CHEMISTRY (PG)

(Final)

- 1. The correct order of electronegativity of hybridized orbitals is
 - (A) $sp > sp^2 > sp^3$ (C) $sp^3 > sp > sp^2$
- (B) $sp < sp^2 < sp^3$ (D) $sp^3 < sp < sp^2$

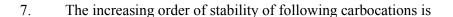
- 2. The carbocation resulting from the heterocyclic cleavage of neopentyl chloride is

- 3. Among the following, the set consisting of only electrophiles is
 - (A) CH₃ONa, CH₃⁺CO, :CCl₂
 - (B) CH₃MgI, NH₃, KOH
 - (C) Ph^+CH_2 , BF_3 , $:CCl_2$
 - (D) :CH₂, ⁻CCl₃, NaNH₂
- 4. Which of the following has the lowest dipole moment?
 - (A) CH₂=CH-C ≡CH
- (B) CH₃-CH₂-C≡CH

- (D) $CH_3-C\equiv C-CH_3$
- 5. Which C-C single bond is shortest in length among the following?
 - (A) CH₃-CN

(B) CH≡C-CN

(C) CH₂=CH-CN


- (D) CH₃-CH₃
- The electron density at C₄ of toluene is greater than the electron density at C₄ of 6. t-butylbenzene due to
 - Hyperconjugation (i)
- Inductive effect (ii)
- (iii) No-bond resonance
- (iv) Baker-Nathan effect
- (A) (i), (iii), (iv)

(B) (i), (ii), (iii)

(C) (i), (ii)

(D) (i)

(A) ii < iii < i < iv

(B) iii < ii < i < iv

(C) iv < ii < I < iii

(D) i < iii < ii < iv

8. The product of the following reaction is

+ HOCI → X

9. The compound (X) (C₅H₉Cl₃) on hydrolysis with aq. NaOH gives a product Y which on heating with sodalime gives an alkane (Z). The compound X is

$$(A) \xrightarrow{Cl} Cl$$

$$(C) \xrightarrow{Cl} Cl$$

$$(C) \xrightarrow{Cl} Cl$$

$$(D) \xrightarrow{Cl} Cl$$

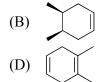
- 10. The repeated Hofmann exhaustive methylation of 3,5-dimethylpiperidine followed by the reaction with moist silver oxide and then heating to give an unsaturated hydrocarbon (X). The more stable unsaturated hydrocarbon X is
 - (A) 2,4-Dimethyl-pent-1-ene
 - (B) 4-Methyl-hex-1,3-diene
 - (C) 2,4-Dimethyl-pent-1,3-diene
 - (D) 2,4-Dimethyl-pent-1,4-diene
- 11. The ozonolysis of hydrocarbon (A) gives 2,5-hexanedione as one of the products. Hydrocarbon (A) may be

(A) I, II, III, IV

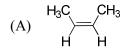
(B) I, II, III

(C) I, III, IV

(D) IV


- 12. Kolbe's electrolysis of sodium salt of adipic acid results in the formation of
 - (A) Butane

(B) Cyclohexane


(C) Hexane

- (D) Cyclobutane
- 13. 2-Butyne on reduction with Na/liq. NH₃ followed by Diels-Alder reaction with butadiene gives

14. Which of the following alkenes will react fastest with H₂ under catalytic hydrogenation?

(B)
$$H_3C$$
 H

(C)
$$H_3C$$
 CH_3


(D)
$$H_3C$$
 CH_3 CH_3

- 15. A hydrocarbon A contains 88.9% of C. It gives red ppt with ammoniacal cuprous chloride and its isomer B reacts with bromine to form 1,4-dibromo-2-butene. The compounds A and B respectively are
 - $(A) \hspace{0.2in} \not\hspace{0.2in} \hspace{0.2in} \text{and} \hspace{0.2in} \checkmark \hspace{0.2in} / \hspace{0.2in} / \hspace{0.2in}$
- $(B) \hspace{1cm} \text{and} \hspace{1cm}$
- (C) \longrightarrow and \square
- $(D) \hspace{1cm} \text{and} \hspace{1cm}$
- 16. If the organic substance contains both nitrogen and sulphur, the SE gives blood red coloration with FeCl₃. The blood red coloration is due to
 - (A) Ferric thiocyanate
- (B) Sodium thiocyanate
- (C) Ferric ferrocyanide
- (D) Sodium ferrocyanide
- 17. The IUPAC name for the following compound is

- (A) 2-Cyano-5-oxocyclopentanecarbaldehyde
- (B) 3-Cyano-2-formylcyclopentan-1-one
- (C) 2-Formyl-3-oxocyclopentanecarbonitrile
- (D) 2,3-Dioxocyclopentanecarbonitrile

18. The number of sp-hybridised carbon atoms in the molecule

- 19. The compound with a degree of unsaturation of three has five carbon atoms, one nitrogen atom and one oxygen atom in a molecule. The number of hydrogen atoms per molecule is
 - (A) 4 (C) 6 (B) 5 (D) 7
- 20. The acetal in the following is
 - $(A) \quad \bigcirc O \qquad \qquad (B) \quad \bigcirc O \qquad \qquad (C) \quad \bigcirc O \qquad \qquad (D) \quad \bigcirc O \qquad (D) \quad \bigcirc O \qquad \qquad (D) \quad \bigcirc O \quad \bigcirc O \quad (D) \quad$
- 21. Alkanediones and alkanedials have the general formula
 - $\begin{array}{cccc} (A) & C_n H_{2n} O & (B) & C_n H_{2n} O_2 \\ (C) & C_n H_{2n-2} O_2 & (D) & C_n H_{2n+2} O_2 \end{array}$
- 22. Which of the following will give a satisfactory yield of ketone on reaction with a Grignard reagent and subsequent hydrolysis?
 - (A) An aldehyde (B) Acarboxylic acid (C) An ester (D) A nitrile
- 23. The product Y in the reaction is

Ph
$$(i) Br_2 / CCl_4 \rightarrow X \xrightarrow{H^+} Y$$
 $(ii) KOH(aq) \rightarrow X \xrightarrow{H_2SO_4} Y$

- 24. Active species in Fehling's solution is
 - (A) Sodium ammonium tartarate(B) Cuprous ion(C) Sulphate ion(D) Cupric ion

- 25. Which of the following will not respond positively to the iodoform test?
 - (A) CH₃CHOHCOOH
- (B) CH₃COCOOH
- (C) ICH2COCH2CH3
- (D) (CH₃)₂CCH₂COOH OH
- 26. In the following reaction, the product B is mainly

$$\begin{array}{c}
O \\
\hline
PCI_5 \\
Heat
\end{array}
A \xrightarrow{alc. KOH} B$$

(A) CI OH

(B) HO OC_2H_5

(C)

- (D) CI
- 27. In Cannizzaro's reaction, the intermediate that will be the best hydride donor is
 - $(A) \qquad \begin{array}{c} O \\ O \\ \end{array}$
- (B) O O
- (C) O-H
- (D) O-N
- 28. Which of the following structures is enantiomeric with the molecule (a) given below?

$$C_2H_5$$
— C_3
Br (a)

(A) $H_3C - C_{-}^{H_1} C_2H_5$

(B) Br-C C_2H_4

(C) $H_3C - C$ Br C_2I

(D) $C_2H_5-C_{CH_3}$

29.	Which aldehy		following	reagents	can	be	used	to	oxidize	primary	alcohols	to
	i. ii. iii. iv.	KMnO ₄ Pyridini	anhydrous in acidic m um chloroo the presenc	nedium hromate	t 5731	K						
		i, ii, iii i, ii, iii					i, iii ii, ii					
30.	Hoffm	ann brom	namide deg	radation r	eactio	on is	showi	n by				
	(A) (C)	ArNH ₂ ArNO ₂				(B) (D)	ArC ArC					
31.	Which	of the fo	llowing am	nines can	be pre	epare	d by (Gabr	iel Syntl	hesis?		
	` /	Isobutyla N-methy	amine Ibenzylam	ine	(ii) (iv)	_	-	ethyl	amine			
	` /	(i), (ii) (iii), (i				(B) (D)	(i), (iv)		(iii)			
32.	Which	of the fo	llowing rea	actions be	long	to ele	ctrop	hilic	aromati	c substitu	tion?	
	(i) (ii) (iii) (iv)	Couplin Diazotiz	ation of ace g reaction of ation of an on of anilin	of aryldiaz iline	zoniu	m sal	lts					
	` /	(i), (ii) (iii), (i				(B) (D)	(i), (i),		(iii), (iv) (iii))		
33.	In nuclinked		s, between	which ca	ırbon	aton	ns of	pent	ose sug	ars of nu	cleotides	are
	(A) (C)					(B) (D)		nd 5 nd 3				
34.	Which	of the fo	llowing B	group vita	ımins	can	be sto	red i	in our bo	ody?		
	(A) (C)	Vitami Vitami				(B) (D)		amin amin	B_2 B_{12}			

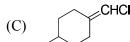
35.	Which of the following reactions of g structure?	glucose can be explained only by its cyc	elic
	 (A) Glucose forms pentacetate (B) Glucose reacts with hydroxylam (C) Pentacetate of glucose doesnot in the control of the control	react with hydroxylamine	
36.	In fibrous proteins, polypeptide chains as	re held together by	
	 (i) Van der Waals forces (ii) Disulphide linkage (iii) Electrostatic forces of attraction (iv) Hydrogen bonds 		
	(A) (i), (ii), (iii) (C) (i), (iv)	(B) (ii), (iv) (D) (i), (ii), (iii), (iv)	
37.	Which of the following are not used as for	ood preservatives?	
	(i) Table salt(ii) Sodium hydrogen carbonate(iii) Cane sugar(iv) Benzoic acid		
	(A) (i), (ii), (iii), (iv) (C) (i), (iii)	(B) (i), (ii) (D) (i), (iv)	
38.	The component of blood which functions	s for blood clotting is	
	(A) Globulins(C) Fibrinogen	(B) Albumins (D) WBC	
39.	Stephen reduction converts cyanides to		
	(A) Amines(C) Ketones	(B) Aldehydes(D) Acids	
40.	Nitrous acid has no action on		
	(A) C ₆ H ₅ CONH ₂ (C) C ₆ H ₅ N(CH ₃) ₂	(B) CH ₃ CH ₂ NO ₂ (D) CH ₃ CH ₂ COOH	
41.	The product of reaction of alcoholic silve	er nitrite with ethyl bromide is	
	(A) Ethane (C) Ethyl nitrile	(B) Nitroethane (D) Ethyl isocyanide	

- 42. Compound $C_4H_{10}O$ reacts with sodium metal to liberate hydrogen gas. It does not react with bromine in CS_2 but produces immediate cloudiness with Lucas reagent. The compound
 - (A) n-butyl alcohol

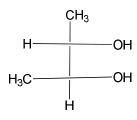
- (B) sec-butyl alcohol
- (C) iso-butyl alcohol
- (D) tert-butyl alcohol
- 43. Compound A C₄H₈Cl₂ is hydrolyzed to compound B, C₄H₈O which gives an oxime and a negative Tollen's test. The structure of A is
 - (A) CH₃CH₂CH₂CHCl₂
- (B) CH₃CH₂C(Cl₂)CH₃
- (C) CH₃CH(Cl)CH(Cl)CH₃
- (D) CH₃CH(Cl)CH₂CH₂Cl
- 44. Which of the following does not obey Huckel rule?

- 45. Glycerol on heating with excess of HI gives
 - (A) Allyl iodide

(B) 1,2,3-triodopropane


(C) Propene

- (D) Isopropyl iodide
- 46. The geometrical isomerism is shown by



(B)

47. Correct configuration of the following is

(A) 1S, 2S

(B) 1S, 2R

(C) 1R, 2S

(D) 1R, 2R

- 48. The secondry structure of a protein refers to
 - (A) α-helical backbone
 - (B) Hydrophobic interactions
 - (C) Sequence of α -amino acids
 - (D) Fixed configuration of the polypeptide backbone
- 49. The relative resonance energies of thiophene, pyrrole and furan
 - (A) Furan > Pyrrole > Thiophene
 - (B) Pyrrole > Furan > Thiophene
 - (C) Thiophene > Pyrrole > Furan
 - (D) Thiophene > Furan > Pyrrole
- 50. The major product X in the following reaction is

$$(A) \quad \begin{array}{c} \text{OCH}_3 \\ \text{NH}_2 \end{array}$$

(D) Mixture of (A) and (B)

51. KMnO₄ reacts with oxalic acid according to the equation

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

So, 20 mL of 0.1 M KMnO₄ requires

- (A) 20 mL of 0.1 M oxalic acid
- (B) 50 mL of 0.1 M oxalic acid
- (C) 20 mL of 0.5 M oxalic acid
- (D) 50 mL of 0.5 M oxalic acid
- 52. 2.5 g of an iron compound upon suitable treatment gave 0.358 g of ferric oxide. The percentage of iron in the compound is (Atomic masses: Fe = 55.85; O = 16)
 - (A) 10.01

(B) 20.02

(C) 15.01

- (D) 2.5
- 53. The amount (in grams) of potassium dichromate (MW = 294) present in 200 mL of 0.25M aqueous solution is
 - (A) 147

(B) 14.7

(C) 1.47

(D) 0.147

54.	. Ilmenite, cassiterite and hematite are, respectively, the ores of			
	(A) (C)	iron, tin and titanium titanium, iron and tin	` /	tin, titanium and iron titanium, tin and iron
55.	_	es bright red precipitate with et		where M is first row transition metal) ic solution of dimethylglyoxime. The
		FeCl ₂ NiCl ₂		CoCl ₂ CuCl ₂
56.		solution mixture of Zn ²⁺ , Cd ²⁺ precipitate	, Mn ²	⁺ and Hg ²⁺ ions, H ₂ S in acidic medium
	(A) (C)	Hg^{2+} and Cd^{2+} Zn^{2+} and Cd^{2+}	(B) (D)	Mn ²⁺ and Cd ²⁺ Zn ²⁺ and Mn ²⁺
57.	Solution intense	n of X produces intense red colo	our wi	f, give colourless solutions in water. th Fe ³⁺ ions, while solution of Y gives n mixture. The pseudohalides X and Y
	\ /	CN ⁻ and SCN ⁻ N ₃ ⁻ and CN ⁻		N ₃ and SCN SCN and CN
58.	The mo	elecular shapes of CF ₄ and SF ₄ are	e, resp	ectively
	(A) (B) (C) (D)	tetrahedral and tetrahedral tetrahedral and square planar square planar and square planar tetrahedral and see-saw		
59.	The nui	mber of 90° and 180° F-P-F bonds	s in PF	F ₅ are respectively
	(A) (C)	6 and 1 3 and 1	(B) (D)	6 and 2 1 and 1
60.	Identify	the pair which has the identical	numbe	er of lone pairs
		XeF ₄ , ClF ₃ XeO ₄ , ICl ₄ ⁻	(B) (D)	XeF ₄ , XeO ₂ F ₂ XeO ₄ , ClF ₃
61.	Among d-orbita) ions	, the species which have partially filled
	(A) (C)	Cr(III), Zn(II) Cr(III), Cu(II)	(B) (D)	Ti(IV), Zn(II) Ti(IV), Cu(II)

62.	Separation of lanthanide ions, Lu ³⁺ , Yb ³⁺ , Dy ³⁺ and Eu ³⁺ can be effected by using a
	cation exchange resin using an appropriate eluent. The order in which the ions will be
	separated is

(A)
$$Lu^{3+}$$
, Yb^{3+} , Dy^{3+} , Eu^{3+}

63. The pair of lanthanides having the highest third ionization energy is

64. The order of Lewis acidity of boron halides is

(A)
$$BF_3 < BCl_3 < BBr_3$$

(B)
$$BCl_3 < BF_3 < BBr_3$$

(C)
$$BBr_3 < BCl_3 < BF_3$$

(D)
$$BF_3 < BBr_3 < BCl_3$$

65. The reaction of BCl₃ with NH₄Cl at 140°C followed by treatment with NaBH₄ gives

(A)
$$Cl_3B_3N_3H_3$$

(B)
$$B_3N_3H_6$$

(C)
$$B_3N_3H_3$$

(D)
$$B_3N_3H_{12}$$

66. In the following reactions

(i)
$$Cl^- + nH_2O \rightarrow [Cl(H_2O)_n]^-$$

(i)
$$Cl^- + nH_2O \rightarrow [Cl(H_2O)_n]^-$$

(ii) $Fe^{2^+} + 6 H_2O \rightarrow [Fe(H_2O)_6]^{2^+}$

Water behaves as

- (A) an acid in both (i) and (ii)
- (B) a base in both (i) and (ii)
- (C) an acid in (i) and a base in (ii)
- (D) a base in (i) and an acid in (ii)

67. Ozone in the upper atmosphere protects life on earth

- (A) due to its diamagnetic nature
- (B) due to its blue colour
- (C) due to absorption of radiation of $\lambda = 255 \text{ nm}$
- (D) by destroying chlorofluorocarbons

68. Identify the statement which is not true for diborane

- (A) It contains two bridging-and four terminal hydrogens
- (B) All the B-H bonds are of equal length
- (C) The bridging and terminal hydrogens are in mutually perpendicular plane
- (D) Diborane is very air sensitive

69.	Metal-metal quadruple bonds are known to exist in					
		$Fe_3(CO)_{12}$ $K_2Re_2Cl_8$		Co ₂ (CO) ₈ Cu ₂ (CH ₃ COO) ₄		
70.	The rea	ctions of water with CaC2 and Al4	C ₃ yi	eld		
	(B) (C)	methane in both ethyne in both methane in the first and ethyne in ethyne in the first and methane in				
71.	Among pair" ef		e one	which is unlikely to exist due to "inert		
	` /	PCl ₅ SbCl ₅	(B) (D)	AsCl ₅ BiCl ₅		
72.	The firs	st ionization energy increases in th	e seq	uence		
		Be < B < C < N Be > B > C < N		Be > B < C < N Be > B > C > N		
73.		double bond is formed between other is a pi-bond. The pi-bond is		toms, one of the bonds is a sigma bond ted by the overlap of		
		sp ³ hybrid orbitals sp hybrid orbitals		sp ² hybrid orbitals p-orbitals		
74.		the pairs of elements (i) Sc, Y, aving almost the same covalent rac		r, Hf (iii) La, Lu and (iv) Mo, W, the		
	(A) (C)	(i), (ii) and (iii) (ii) and (iii)	(B) (D)	(i), (ii) and (iv) (ii), and (iv)		
75.	three di	O stretching frequencies were obtained oxygen species $-O_2$, O_2^- and $O_2^{2^-}$ correlation between them is	oserve , but	ed at 810, 1100 and 1580 cm ⁻¹ for the not necessarily in the same order. The		
	(A) (C)	O_2 , 810; O_2^- , 1100; O_2^{2-} , 1580 O_2 , 1580; O_2^- , 1100; O_2^{2-} , 810	(B) (D)	O_2 , 1100; O_2^- , 810; O_2^{2-} , 1580 O_2 , 810; O_2^- , 1580; O_2^{2-} , 1100		
76.	The ma	gnetic properties of O_2 and O_2^{2-} as	re, res	pectively		
	(C)	paramagnetic and paramagnetic diamagnetic and diamagnetic diamagnetic and paramagnetic paramagnetic and diamagnetic				

77.	The type of interaction that holds layers of graphite together is					
	(A) covalent bond(C) hydrogen bond	•	yan der Waals forcesionic bonding			
78.	ammonia	ng characteristics of (ii) reducing in nature	the blue solution of sodium (iii) conducts electricity	•		
	Which of them are tru	e?				
	(A) (i), (ii) and (ii) (C) (i) and (iii)	(B) (B) (D)	3) (i) and (ii) D) (ii) and (iii)			
79.	For tetrahedral completis	exes which always exh	nibit high spin states, the maxim	um CFSE		
	(A) -8Dq (C) -16Dq	(B (D	3) -12 Dq 0) -6 Dq			
80.	In general, the magn temperature as	netic susceptibilities of	of paramagnetic complexes va	aries with		
	(A) T ² (C) T ⁻²	(B (D	3) T D) T ⁻¹			
81.	The structures of the respectively	e complexes, [Cu(NF	$[H_3]_4](ClO_4)_2$ and $[Cu(NH_3)_4](ClO_4)_4$	ClO ₄) are,		
	(B) square planar(C) octahedral ar	and tetrahedral and square planar ad square pyramidal d trigonal bipyramidal				
82.	The d-electron configu	uration of $[Fe(CN)_6]^{3-}$ i	ion and its magnetic moment in	B.M. are		
	(A) d^{5} and $\sqrt{5(5+1)}$ (C) d^{5} and $\sqrt{5(5+1)}$		3) d^5 and $\sqrt{1(1+2)}$ 3) d^5 and $\sqrt{1(1+1)}$			
83.	Among $V(CO)_6$, Crule are	$(CO)_6$, $Fe(CO)_5$ and N	Vi(CO) ₄ , the compounds which o	bey EAN		
			(B) V(CO) ₆ , Fe(CO) ₅ and N(D) only V(CO) ₆ and Cr(CO)			
84.	In the compounds, Me coordination number of		CO) ₄ , the formal oxidation numb	er and the		
	(A) +1, 5 and +1, (C) +1, 5 and -1,	,	3) +1, 4 and +1, 4 0) -1, 5 and +1, 4			

85.	The tru	e statement about [Cu(NH ₃) ₆] ²⁺ io	n is				
		all the Cu-N distances are equal all the Cu-N distances are unequal the equatorial bonds are longer than the axial bonds the equatorial bonds are shorter than the axial bonds					
86.		ahedral crystal field splitting (Δο creases in the order) of <i>d</i>	orbital energies of the following metal			
	(A) (C)	$Co^{2+} > Co^{3+} > Rh^{3+}$ $Rh^{3+} > Co^{2+} > Co^{3+}$	(B) (D)	$Rh^{3+} > Co^{3+} > Co^{2+}$ $Co^{3+} > Co^{2+} > Rh^{3+}$			
87.	Ignorin	g the pairing energy, the CFSE of	an oc	tahedral high spin Co ²⁺ complex is			
		-20Dq +8Dq		+20Dq -8Dq			
88.	octahed $P = 176$	ral energy complexes of Fe ²⁺ are	: Δ _o =	airing energy, P values (in cm ⁻¹) of 10400 for 6 H ₂ O and 33000 for 6 CN ⁻ ;			
	(B) (C)	both high spin both low spin high spin aqua complex and low low spin aqua complex and high	-	*			
89.	Ni ²⁺ (aq The ecethylen)+ 3 en(aq) \Box [Ni(en) ₃] ²⁺ (aq))+ 6 NH ₃ (aq) \Box [Ni(NH ₃) ₆] ²⁺ (acquilibrium constant for the forediamine) is about 10 ¹⁰ times by explanation for this large different	rmati igher	on of $[Ni(en)_3]^{2+}(aq)$ (where en = than that for $[Ni(NH_3)_6]^{2+}(aq)$. The			
	(A) (C)	Jahn-Teller effect Chelate effect		Macrocyclic effect Crystal field effect			
90.	Among	CN ⁻ , Cl ⁻ , CO and CH ₃ ⁻ , the ligan	ıd witl	n only sigma bonding character is			
	\ /	CN ⁻ CO	` /	Cl ⁻ CH ₃ ⁻			
91.		er the complexes, [Co(NH ₃) ₅ NO ₂ sm exhibited by the complexes is]Cl ₂ a	and [Co(NH ₃) ₅ (ONO)]Cl ₂ . The type of			
	(A) (C)	coordination isomerism linkage isomerism	` /	ionization isomerism optical isomerism			

92.

92.	An Au-Cu alloys crystallizes in a cubic lattice with gold atoms occupying the corners of the cube and the copper atoms at the centers of the cubic faces. The empirical formula of the alloy is			
		Au ₈ Cu ₆ Au ₂ Cu ₃	(B) (D)	
93.	The latt	ice energies of potassium halides	follov	v the order
	\ /	KF < KCl < KBr < KI $KF < KBr < KCl < KI$	\ /	KI < KCl < KF < KBr KI < KBr < KCl < KF
94.		heory predicts magnesium to be tor. This is due to	an i	nsulator, but in practice it is a good
	(B) (C)	presence of filled 3s orbital overlap of filled 2p and filled 3s overlap of filled 3s and empty 3 presence of unfilled 3p orbital		
95.	The ele	ctrical conductivity of a metal		
	(B)	increases with increasing temper decreases with increasing temper is independent of temperature shows oscillatory behaviour with	rature	perature
96.	In 'carb	on-dating' applications of radioise	otope	s, ¹⁴ C emits
		α particle γ radiation	(B) (D)	β particle positrons
97.		rticle followed by an α-particle en in the daughter nucleus is	missio	on from $^{214}_{83}Bi$, the number of neutrons
	(A) (C)	130 127	(B) (D)	128 129
98.	The cor	rect set of biologically essential el	lemen	ts is
	(A) (C)	Fe, Cu, Zn, Ag Cu, Mn, Co, Pt	(B) (D)	
99.	The enzin it are	•	taboli	c carbon dioxide and the metal present
	(A) (C)	cytochrome c, Fe carboxypeptidase, Zn	(B) (D)	hemocyanin, Cu carbonic anhydrase, Zn

100.					d exist in two different stable oxidation und in the redox enzyme systems?
		Ca, Zn Al, Ga			Na, Mg Cu, Fe
101.	The total	al number of fundame	ental movements	fo	or a molecule consisting of n atoms
	(A) (C)	3n + 6 3n			3n - 5 $3n + 5$
102.	$C_2^2 = C_2$?			
	(A) (C)				$C_2 \\ \sigma_v \sigma_v$ '
103.	Princip	al axis means			
	(B) (C)	X axis Z axis The rotational axis v Y axis	with the highest o	ord	ler
104.	The ord	ler of the point group	C ₂ is		
	(A) (C)		(B) (D)	_	
105.	Choose	the molecule not belo	onging to point g	gro	up $C_{\infty v}$
	(A) (C)	HCI HCN	(B) (D)	_	OCS CO ₂
106.	Match t	the following			
	Mol	<u>ecule</u>	Point group		

(I) CH ₃ Cl	(i) $D_{\infty h}$
(II) H ₂ O	(ii) $C_{\infty v}$
(III) H ₂	(iii) C_{2V}
(IV) HCl	(iv) C_{3V}
(A) (I) – (iv), (II) – (iii),	(III) – (i), (IV) – (iv)
(B) (I) – (iii), (II) – (ii), (C) (I) – (iv), (II) – (iii), (II) – (iiii), (II) – (iii), (II) – (iiii), (II) – (iiii), (II) –	(III) – (ii), (IV) – (i)

107. Match the following

(A) m² (C) mol⁻¹

	;	Region	<u>λ(nm)</u>		
	(III)	Visible	(i) 10 ¹¹ (ii) 1,000 – 1 (iii) 400 – 700 (iv) 200 – 35)	00
	(B) (C)	(I) – (ii), (II) – (I), (I (I) – (iv), (II) – (iii), (I) – (i), (II) – (iv), (I (I) – (iii), (II) – (ii),	(III) – (ii), (IV III) – (ii), (IV)) – (i	(i) ii)
108.	Unit of	reaction rate constant	t, k for a zero o	rder	reaction
	(A) (C)	$\begin{array}{c} dm^3 \ mol \ s^{-1} \\ dm^3 \ mol^{-1} \end{array}$	(I) (I)	B) D)	s^{-1} dm^{-3} .mol s^{-1}
109.	A harm	onic oscillator obeys			
	\ /	Hooke's law Dalton's law			Boyle's law First law of thermodynamics
110.	If any t	wo rows or columns a	are the same, th	e va	alue of the determinant is
	(A) (C)	One Two	,	B) D)	Zero Half
111.	CH ₄ be	longs to the point grou	up		
	(A) (C)		,	_	$\begin{array}{c} D_{2d} \\ C_{2h} \end{array}$
112.	The nur		rotational and	vib	rational degrees of freedom of HCl are
		3, 3, 3 3, 2, 1			3, 2, 4 1, 1, 1
113.	The sel	ection rule in the rigid	l-rotator approx	xima	ation is
		$\Delta J = \pm 1$ $\Delta J = 0$		B) D)	$\Delta J = + 2$ $\Delta J = \pm 2$
114	In the F	Reer – Lambert law	$4 - ln \frac{lo}{l} - Kc$	l T	he units of K are

(B) m².mol⁻¹ (D) Dimensionless

115.	Triple	: 4	- C	
117	I rinie	naint	α	Water
110.	TIPIC	pomit	$\mathbf{v}_{\mathbf{I}}$	water

(A) 273.16 K

(B) 760 K

(C) 0 K

(D) 100 K

116. Spherical top molecule

 $(A) \quad I_A = I_B = I_C$

(B) $I_A \neq I_B \neq I$

(C) $I_B = I_C \neq I_A$

(D) $I_B \neq I_A = I_C$

117. Which is used as a catalyst for the hydrogenation of oils?

(A) Ni

(B) ZnO

(C) C

(D) H_2SO_4

118. Choose the polar molecule(s)

- (I) OCS
- (II) H₂O
- (III) CO₂
- (IV) N₂

(A) (I) and (II)

(B) (III) and (IV)

(C) (III) only

(D) (IV) only

119. Choose the molecule not having center of inversion

(A) CO_2

- (B) Benzene
- (C) Regular octahedron
- (D) H_2O

120. de Broglie relation is

(A) $p = \frac{h}{\lambda}$

(B) $p = \frac{h}{2\pi}$

(C) $p = h\lambda$

(D) $p = \frac{\lambda}{h}$

were p is the linear momentum

121. Match the following

Quantum number

Function

- (I) Principal
- (i) Governs the axial angular momentum of the electron
- (II) Orbital
- (ii) Governs the direction of an orbital
- (III Magnetic
- (iii) Governs the shape of an orbital
- (IV) Spin
- (iv) Governs the energy of the orbital

(A)
$$(I) - (iv), (II) - (iii), (III) - (ii), (IV) - (i)$$

(B)
$$(I) - (iv), (II) - (i), (III) - (ii), (IV) - (iii)$$

- (C) (I) (ii), (II) (iii), (III) (iv), (IV) (i)
- (D) (I) (iii), (II) (i), (III) (iv), (IV) (ii)

122. Match the following

Characteristic Properties

Instrumental Method

- (I) Electrical resistance
- (II) Electrical charge
- (III) Rate of the reaction
- (IV) Radioactivity

- (i) Isotope dilution method
- (ii) Kinetic method
- (iii) Coulometery
- (iv) Conductometry
- (A) (I) (iv), (II) (iii), (III) (ii), (IV) (i)
- (B) (I) (iii), (II) (i), (III) (iv), (IV) (ii)
- (C) (I) (ii), (II) (iii), (III) (iv), (IV) (i)
- (D) (I) (iv), (II) (ii), (III) (i), (IV) (iii)
- 123. Molar absorptivity is defined as
 - (A) $\frac{A}{bc}$

(B) Abc

(C) $\frac{1}{T}$

(D)

where A is absorbance, T is transmittance, b is path length and c is concentration

- 124. If the absorbance is 0.0510, then the percent transmittance is equal to
 - (A) 51 %

(B) 11.1 %

(C) 88.9 %

- (D) 9.45 %
- C = O Stretching frequency region is 125.
 - (A) $1640 1780 \text{ cm}^{-1}$
- (B) $2850 2960 \text{ cm}^{-1}$
- (C) $1350 1420 \text{ cm}^{-1}$
- (D) $3590 3650 \text{ cm}^{-1}$
- 126. For a spontaneous reaction, ΔG must be
 - (A) Negative

(B) Positive

(C) Zero

- (D) Infinity
- Choose the isotopes suitable for Mossbauer work (I) 57 F (II) 119 Sn (III) 129 I 127.

- (IV) 99Ru

(A) I and II only

(B) All the four

(C) None

- (D) IV only
- 128. For an adiabatic change ΔS_{sur} is equal to
 - (A) 0

(B) <1

(C) ∞

(D) >1

129.	. Ice has a residual entropy of $\dots JK^{-1} \text{ mol}^{-1}$				
	(A) (C)		(B) (D)		
130.	Number of vibrational degrees of freedom for a methane molecule				
	(A) (C)		(B) (D)		
131.	What is the zero-point energy of simple harmonic oscillator?				
	(A)	$\frac{1}{2} \omega_{\rm osc}$	(B)	$\omega_{ m osc}$	
	(C)	$\frac{3}{2} \omega_{\rm osc}$	(D)	Zero	
132.	Number of infrared active normal modes of CO ₂				
	(A) (C)	2 1	(B) (D)	3 None of the above	
133.	Choose the molecule(s) showing rotational Raman spectrum				
	(I) CH	$_{4}$ (II) SF_{6}	(III) $CH_3 - CH_3$	(IV) HCl	
		(III) and (IV) (I) only	, ,	(I) and (II) (II) only	
134.		orhombic cell has the of the (123) plane is	•	0.82 nm, b = 0.94 nm, c = 0.75 nm. The	
		2.1 nm 0.11 nm		0.21 nm 0.44 nm	
135.	Which of the following is known as dry ice?				
	(A) (C)	Solid CO ₂ NH ₃	(B) (D)		
136.	The root- mean- square velocity (RMS) is given as				
	(A) (C)	$\frac{3kT}{\left\{\frac{3kT}{m}\right\}^{1/2}}$	(B) (D)	3kTm m 3kT	

137 region is the spectral region of rotation of polyate				tion of polyatomic molecules.
	(A) (C)	Visible Microwave	(B) (D)	UV IR
138. If number of protons and number of neutrons are even, then the nuclear number, I is equal to				are even, then the nuclear spin quantum
	(A) (C)		(B) (D)	
139.	Bucky b	pall is		
	(A) (C)	Pb 13C	(B) (D)	C ₆₀ CH ₄
140.	First or	ne to use the term nanotechnology	•	
	` /	Sumio Nario Taniguchi	(B) (D)	Pauling Qurie
141.	Number of significant figures in 0.0025			
	(A) (C)	2 4	(B) (D)	
142.		ergy of a particle in a cubical racy associated with the level is	box o	of length 'a' is given as $\frac{14h^2}{8ma^2}$. The
	(A) (C)		(B) (D)	
143.	The nur	mber of radial nodes for 4f atomic	orbita	al is
	(A) (C)	0 2	(B) (D)	1 3
144.	Which o	of the following properties does n	ot dep	end on zeta potential?
	(A) (C)	Electro osmosis Sedimentation	(B) (D)	Electro phoresis Donnan membrane equilibrium
145.	Which o	of the following isotherms deals v	vith m	ultilayer adsorption?
	(A) (C)	Gibbs BET	(B) (D)	Langmuir Freundlich

146.	Unimolecular surface catalysed gas phase reactions follow						
	(A) (B) (C) (D)	first order kinetics at all pressures first order kinetics at low pressures and zero order kinetics at high pressures zero order kinetics at all pressures zero order kinetics at low pressures and first order kinetics at high pressures					
147.	The absorbance of a solution is 1.0 at 540 nm. What percentage of radiation absorbed by the solution?						
	(A)	10 (B) 50					
	(C)	90 (D) 100					
	(C)	90 (D) 100					
148.	An aqueous solution of CuSO ₄ is electrolysed between 2 Pt electrodes. The reaction at anode is						
	(A)	oxidation of Cu (B) oxidation of H ₂ O					
	(C)	oxidation of sulphate ion (D) oxidation of H_2					
	(C)	Oxidation of sulphate ion (D) Oxidation of 112					
149.	In Raman spectroscopy the radiation that is analysed is						
	(A)	scattered (B) reflected					
	(C)	transmitted (D) incident					
	(C)	transmitted (D) meident					
150.	Which of the following statements is not true?						
	(A)	Specific conductance increases with concentration of a strong electrolyte					
	(B)	Equivalent conductance increases with concentration of a strong					
	(D)	electrolyte					
	(C)						
	(C)	Equivalent conductance decreases with concentration of a strong					
	(D)	electrolyte					
	(D)	Equivalent conductance depends on ionic mobility					
