gas was evolved. (A) on warming with CHCl₃ and caustic potash gave (C) which on reduction gave isopropylmethylamine. Predict the structure of (A).

(a)
$$CH_3 > CH - NH_2$$

(b)
$$CH_3CH_2$$
— NH — CH_3


- (d) $CH_3CH_2CH_2$ — NH_2
- For the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$, rate and rate constant are 1.02×10^{-4} mol lit⁻¹ sec⁻¹ and $3.4 \times 10^{-5} \text{ sec}^{-1}$ respectively then concentration of N₂O₅ at that time will be
 - (a) 1.732M
- (b) 3M
- (c) $3.4 \times 10^5 M$
- (d) 1.02×10^{-4} M
- The complex showing a spin-only magnetic moment of 2.82 B.M. is:
 - (a) $Ni(CO)_4$
- (b) [NiCl₄]²⁻
- (c) $Ni(PPh_3)_4$
- (d) $[Ni(CN)_4]^{2-}$
- What is order with respect to A, B, C, respectively
 - rate (M/sec.) [A] [B] [C] 0.2 0.02 0.1
 - 0.1 0.2 0.02
- 8.08×10^{-3} 2.01×10^{-3}
- 0.1 1.8 0.18
- 6.03×10^{-3}
- 0.2 0.1 0.08
- 6.464×10^{-2}
- (a) -1, 1, 3/2
- (b) -1, 1, 1/2
- (c) 1, 3/2, -1
- (d) 1, -1, 3/2

- **66.** In the silver plating of copper, $K[Ag(CN)_2]$ is used instead of $AgNO_3$. The reason is
 - (a) a thin layer of Ag is formed on Cu
 - (b) more voltage is required
 - (c) Ag⁺ ions are completely removed from solution
 - (d) less availability of Ag⁺ ions, as Cu cannot displace Ag from [Ag(CN)₂]⁻ ion
- 67. Nitrosoamines $(R_2N N = O)$ are soluble in water. On heating them with concentrated H_2SO_4 , they give secondary amines. This reaction is called
 - (a) Perkin reaction
 - (b) Sandmeyer's reaction
 - (c) Fitting reaction
 - (d) Liebermann nitroso reaction
- **68.** The energies E_1 and E_2 of two radiations are 25 eV and 50 eV, respectively. The relation between their wavelengths i.e., λ_1 and λ_2 will be:
 - (a) $\lambda_1 = \lambda_2$
- (b) $\lambda_1 = 2\lambda_2$
- (c) $\lambda_1 = 4\lambda_2$
- (d) $\lambda_1 = \frac{1}{2}\lambda_2$
- **69.** In the reaction :

- (a) SiC
- (b) H_2SO_4
- (c) KMnO₄
- (d) Fe + HCl
- **70.** Nucleotide in DNA are linked by
 - (a) hydrogen bond
 - (b) 3'-5' phosphodiester bond
 - (c) glycosidic bond
 - (d) peptide bond
- **71.** The correct order of the thermal stability of hydrogen halides (H–X) is
 - (a) HI > HCI < HF > HBr
 - (b) HCl < HF > HBr < HI
 - (c) HF > HC1 > HBr > HI
 - (d) HI < HBr > HCl < HF
- 72. The values of ΔH and ΔS for the reaction, $C(\text{graphite}) + CO_2(g) \rightarrow 2CO(g)$ are 170 kJ and 170 JK⁻¹, respectively. This reaction will be spontaneous at
 - (a) 910 K
- (b) 1110 K
- (c) 510 K
- (d) 710 K

73. The following carbohydrate is

- (a) a ketohexose
- (b) an aldohexose
- (c) an α-furanose
- (d) an α-pyranose
- 74. Given that the equilibrium constant for the reaction $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$ has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?

$$SO_3(g) \Longrightarrow SO_2(g) + \frac{1}{2}O_2(g)$$

- (a) 1.8×10^{-3}
- (b) 3.6×10^{-3}
- (c) 6.0×10^{-2}
- (d) 1.3×10^{-5}
- **75.** Which one of the following statements is correct?
 - (a) All amino acids except lysine are optically active
 - (b) All amino acids are optically active
 - (c) All amino acids except glycine are optically active
 - (d) All amino acids except glutamic acids are optically active
- **76.** In case of nitrogen, NCl₃ is possible but not NCl₅ while in case of phosphorus, PCl₃ as well as PCl₅ are possible. It is due to
 - (a) availability of vacant *d* orbitals in P but not in N
 - (b) lower electronegativity of P than N
 - (c) lower tendency of H-bond formation in P than N
 - (d) occurrence of P in solid while N in gaseous state at room temperature.
- 77. For the reaction:
 - $2 \operatorname{BaO}_{2}(s) \rightleftharpoons 2 \operatorname{BaO}(s) + \operatorname{O}_{2}(g);$

 $\Delta H = +ve$. In equilibrium condition, pressure of O_2 is dependent on

- (a) mass of BaO₂
- (b) mass of BaO
- (c) temperature of equilibrium
- (d) mass of BaO₂ and BaO both

78. In the series of reaction

$$C_6H_5NH_2 \xrightarrow{NaNO_2/HCl \atop 0-5^{\circ}C} X$$

$$\xrightarrow{HNO_2 \atop H_2O} Y + N_2 + HCl, X \text{ and }$$

Y are respectively

(a)
$$C_6H_5 - N = N - C_6H_5, C_6H_5N_2^{\oplus}C1^{\ominus}$$

(b)
$$C_6H_5N_2^{\oplus}Cl_7^{-}C_6H_5 - N = N - C_6H_5$$

(c)
$$C_6H_5N_2^{\oplus}Cl^{-}, C_6H_5NO_2$$

- (d) $C_6H_5NO_2, C_6H_6$
- 79. In XeF₂, XeF₄, XeF₆ the number of lone pairs on Xe are respectively
 - (a) 2, 3, 1
- (b) 1, 2, 3
- (c) 4, 1, 2
- (d) 3, 2, 1
- **80.** In Williamson synthesis if tertiary alkyl halide is used than
 - (a) ether is obtained in good yield
 - (b) ether is obtained in poor yield
 - (c) alkene is the only reaction product
 - (d) a mixture of alkene as a major product and ether as a minor product forms.

PART - III (MATHEMATICS)

- **81.** If $12 \cot^2 \theta 31 \csc \theta + 32 = 0$, then the value of $\sin \theta$ is

 - (a) $\frac{3}{5}$ or 1 (b) $\frac{2}{3}$ or $\frac{-2}{3}$
 - (c) $\frac{4}{5}$ or $\frac{3}{4}$ (d) $\pm \frac{1}{2}$
- **82.** Amplitude of $\frac{1+\sqrt{3}i}{\sqrt{3}+1}$ is:

- 83. The value of $\lim_{x\to 0} \frac{x^3 \cot x}{1-\cos x}$
 - (a) 1
- (b) -2
- (c) 2
- (d) 0

- **84.** The connective in the statement :
 - "2 + 7 > 9 or 2 + 7 < 9" is
 - (a) and
- (b) or
- (c) >
- (d) <
- 85. The number of ways in which 3 prizes can be distributed to 4 children, so that no child gets all the three prizes, are
 - (a) 64
- (b) 62
- (c) 60
- (d) None of these
- If A and B are events such that P(A) = 0.42, P(B)= 0.48 and P(A and B) = 0.16. then,
 - P(not A) = 0.58
 - II. P(not B) = 0.52
 - III. P(A or B) = 0.47
 - (a) Only I and II are correct.
 - (b) Only II and III are correct.
 - (c) Only I and III are true.
 - (d) All three statements are correct.
- **87.** The focus of the curve $y^2 + 4x 6y + 13 = 0$ is
 - (a) (2,3)
- (b) (-2, 3)
- (c) (2, -3)
- (d) (-2, -3)
- 88. If the parabola $y^2 = 4ax$ passes through the point (1, -2), then the tangent at this point is
 - (a) x + y 1 = 0 (b) x y 1 = 0
 - (c) x + y + 1 = 0
- (d) x y 1 = 0
- The no. of points of discontinuity of the function f(x) = x - [x] in the interval (0, 7) are
 - (a) 2
- (b) 4
- (c) 6
- (d) 8
- A football is inflated by pumping air in it. When it acquires spherical shape its radius increases at the rate of 0.02 cm/s. The rate of increase of its volume when the radius is 10 cm is __ π cm/s
 - (a) 0
- (b) 2
- (c) 8
- (d) 9
- 91. The interval in which the function $f(x) = \frac{4x^2 + 1}{x^2}$
 - is decreasing is:
 - (a) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (b) $\left|-\frac{1}{2}, \frac{1}{2}\right|$
 - (c) (-1, 1)

- **92.** The eccentricity of the ellipse whose major axis is three times the minor axis is:
 - (a) $\frac{\sqrt{2}}{2}$ (b) $\frac{\sqrt{3}}{2}$
 - (c) $\frac{2\sqrt{2}}{2}$
 - (d) $\frac{2}{\sqrt{2}}$
- 93. The equation of the hyperbola with vertices (3,0), (-3,0) and semi-latus rectum 4 is given by:
 - (a) $4x^2 3y^2 + 36 = 0$
 - (b) $4x^2 3v^2 + 12 = 0$
 - (c) $4x^2 3y^2 36 = 0$
 - (d) $4x^2 + 3y^2 25 = 0$
- **94.** $f(x) = \begin{cases} x \sin 1/x & , & x \neq 0 \\ 0 & , & x = 0 \end{cases}$ at x = 0 is
 - (a) continuous as well as differentiable
 - (b) differentiable but not continuous
 - (c) continuous but not differentiable
 - (d) neither continuous nor differentiable
- **95.** If $\int \frac{3x+1}{(x-3)(x-5)} dx$
 - $= \int \frac{-5}{(x-3)} dx + \int \frac{B}{(x-5)} dx$, then the value of B is
 - (a) 3
- (b) 4
- (c) 6
- (d) 8
- The vector equation of the symmetrical form of equation of straight line $\frac{x-5}{2} = \frac{y+4}{7} = \frac{z-6}{2}$ is
 - (a) $\vec{r} = (3\hat{i} + 7\hat{j} + 2\hat{k}) + \mu(5\hat{i} + 4\hat{j} 6\hat{k})$
 - (b) $\vec{r} = (5\hat{i} + 4\hat{i} 6\hat{k}) + \mu(3\hat{i} + 7\hat{i} + 2\hat{k})$
 - (c) $\vec{r} = (5\hat{i} 4\hat{i} 6\hat{k}) + \mu(3\hat{i} 7\hat{i} 2\hat{k})$
 - (d) $\vec{r} = (5\hat{i} 4\hat{i} + 6\hat{k}) + \mu(3\hat{i} + 7\hat{i} + 2\hat{k})$
- 97. Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lie in the plane $x + 3y - \alpha z + \beta = 0$. Then (α, β) equals
 - (a) (-6, 7)
- (b) (5, -15)
- (c) (-5, 5)
- (d) (6, -17)

- **98.** The principal value of $\sin^{-1}\left(\sin\frac{5\pi}{3}\right)$ is
 - (a) $-\frac{5\pi}{3}$ (b) $\frac{5\pi}{3}$
 - (c) $-\frac{\pi}{2}$ (d) $\frac{4\pi}{2}$
- **99.** If $\begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -2 \end{bmatrix} = 0$, then x is
 - (a) $-\frac{1}{2}$ (b) $\frac{1}{2}$ (c) 1 (d) -1
- **100.** If $A = \begin{pmatrix} 2 & -1 \\ -7 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 4 & 1 \\ 7 & 2 \end{pmatrix}$ then which

statement is true?

- (a) $AA^T = I$
- (b) $BB^T = I$
- (c) $AB \neq BA$
- (d) $(AB)^{T} = I$
- 101. The value of c in Rolle's Theorem for the
 - $f(x) = e^x \sin x, x \in [0, \pi]$ is
- (c)
- **102.** The area of the region bounded by the curve x =2y + 3 and lines y = 1 and y = -1 is
 - (a) 4 sq. units
- (b) $\frac{3}{2}$ sq. units
- (c) 6 sq. units
- (d) 8 sq. units
- 103. A signal which can be green or red with probability 4/5 and 1/5 respectively, is received by station A and then trasmitted to station B. The probability of each station receiving the signal correctly is 3/4. If the signal received at station B is given, then the probability that the original signal is green, is
 - (a)

- **104.** The value of the determinant $\Delta = \begin{vmatrix} 1 & 4 & 3 \\ 0 & 12 & 9 \end{vmatrix}$ is
 - (a) 2
- (b) 4
- (c) 6
- (d) 8
- **105.** If the equations x + ay z = 0, 2x y + az = 0, ax +y+2z=0 have non-trivial solutions, then a=
 - (a) 2
- (b) -2
- (c) $\sqrt{3}$
- (d) $-\sqrt{3}$
- **106.** If the I.F. of the differential equation $\frac{dy}{dx} + 5y$

$$=\cos x$$
 is $\int e^{Adx}$, then $A =$

- (a) 0
- (b) 1
- (d) 5
- 107. What is the length of the projection of $3\hat{i} + 4\hat{j} + 5\hat{k}$ on the xy-plane?
 - (a) 3
- (b) 5
- (c) 7
- (d) 9
- **108.** The radius of the sphere

$$x^{2} + y^{2} + z^{2} = 49$$
, $2x + 3y - z - 5\sqrt{14} = 0$ is

- (a) $\sqrt{6}$ (b) $2\sqrt{6}$
- (c) $4\sqrt{6}$
- (d) $6\sqrt{6}$
- **109.** One of the values of $\left(\frac{1+i}{\sqrt{2}}\right)^{2/3}$ is
 - (a) $\frac{1}{2}(\sqrt{3}+i)$ (b) -i
- (d) $-\sqrt{3} + i$
- 110. The value of λ does the line $y = x + \lambda$ touches the ellipse $9x^2 + 16y^2 = 144$ is/are
 - (a) $\pm 2\sqrt{2}$
- (b) $2 \pm \sqrt{3}$
- (c) ± 5
- (d) $5 \pm \sqrt{2}$
- 111. The combined equation of the asymptotes of the hyperbola $2x^2 + 5xy + 2y^2 + 4x + 5y = 0$ is –
 - (a) $2x^2 + 5xy + 2y^2 + 4x + 5y + 2 = 0$
 - (b) $2x^2 + 5xy + 2y^2 + 4x + 5y 2 = 0$
 - (c) $2x^2 + 5xy + 2y^2 = 0$
 - (d) None of these

- 112. The two curves $x^3 3xy^2 + 2 = 0$ and $3x^2y - y^3 - 2 = 0$ intersect at an angle of

- 113. If at x = 1, the function $x^4 62x^2 + ax + 9$ attains its maximum value on the interval [0, 2], then the value of a is
 - (a) 110
- (b) 10
- (c) 55
- (d) None of these
- 114. The value of $\int (x-[x])dx$ (where [.] denotes

greatest integer function) is

- (a) 0
- (c) 2
- (d) None of these
- 115. The correct evaluation of $\int |\sin^4 x| dx$ is

- 116. The order and degree of the differential equation whose solution is $y = cx + c^2 - 3c^{3/2} + 2$, where c is a parameter, is
 - (a) order = 4, degree = 4
 - (b) order = 4, degree = 1
 - (c) order = 1, degree = 4
 - (d) None of these
- 117. The solution of $\frac{dv}{dt} + \frac{k}{m}v = -g$ is

(a)
$$v = ce^{-\frac{k}{m}t} - \frac{mg}{k}$$

(b)
$$v = c - \frac{mg}{k} e^{-\frac{k}{m}t}$$

(c)
$$ve^{-\frac{k}{m}t} = c - \frac{mg}{k}$$

(d)
$$ve^{\frac{k}{m}t} = c - \frac{mg}{k}$$

- 118. A unit vector perpendicular to the plane formed by the points (1, 0, 1), (0, 2, 2) and (3, 3, 0) is
 - (a) $\frac{1}{5\sqrt{3}}(5\hat{i}-\hat{j}-7\hat{k})$ (b) $\frac{1}{5\sqrt{3}}(5\hat{i}-\hat{j}+7\hat{k})$
 - (c) $\frac{1}{5\sqrt{3}}(5\hat{i}+\hat{j}+7\hat{k})$ (d) None of these
- **119.** If $\vec{a} = (\hat{i} + \hat{j} + \hat{k}), \vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} \hat{k}$, then \vec{h} is
 - (a) $\hat{i} \hat{j} + \hat{k}$ (b) $2\hat{j} \hat{k}$
 - (c) \hat{i}
- (d) $2\hat{i}$
- **120.** The mean and variance of a random variable Xhaving binomial distribution are 4 and 2 respectively, then P(X=1) is
 - (a) $\frac{1}{4}$
- (c) $\frac{1}{16}$

PART - IV (ENGLISH)

Directions (Qs. 121-123): Study the paragraph and answer the questions that follow:

Judiciary has become the centre of controversy, in the recent past, on account of the sudden 'Me' in the level of judicial intervention. The area of judicial intervention has been steadily expanding through the device of public interest litigation. The judiciary has shed its pro-status-quo approach and taken upon itself the duty to enforce the basic rights of the poor and vulnerable sections of society, by progressive interpretation and positive action. The Supreme Court has developed new methods of dispensing justice to the masses through the public interest litigation. Former Chief Justice PN. Bhagwat, under whose leadership public interest litigation attained a new dimension comments that "the Supreme Court has developed several new commitments. It has carried forward participative justice".

- 121. The steady expansion of judicial intervention is the result of
 - (a) excessive laws
 - (b) public interest litigation
 - (c) Supreme Court's new methods of dispensing justice
 - (d) new commitments of Supreme Court

- **122.** According to the author, judiciary has become the center of controversy because of
 - (a) problems arising in dispensing justice in the recent past
 - (b) public interest litigation
 - (c) sudden 'Me' in the level of judicial intervention
 - (d) Supreme Court's supremacy
- 123. According to Justice PN. Bhagwat, Supreme Court has developed
 - (a) judicial intervention
 - (b) various new commitments
 - (c) participative judicial approach to dispense justice
 - (d) public interest litigation

Directions (Q.124): In the questions below, a sentence is given, a part of which is printed in bold and underline. This part may contain a grammatical error. Each sentence is followed by phrases a, b, c and d. Find out which phrase should replace the phrase given in bold/underline to correct the error, if there is any to make the sentence grammatically meaningful and correct.

- 124. Recent incidents of tigers straying have brought to focus the lack of proper regulatory mechanism and powers with the forest department to take action against the resorts mushroom in forest fringes.
 - and powers with the forest department to taking action against the resorts mushroom in forest fringes.
 - and powers with the forest departments to take action against the resorts mushroom in forest fringes.
 - (c) and powers with the forest department to take action for the resorts mushroom in forest fringes.
 - (d) and powers with the forest department to take action against the resorts mushrooming in forest fringes.
- 125. Choose the best pronunciation of the word 'Mischievous' from the following options.
 - Mis-chuh-vus
- (b) Mis-chi-vius
- (c) Mis-chi-vus
- (d) Mis-chu-vies