

Waves JEE Main PYQ – 3

Total Time: 1 Hour : 15 Minute

Total Marks: 120

Instructions

Instructions

1. Test will auto submit when the Time is up.
2. The Test comprises of multiple choice questions (MCQ) with one or more correct answers.
3. The clock in the top right corner will display the remaining time available for you to complete the examination.

Navigating & Answering a Question

1. The answer will be saved automatically upon clicking on an option amongst the given choices of answer.
2. To deselect your chosen answer, click on the clear response button.
3. The marking scheme will be displayed for each question on the top right corner of the test window.

Waves

1. Let K_1 and K_2 be the maximum kinetic energies of photo-electrons emitted when two monochromatic beams of wavelength λ_1 and λ_2 , respectively are incident on a metallic surface. If $\lambda_1 = 3\lambda_2$ then: (+4, -1)

- a.** $K_1 > \frac{K_2}{3}$
- b.** $K_1 < \frac{K_2}{3}$
- c.** $K_1 = \frac{K_2}{3}$
- d.** $K_2 \leq \frac{K_1}{3}$

2. Match List-I with List-II List-I List-II (+4, -1)

List I		List II	
a.	Ultraviolet rays	i.	Study crystal structure
b.	Microwaves	ii.	Greenhouse effect
c.	Infrared waves	iii.	Sterilizing surgical instrument
d.	X-rays	iv	Radar system

Choose the correct answer from the options given below :

- a.** (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
- b.** (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
- c.** (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- d.** (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)

3. In the wave equation $y = 05 \sin \frac{2\pi}{\lambda} (400t - x)m$ the velocity of the wave will be : (+4, -1)

- a.** $200m/s$
- b.** $200\sqrt{2}m/s$

c. $400m/s$

d. $400\sqrt{2}m/s$

4. A person driving car at a constant speed of $15 m/s$ is approaching a vertical wall. (+4, -1) The person notices a change of $40 Hz$ in the frequency of his car's horn upon reflection from the wall. The frequency of horn is ____ Hz.

5. A train blowing a whistle of frequency $320 Hz$ approaches an observer standing on the platform at a speed of $66 m/s$. The frequency observed by the observer will be ____ Hz, (+4, -1) (Given speed of sound = $330 ms^{-1}$)

6. The distance between two consecutive points with phase difference of 60° in a wave of frequency $500 Hz$ is $60 m$. The velocity with which wave is traveling is ____ km/s (+4, -1)

7. The displacement equations of two interfering waves are given by (+4, -1)
 $y_1 = 10 \sin(\omega t + \frac{\pi}{3}) \text{ cm}$,
 $y_2 = 5[\sin \omega t + \sqrt{3} \cos \omega t] \text{ cm}$ respectively.
 The amplitude of the resultant wave is ____ cm

8. A travelling wave is described by the equation $y(x, t) = [0.05 \sin(8x - 4t)] m$. The velocity of the wave is : [all the quantities are in SI unit] (+4, -1)

a. $4 ms^{-1}$

b. $8 ms^{-1}$

c. $0.5 ms^{-1}$

d. $2 ms^{-1}$

9. Given below are two statements : (+4, -1)

Statement I : For transmitting a signal, size of antenna (f) should be comparable to wavelength of signal (at least $l = \frac{\lambda}{4}$ in dimension)

Statement II : In amplitude modulation, amplitude of carrier wave remains

constant (unchanged)

In the light of the above statements, choose the most appropriate answer from the options given below,

- a. Statement I is correct but Statement II is incorrect
- b. Both Statement I and Statement II are incorrect
- c. Both Statement I and Statement II are correct
- d. Statement I is incorrect but Statement II is correct

10. For a solid rod, the Young's modulus of elasticity is $32 \times 10^{11} Nm^{-2}$ and density (+4, -1) is $8 \times 10^3 kgm^{-3}$ The velocity of longitudinal wave in the rod will be

- a. $3.65 \times 10^3 ms^{-1}$
- b. $18.96 \times 10^3 ms^{-1}$
- c. $145.75 \times 10^3 ms^{-1}$
- d. $6.32 \times 10^3 ms^{-1}$

11. The amplitude of $15 \sin(1000\pi t)$ is modulated by $10 \sin(4\pi t)$ signal The (+4, -1) amplitude modulated signal contains frequency (ies) of

- A $500 Hz$
- B $2 Hz$
- C $250 Hz$
- D $498 Hz$
- E $502 Hz$

Choose the correct answer from the options given below:

- a. B Only
- b. A and B Only
- c. A, D and E Only

d. A Only

12. A steel wire with mass per unit length $70 \times 10^{-3} \text{ kg m}^{-1}$ is under tension of 70 N . (+4, -1)
The speed of transverse waves in the wire will be:

- a. 10 m/s
- b. 100 m/s
- c. $200\pi \text{ m/s}$
- d. 50 m/s

13. A wave on a string is described by $(x, t) = 0.005 \sin (6.28 - 314 t)$ in which all quantities are in SI units. Its wavelength is _____. (+4, -1)

14. What should be the length of a half-wave dipole antenna for a carrier wave having frequency $3 \times 10^8 \text{ Hz}$? (+4, -1)

- a. (A) 0.5 m
- b. (B) 5 m
- c. (C) 1 m
- d. (D) 0.1 m

15. The total length of a sonometer wire between fixed ends is 110 cm . Two bridges are placed to divide the length of wire in ratio $6 : 3 : 2$. The tension in the wire is 400 N and the mass per unit length is 0.01 kg/m . What is the minimum common frequency with which three parts can vibrate? (+4, -1)

- a. 1100 Hz
- b. 1000 Hz
- c. 166 Hz
- d. 100 Hz

16. A sonometer wire of length 114 cm is fixed at both the ends. Where should the two bridges be placed so as to divide the wire into three segments whose fundamental frequencies are in the ratio $1 : 3 : 4$? (+4, -1)

a. At 36 cm and 84 cm from one end

b. At 24 cm and 72 cm from one end

c. At 48 cm and 96 cm from one end

d. At 72 cm and 96 cm from one end

17. A granite rod of 60 cm length is clamped at its middle point and is set into longitudinal vibrations. The density of granite is $2.7 \times 10^3 \text{ kg/m}^3$ and its Young's modulus is $9.27 \times 10^{10} \text{ Pa}$. What will be the fundamental frequency of the longitudinal vibrations ? (+4, -1)

a. 5 kHz

b. 2.5 kHz

c. 10 kHz

d. 7.5 kHz

18. Equation of travelling wave on a stretched string of linear density 5 g/m is $y = 0.03 \sin(450t - 9x)$ where distance and time are measured in SI units. The tension in the string is : (+4, -1)

a. 10 N

b. 12.5 N

c. 7.5 N

d. 5 N

19. An engine approaches a hill with a constant speed. When it is at a distance of 0.9 km , it blows a whistle whose echo is heard by the driver after 5 seconds. If the speed of sound in air is 330 m/s , then the speed of the engine is : (+4, -1)

a. 32 m/s
b. 27.5 m/s
c. 60 m/s
d. 30 m/s

20. A tuning fork vibrates with frequency 256 Hz and gives one beat per second with the third normal mode of vibration of an open pipe. What is the length of the pipe ? (Speed of sound in air is 340 ms^{-1}) (+4, -1)

a. 220 cm
b. 190 cm
c. 180 cm
d. 200 cm

21. A tuning fork of frequency 480 Hz is used in an experiment for measuring speed of sound (v) in air by resonance tube method. Resonance is observed to occur at two successive lengths of the air column, $l_1 = 30\text{ cm}$ and $l_2 = 70\text{ cm}$. Then, v is equal to : (+4, -1)

a. 332 ms^{-1}
b. 379 ms^{-1}
c. 384 ms^{-1}
d. 338 ms^{-1}

22. A travelling harmonic wave is represented by the equation $y(x, t) = 10^{-3} \sin(50t + 2x)$, where x and y are in meter and t is in seconds. Which of the following is a correct statement about the wave? The wave is propagating along the (+4, -1)

- a. negative x-axis with speed 25 ms^{-1}
- b. The wave is propagating along the positive x-axis with speed 25 ms^{-1}
- c. The wave is propagating along the positive x-axis with speed 100 ms^{-1}
- d. The wave is propagating along the negative x-axis with speed 100 ms^{-1}

23. A transverse wave is represented by : $y = \frac{10}{\pi} \sin\left(\frac{2\pi}{T}t - \frac{2\pi}{\lambda}x\right)$ For what value of the wavelength the wave velocity is twice the maximum particle velocity ? (+4, -1)

- a. 40 cm
- b. 20 cm
- c. 10 cm
- d. 60 cm

24. A train is moving on a straight track with speed 20 ms^{-1} . It is blowing its whistle at the frequency of 1000 Hz . The percentage change in the frequency heard by a person standing near the track as the train passes him is close to (speed of sound = 320 ms^{-1}) (+4, -1)

- a. 12%
- b. 6%
- c. 18%
- d. 24%

25. A toy-car, blowing its horn, is moving with a steady speed of 5 m/s , away from a wall. An observer, towards whom the toy car is moving, is able to (+4, -1)

hear 5 beats per second. If the velocity of sound in air is 340 m/s , the frequency of the horn of the toy car is close to :

- a. 680 Hz
- b. 510 Hz
- c. 340 Hz
- d. 170 Hz

26. A string of length 1 m and mass 5 g is fixed at both ends. The tension in the string is 8.0 N . The siring is set into vibration using an external vibrator of frequency 100 Hz . The separation between successive nodes on the string is close to : (+4, -1)

- a. 16.6 cm
- b. 20.0 cm
- c. 10.0 cm
- d. 33.3 cm

27. A uniform string of length 20 m is suspended from a rigid support. A short wave pulse is introduced at its lowest end. It starts moving up the string. The time taken to reach the support is : (take $g = 10 \text{ ms}^{-2}$) (+4, -1)

- a. $2\pi\sqrt{2}\text{s}$
- b. 2s
- c. $2\sqrt{2}\text{s}$
- d. $\sqrt{2}\text{s}$

28. Two factories are sounding their sirens at 800 Hz . A man goes from one factory to other at a speed of 2 m/s . The velocity of sound is 320 m/s . The number of beats heard by the person in one second will be : (+4, -1)

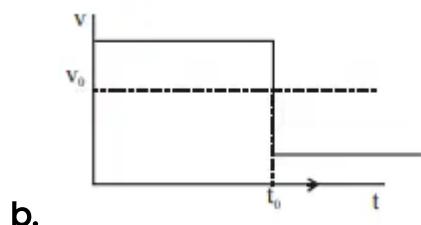
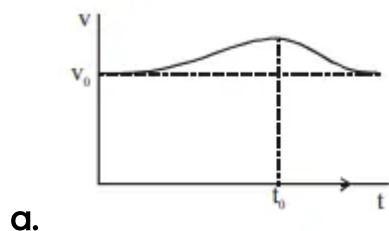
a. 2

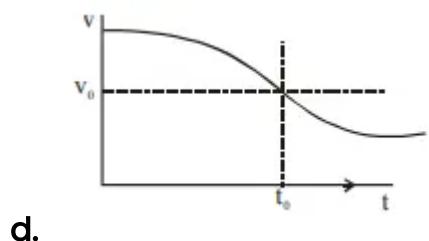
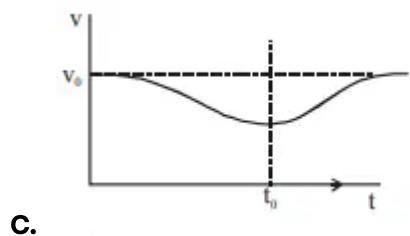
b. 4

c. 8

d. 10

29. A wire of length L and mass per unit length $6.0 \times 10^{-3} \text{ kg m}^{-1}$ is put under tension of 540 N . Two consecutive frequencies that it resonates at are: 420 Hz and 490 Hz . Then L in meters is : (+4, -1)



a. 8.1 m



b. 2.1 m

c. 1.1 m

d. 5.1 m

30. A sound source S is moving along a straight track with speed v , and is emitting sound of frequency v_0 (see figure). An observer is standing at a finite distance, at the point O , from the track. The time variation of frequency heard by the observer is best represented by :
 (t_0 represents the instant when the distance between the source and observer is minimum) (+4, -1)

Answers

1. Answer: b

Explanation:

$$K_1 = \frac{hc}{\lambda_1} - \Phi = \frac{hc}{3\lambda_2} - \Phi \dots \text{(i)}$$

and

$$K_2 = \frac{hc}{\lambda_2} - \Phi \dots \text{(ii)}$$

from (i) and (ii) we can say

$$3K_1 = K_2 - 2\Phi$$

$$K_1 < \frac{K_2}{3}$$

Concepts:

1. Waves:

[Waves](#) are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set [frequency and wavelength](#).

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

2. Answer: a

Explanation:

- i. UV rays are used to sterilize surgical material.
- ii. Microwaves are used in radar system
- iii. Infrared are used for green house effect
- iv. X-rays are used to study crystal structure.

Hence, the correct option is (A) : (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

3. Answer: c

Explanation:

From the given options the correct answer is option (C): 400 m/s.

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

4. Answer: 420 - 420

Explanation:

$$\begin{aligned}f &= f_0 \left(\frac{V+V_c}{V-V_c} \right) \\f &= f_0 \left(\frac{330+15}{330-15} \right) \\f &= f_0 \frac{345}{315} \\f - f_0 &= 40 \\f_0 \left(\frac{345-315}{315} \right) &= 40 \\f_0 &= \frac{40 \times 315}{30} \\f_0 &= 420 \text{ Hz}\end{aligned}$$

So, the answer is 420 Hz

Concepts:

1. Waves:

[Waves](#) are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set [frequency and wavelength](#).

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

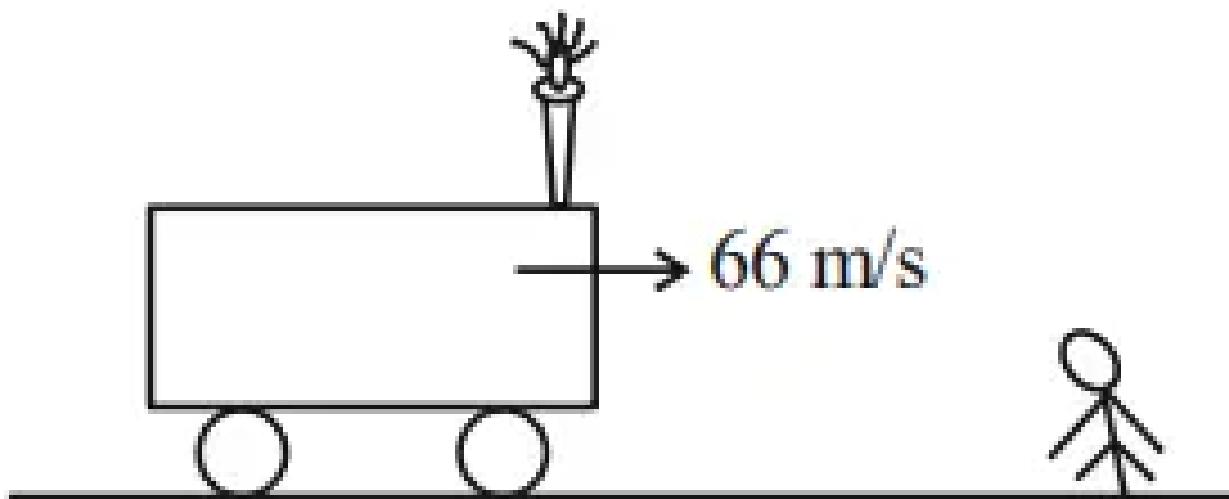
- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:


- Sound waves
- P-type earthquake waves
- Compression wave

5. Answer: 400 – 400

Explanation:

The correct answer is 400

$$\begin{aligned}
 f_{app} &= f \left(\frac{v}{v-v_s} \right) \\
 &= 320 \left(\frac{330}{330-66} \right) \\
 &= 400 \text{ Hz}
 \end{aligned}$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments

- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

6. Answer: 18 – 18

Explanation:

1. The phase difference is given by:

$$\Delta\phi = k\Delta x,$$

where $k = \frac{2\pi}{\lambda}$ is the wave number.

2. Substituting $\Delta\phi = \frac{\pi}{3}$ and $\Delta x = 6 \text{ m}$:

$$\frac{\pi}{3} = \frac{2\pi}{\lambda} \cdot 6.$$

Simplify:

$$\lambda = 36 \text{ m.}$$

3. The wave velocity is:

$$v = \lambda f = 36 \cdot 500 = 18000 \text{ m/s} = 18 \text{ km/s.}$$

Thus, the velocity is **18 km/s**. Wave velocity depends on the wavelength and frequency. Use the relation $v = \lambda f$ to calculate the speed of propagation.

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. Inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

7. Answer: 20 – 20

Explanation:

The resultant displacement y is the sum of y_1 and y_2 . We can write y_2 in a simplified form:

$$y_2 = 5 \sin(\omega t) + 5\sqrt{3} \cos(\omega t)$$

Now, we can find the resultant amplitude using the formula for the amplitude of two interfering waves:

$$A_{\text{result}} = \sqrt{A_1^2 + A_2^2 + 2A_1 A_2 \cos(\phi_1 - \phi_2)}$$

where $A_1 = 10 \text{ cm}$ and $A_2 = 5 \text{ cm}$. The phase difference is $\frac{\pi}{3}$. After calculating, the amplitude is found to be 20 cm.

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

8. Answer: c

Explanation:

The general equation of a wave is given by:

$$y(x, t) = A \sin(kx - \omega t)$$

where $k = 8 \text{ m}^{-1}$ and $\omega = 4 \text{ rad/s}$. The velocity of the wave is:

$$v = \frac{\omega}{k} = \frac{4}{8} = 0.5 \text{ ms}^{-1}$$

Concepts:

1. Waves:

[Waves](#) are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set [frequency and wavelength](#).

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)

- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

9. Answer: a

Explanation:

Statement I: The size of the antenna for efficient signal transmission should be comparable to the wavelength of the signal. Specifically, for effective resonance, the length of the antenna is ideally $\frac{\lambda}{4}$, where λ is the wavelength of the signal. Hence, **Statement I is correct.**

Statement II: In amplitude modulation (AM), the amplitude of the carrier wave changes depending on the information signal, while the frequency and phase remain constant. Therefore, **Statement II is incorrect.**

Thus, the correct answer is that **Statement I is correct, while Statement II is incorrect.**

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the

most effective waves, the disturbance oscillates periodically (see periodic movement) with a set [frequency and wavelength](#).

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

10. Answer: d

Explanation:

The velocity of longitudinal wave in the rod will be :

$$v = \sqrt{\frac{3.2 \times 10^{11}}{8 \times 10^3}}$$
$$= 6.32 \times 10^3 \text{ m/s}$$

The Correct Option is (D) $6.32 \times 10^3 \text{ ms}^{-1}$

Concepts:

1. Waves:

[Waves](#) are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. Inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set [frequency and wavelength](#).

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

11. Answer: c

Explanation:

Carrier wave frequency

$$V_C = \frac{100\pi}{2\pi} = 500 \text{ Hz}$$

Modulating wave frequency

$$V_m = \frac{4\pi}{2\pi} = 2 \text{ Hz}$$

$$\therefore V_C - V_m, V_c, V_c + V_m$$
$$= 498 \text{ Hz}, 500 \text{ Hz}, 502 \text{ Hz}$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. Inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves

- P-type earthquake waves
- Compression wave

12. Answer: b

Explanation:

$$v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{70}{70 \times 10^{-3}}} = 100 \text{ m/s}$$

Concepts:

1. Waves:

[Waves](#) are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set [frequency and wavelength](#).

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

13. Answer: 1 - 1

Explanation:

Explanation:

Given:

The wave on a string is described by

$$(,) = 0.005 \sin(6.28 - 314) \dots (i)$$

Displacement of a general plane progressive wave is given as

$$(,) = \sin(-) \dots (ii)$$

where,

$= \frac{2}{\lambda}$, wave number and $= \frac{2}{T}$, angular frequency

Substituting the values in eq. (ii), we get

$$(,) = \sin\left(\frac{2}{\lambda} - \frac{2}{T}\right) \dots (iii)$$

Comparing eqs. (i), (ii) and (iii), we get

$$= 0.005$$

$$= 6.28 = \frac{2}{\lambda}$$

$$= \frac{2}{6.28}$$

$$= \frac{2 \times 3.14}{6.28} = \frac{6.28}{6.28} = 1 \text{ m}$$

Hence, the correct answer is 1.

14. Answer: a

Explanation:

Explanation:

Given: Frequency of the carrier wave $= 3 \times 10^8 \text{ Hz}$
 We have to find the length of a half-wave dipole antenna. Let l be the length of the half-wave dipole antenna. Then $l = \frac{\lambda}{2}$
 $= \frac{\lambda}{2}$ Using $l = \frac{\lambda}{2} = \frac{3 \times 10^8}{2 \times 3 \times 10^8} = 0.5 \text{ m}$
 Hence, the correct option is (A).

15. Answer: b

Explanation:

$\ell_1 : \ell_2 : \ell_3 = 6 : 3 : 2$ so $\ell_1 = 60\text{ cm}$ $\ell_2 = 30\text{ cm}$ $\ell_3 = 20\text{ cm}$ $60, 30, 20 \frac{\lambda}{2} = 10\text{ cm}$ $f = \frac{200}{2} = 1000\text{ Hz}$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. Inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

16. Answer: d

Explanation:

Total length of the wire, $L = 114 \text{ cm}$ $n_2 : n_2 : n_3 = 1 : 3 : 4$ Let L_1, L_2 and L_3 be the lengths of the three As $n \propto \frac{1}{L} \therefore L_1 : L_2 : L_3 = \frac{1}{1} : \frac{1}{3} : \frac{1}{4} = 12 : 4 : 3 \therefore L_1 = 72 \text{ cm} \left(\frac{12}{12+4+3} \times 114 \right)$ $L_2 = 24 \text{ cm} \left(\frac{4}{19} \times 114 \right)$ and $L_3 = 18 \text{ cm} \left(\frac{3}{19} \times 114 \right)$ Hence the bridges should be placed at 72 cm and $72 + 24 = 96 \text{ cm}$ from one end. parts

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

17. Answer: a

Explanation:

$$f_0 = \frac{V}{2L} = \frac{1}{2L} \sqrt{\frac{Y}{\rho}} = \frac{1}{2 \times 0.6} \sqrt{\frac{9.27 \times 10^{10}}{2.7 \times 10^3}} = 4.88 \text{ kHz} \approx 5 \text{ kHz}$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments

- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

18. Answer: b

Explanation:

$$y = 0.03 \sin (450t - 9x)$$

$$v = \frac{\omega}{k} = \frac{450}{9} = 50 \text{ m/s}$$

$$v = \sqrt{\frac{T}{\mu}} \Rightarrow \frac{T}{\mu} = 2500$$

$$\Rightarrow T = 2500 \times 5 \times 10^{-3}$$

$$= 12.5 \text{ N}$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. Inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

19. Answer: d

Explanation:

Let after 5 sec engine at point C

$$t = \frac{AB}{330} + \frac{BC}{330}$$

$$5 = \frac{0.9 \times 1000}{330} + \frac{BC}{330}$$

$$\therefore BC = 750 \text{ m}$$

Distance travelled by engine in 5\, sec

$$= 900 \text{ m} - 750 \text{ m} = 150 \text{ m}$$

Therefore velocity of engine

$$= \frac{150 \text{ m}}{5 \text{ sec}} = 30 \text{ m/s}$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. Inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

20. Answer: d

Explanation:

Given: Frequency of tuning fork = 256 Hz.

It gives one beat per second with the third normal mode of vibration of an open pipe.

Therefore, frequency of open pipe = $(256 + 1) \text{ Hz}$

Speed of sound in air is 340 m/s .

Now we know, frequency of third normal mode of vibration of an open pipe is given as

$$\begin{aligned}f &= \frac{3v_{\text{sound}}}{2l} \\ \Rightarrow \frac{3 \times 340}{2l} &= 255 \\ \Rightarrow l &= \frac{3 \times 340}{2 \times 255} = 2 \text{ m} = 200 \text{ cm}\end{aligned}$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. Inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

21. Answer: c

Explanation:

$$\begin{aligned}v &= 2f(l_2 - l_1) \\v &= 2 \times 480 \times (70 - 30) \times 10^{-2} \\v &= 960 \times 40 \times 10^{-2} \\v &= 38400 \times 10^{-2} \text{ m/s} \\v &= 384 \text{ m/s}\end{aligned}$$

Concepts:

1. Waves:

[Waves](#) are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. Inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set [frequency and wavelength](#).

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

22. Answer: a

Explanation:

$$y = a \sin(\omega t + kx)$$

⇒ wave is moving along $-ve$ x-axis with speed

$$v = \frac{\omega}{K} \Rightarrow v = \frac{50}{2} = 25 \text{ m/sec}$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves

- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

23. Answer: a

Explanation:

$$\begin{aligned}V &= 2(V_p)_{max} \\ \therefore V &= f\lambda \\ f\lambda &= 2\omega A \\ \lambda &= 4\pi A \\ &= 4\pi \times \frac{10}{\pi} \\ &= 40 \text{ cm}\end{aligned}$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

24. Answer: a

Explanation:

$$f_1 = 1000 \left(\frac{320}{300-20} \right) = 1066 \text{ Hz}$$

$$f_2 = 1000 \left(\frac{320}{300+20} \right) = 941 \text{ Hz}$$

∴ Change is $\simeq 12\%$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the

most effective waves, the disturbance oscillates periodically (see periodic movement) with a set [frequency and wavelength](#).

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

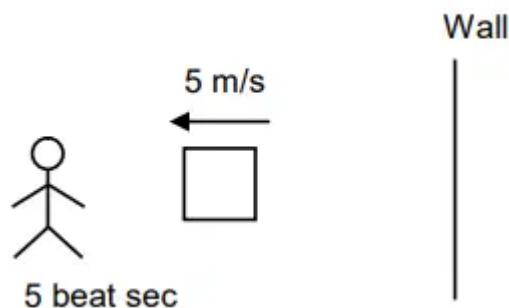
Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.


Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

25. Answer: d

Explanation:

$$F_{\text{dir}} = \left(\frac{340}{340-5} \right) f$$

$$f_{\text{ind}} = \left(\frac{340}{340+5} \right) f$$

$$f_{\text{ind}} - f_{\text{dir}} = 5$$

$$\left\{ \left(\frac{340}{340+5} \right) \left(\frac{340}{340+5} \right) \right\} f = 5$$

$$340 \left\{ \frac{10}{(300-5)(340+5)} \right\} = 5$$

$$f = \frac{340 \times 5}{10}$$

$$f = 170 \text{ Hz}$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments

- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

26. Answer: b

Explanation:

Velocity of wave on string

$$V = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{8}{5} \times 1000} = 40 \text{ m/s}$$

Now, wavelength of wave $\lambda = \frac{v}{n} = \frac{40}{100} \text{ m}$

Separation b/w successive nodes, $\frac{\lambda}{2} = \frac{20}{100} \text{ m}$
= 20 cm

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

27. Answer: c

Explanation:

$$\begin{aligned}
 \frac{dy}{dt} &= \sqrt{\frac{gy\rho A}{\mu}} \\
 \frac{dy}{dt} &= \int \sqrt{gy} \\
 \int \frac{dy}{\sqrt{y}} &= \sqrt{g}dt \\
 \frac{y^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \Big|_0^l &= \sqrt{gt} \Big|_0^t \\
 t = 2\sqrt{\frac{20}{10}} &= 2\sqrt{2} \text{ sec}
 \end{aligned}$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild,

and the movement of subatomic particles all exhibit wavelike properties. Inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set [frequency and wavelength](#).

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

28. Answer: d

Explanation:

Number of beats, b is

$$b = \frac{2V_o n}{V_s}$$
$$= \frac{2 \times 2 \times 800}{320} = 10$$

Concepts:

1. Waves:

[Waves](#) are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. Inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set [frequency and wavelength](#).

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave

29. Answer: b

Explanation:

$$\frac{nv}{2\ell} = 420$$

$$\frac{(n+1)v}{2\ell} = 490$$

$$\frac{v}{2\ell} = 70$$

$$\ell = \frac{v}{140} = \frac{1}{140} \sqrt{\frac{540}{6 \times 10^{-3}}} = \frac{1}{140} \sqrt{90 \times 10^3}$$

$$\ell = \frac{300}{140} = 2.142$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. Inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

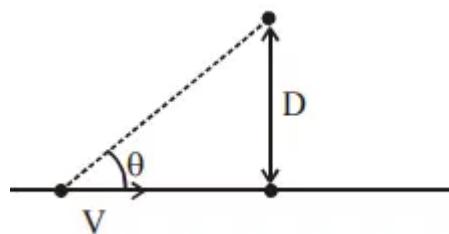
Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.


Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves

- Compression wave

30. Answer: d

Explanation:

While approaching

$$v = v_0 \left(\frac{c}{c - v \cos \theta} \right)$$

While receding

$$v = v_0 \left(\frac{c}{c + v \cos \theta} \right)$$

Concepts:

1. Waves:

Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.

Types of Waves:

Transverse Waves -

Waves in which the medium moves at right angles to the direction of the wave.

Examples of transverse waves:

- Water waves (ripples of gravity waves, not sound through water)
- Light waves
- S-wave earthquake waves
- Stringed instruments
- Torsion wave

The high point of a transverse wave is a crest. The low part is a trough.

Longitudinal Wave -

A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.

Examples of longitudinal waves:

- Sound waves
- P-type earthquake waves
- Compression wave