

NTA JEE Mains Jan 2026

Application No	
Candidate Name	
Roll No.	
Test Date	21/01/2026
Test Time	9:00 AM - 12:00 PM
Subject	B. Tech

Section : Mathematics Section A

Q.1 If the coefficient of x in the expansion of $(ax^2 + bx + c)(1 - 2x)^{26}$ is -56 and the coefficients of x^2 and x^3 are both zero, then $a + b + c$ is equal to :

Options

1. 1300
2. 1500
3. 1403
4. 1483

Question Type : MCQ
 Question ID : 8606541132
 Option 1 ID : 8606543850
 Option 2 ID : 8606543853
 Option 3 ID : 8606543851
 Option 4 ID : 8606543852
 Status : Not Answered
 Chosen Option : --

Q.2 If $x^2 + x + 1 = 0$, then the value of $\left(x + \frac{1}{x}\right)^4 + \left(x^2 + \frac{1}{x^2}\right)^4 + \left(x^3 + \frac{1}{x^3}\right)^4 + \dots + \left(x^{25} + \frac{1}{x^{25}}\right)^4$ is :

Options

1. 128
2. 175
3. 145
4. 162

Question Type : MCQ
 Question ID : 8606541129
 Option 1 ID : 8606543838
 Option 2 ID : 8606543841
 Option 3 ID : 8606543839
 Option 4 ID : 8606543840
 Status : Answered
 Chosen Option : 3

Q.3 Let $f: \mathbb{R} \rightarrow (0, \infty)$ be a twice differentiable function such that $f(3) = 18$, $f'(3) = 0$ and $f''(3) = 4$. Then

$$\lim_{x \rightarrow 1} \left(\log_e \left(\frac{f(2+x)}{f(3)} \right)^{\frac{18}{(x-1)^2}} \right)$$
 is equal to :

Options

1. 2
2. 1
3. 18
4. 9

Question Type : MCQ
Question ID : 8606541145
Option 1 ID : 8606543903
Option 2 ID : 8606543902
Option 3 ID : 8606543905
Option 4 ID : 8606543904
Status : Answered
Chosen Option : 1

Q.4 Let O be the vertex of the parabola $x^2 = 4y$ and Q be any point on it. Let the locus of the point P, which divides the line segment OQ internally in the ratio 2 : 3 be the conic C. Then the equation of the chord of C, which is bisected at the point (1, 2), is :

Options

1. $5x - 4y + 3 = 0$
2. $x - 2y + 3 = 0$
3. $5x - y - 3 = 0$
4. $4x - 5y + 6 = 0$

Question Type : MCQ
Question ID : 8606541137
Option 1 ID : 8606543872
Option 2 ID : 8606543873
Option 3 ID : 8606543871
Option 4 ID : 8606543870
Status : Not Answered
Chosen Option : --

Q.5

The value of $\int_{-\pi/6}^{\pi/6} \left(\frac{\pi + 4x^{11}}{1 - \sin(|x| + \pi/6)} \right) dx$ is equal to :

Options

1. 8π
2. 2π
3. 6π
4. 4π

Question Type : MCQ
Question ID : 8606541142
Option 1 ID : 8606543893
Option 2 ID : 8606543890
Option 3 ID : 8606543892
Option 4 ID : 8606543891
Status : Not Answered
Chosen Option : --

Q.6 The number of relations, defined on the set {a, b, c, d}, which are both reflexive and symmetric, is equal to :

Options

1. 1024
2. 64
3. 16
4. 256

Question Type : MCQ
Question ID : 8606541126
Option 1 ID : 8606543829
Option 2 ID : 8606543827
Option 3 ID : 8606543826
Option 4 ID : 8606543828
Status : Answered
Chosen Option : 2

Q.7

Let a_1, a_2, a_3, \dots be a G.P. of increasing positive terms such that $a_2 \cdot a_3 \cdot a_4 = 64$ and $a_1 + a_3 + a_5 = \frac{813}{7}$.

Then $a_3 + a_5 + a_7$ is equal to :

Options

1. 3256
2. 3248
3. 3244
4. 3252

Question Type : **MCQ**

Question ID : **8606541130**

Option 1 ID : **8606543845**

Option 2 ID : **8606543843**

Option 3 ID : **8606543842**

Option 4 ID : **8606543844**

Status : **Not Answered**

Chosen Option : --

Q.8

The number of strictly increasing functions f from the set $\{1, 2, 3, 4, 5, 6\}$ to the set $\{1, 2, 3, \dots, 9\}$ such that $f(i) \neq i$ for $1 \leq i \leq 6$, is equal to :

Options

1. 22
2. 27
3. 21
4. 28

Question Type : **MCQ**

Question ID : **8606541131**

Option 1 ID : **8606543847**

Option 2 ID : **8606543848**

Option 3 ID : **8606543846**

Option 4 ID : **8606543849**

Status : **Not Answered**

Chosen Option : --

Q.9 Let $\vec{a} = -\hat{i} + 2\hat{j} + 2\hat{k}$, $\vec{b} = 8\hat{i} + 7\hat{j} - 3\hat{k}$ and \vec{c} be a vector such that $\vec{a} \times \vec{c} = \vec{b}$.

If $\vec{c} \cdot (\hat{i} + \hat{j} + \hat{k}) = 4$, then $|\vec{a} + \vec{c}|^2$ is equal to :

Options

1. 33
2. 35
3. 27
4. 30

Question Type : MCQ
Question ID : 8606541141
Option 1 ID : 8606543888
Option 2 ID : 8606543889
Option 3 ID : 8606543886
Option 4 ID : 8606543887
Status : Answered
Chosen Option : 3

Q.10 Let PQ and MN be two straight lines touching the circle $x^2 + y^2 - 4x - 6y - 3 = 0$ at the points A and B respectively. Let O be the centre of the circle and $\angle AOB = \frac{\pi}{3}$. Then the locus of the point of intersection of the lines PQ and MN is :

Options

1. $x^2 + y^2 - 18x - 12y - 25 = 0$
2. $3(x^2 + y^2) - 18x - 12y + 25 = 0$
3. $3(x^2 + y^2) - 12x - 18y - 25 = 0$
4. $x^2 + y^2 - 12x - 18y - 25 = 0$

Question Type : MCQ
Question ID : 8606541136
Option 1 ID : 8606543869
Option 2 ID : 8606543868
Option 3 ID : 8606543867
Option 4 ID : 8606543866
Status : Not Answered
Chosen Option : --

Q.11 The area of the region, inside the ellipse $x^2 + 4y^2 = 4$ and outside the region bounded by the curves $y = |x| - 1$ and $y = 1 - |x|$, is :

Options

1. $2\pi - 1$
2. $3(\pi - 1)$
3. $2(\pi - 1)$
4. $2\pi - \frac{1}{2}$

Question Type : MCQ
Question ID : 8606541143
Option 1 ID : 8606543894
Option 2 ID : 8606543897
Option 3 ID : 8606543895
Option 4 ID : 8606543896
Status : Answered
Chosen Option : 3

Q.12

Let the foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$. If the eccentricity of the hyperbola is 5, then the length of its latus rectum is :

Options

1. $24\sqrt{5}$
2. 12
3. 16
4. $\frac{96}{\sqrt{5}}$

Question Type : MCQ
Question ID : 8606541134
Option 1 ID : 8606543860
Option 2 ID : 8606543858
Option 3 ID : 8606543859
Option 4 ID : 8606543861
Status : Answered
Chosen Option : 4

Q.13 The sum of all the roots of the equation $(x-1)^2 - 5|x-1| + 6 = 0$, is :

Options

1. 5
2. 3
3. 4
4. 1

Question Type : MCQ
Question ID : 8606541128
Option 1 ID : 8606543836
Option 2 ID : 8606543835
Option 3 ID : 8606543834
Option 4 ID : 8606543837
Status : Answered
Chosen Option : 3

Q.14 Let (α, β, γ) be the co-ordinates of the foot of the perpendicular drawn from the point $(5, 4, 2)$ on the line $\vec{r} = (-\hat{i} + 3\hat{j} + \hat{k}) + \lambda(2\hat{i} + 3\hat{j} - \hat{k})$.

Then the length of the projection of the vector $\hat{\alpha}\hat{i} + \hat{\beta}\hat{j} + \hat{\gamma}\hat{k}$ on the vector $6\hat{i} + 2\hat{j} + 3\hat{k}$ is :

Options

1. 3
2. $\frac{15}{7}$
3. $\frac{18}{7}$
4. 4

Question Type : MCQ
Question ID : 8606541139
Option 1 ID : 8606543879
Option 2 ID : 8606543881
Option 3 ID : 8606543880
Option 4 ID : 8606543878
Status : Answered
Chosen Option : 3

Q.15 Let a point A lie between the parallel lines L_1 and L_2 such that its distances from L_1 and L_2 are 6 and 3 units, respectively. Then the area (in sq. units) of the equilateral triangle ABC, where the points B and C lie on the lines L_1 and L_2 , respectively, is :

Options

1. $21\sqrt{3}$
2. $15\sqrt{6}$
3. 27
4. $12\sqrt{2}$

Question Type : MCQ
Question ID : 8606541135
Option 1 ID : 8606543864
Option 2 ID : 8606543863
Option 3 ID : 8606543865
Option 4 ID : 8606543862
Status : Not Answered
Chosen Option : --

Q.16 The value of $\text{cosec}10^\circ - \sqrt{3} \sec 10^\circ$ is equal to :

Options

1. 8
2. 2
3. 6
4. 4

Question Type : MCQ
Question ID : 8606541138
Option 1 ID : 8606543877
Option 2 ID : 8606543874
Option 3 ID : 8606543876
Option 4 ID : 8606543875
Status : Answered
Chosen Option : 4

Q.17

If the domain of the function $f(x) = \cos^{-1}\left(\frac{2x-5}{11-3x}\right) + \sin^{-1}(2x^2 - 3x + 1)$ is the interval $[\alpha, \beta]$, then $\alpha + 2\beta$ is equal to :

Options

1. 3
2. 5
3. 1
4. 2

Question Type : MCQ
 Question ID : 8606541127
 Option 1 ID : 8606543832
 Option 2 ID : 8606543833
 Option 3 ID : 8606543830
 Option 4 ID : 8606543831
 Status : Not Answered
 Chosen Option : --

Q.18 Let $y = y(x)$ be the solution curve of the differential equation $(1 + x^2)dy + (y - \tan^{-1}x)dx = 0$, $y(0) = 1$. Then the value of $y(1)$ is :

Options

1. $\frac{4}{e^{\pi/4}} - \frac{\pi}{2} - 1$
2. $\frac{2}{e^{\pi/4}} + \frac{\pi}{4} - 1$
3. $\frac{2}{e^{\pi/4}} - \frac{\pi}{4} - 1$
4. $\frac{4}{e^{\pi/4}} + \frac{\pi}{2} - 1$

Question Type : MCQ
 Question ID : 8606541144
 Option 1 ID : 8606543900
 Option 2 ID : 8606543899
 Option 3 ID : 8606543898
 Option 4 ID : 8606543901
 Status : Answered
 Chosen Option : 2

Q.19

Let \vec{c} and \vec{d} be vectors such that $|\vec{c} + \vec{d}| = \sqrt{29}$ and $\vec{c} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{d}$. If λ_1, λ_2 ($\lambda_1 > \lambda_2$) are the possible values of $(\vec{c} + \vec{d}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$, then the equation $K^2x^2 + (K^2 - 5K + \lambda_1)xy + \left(3K + \frac{\lambda_2}{2}\right)y^2 - 8x + 12y + \lambda_2 = 0$ represents a circle, for K equal to :

Options

1. 2
2. -1
3. 1
4. 4

Question Type : MCQ
 Question ID : 8606541140
 Option 1 ID : 8606543884
 Option 2 ID : 8606543882
 Option 3 ID : 8606543883
 Option 4 ID : 8606543885
 Status : Answered
 Chosen Option : 3

Q.20

Let the mean and variance of 7 observations $2, 4, 10, x, 12, 14, y$, $x > y$, be 8 and 16 respectively. Two numbers are chosen from $\{1, 2, 3, x-4, y, 5\}$ one after another without replacement, then the probability, that the smaller number among the two chosen numbers is less than 4, is :

Options

1. $\frac{4}{5}$
2. $\frac{3}{5}$
3. $\frac{2}{5}$
4. $\frac{1}{3}$

Question Type : MCQ
 Question ID : 8606541133
 Option 1 ID : 8606543854
 Option 2 ID : 8606543855
 Option 3 ID : 8606543856
 Option 4 ID : 8606543857
 Status : Answered
 Chosen Option : 1

Section : Mathematics Section B

Q.21

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a twice differentiable function such that the quadratic equation $f(x)m^2 - 2f'(x)m + f''(x) = 0$ in m , has two equal roots for every $x \in \mathbf{R}$. If $f(0) = 1$, $f'(0) = 2$, and (α, β) is the largest interval in which the function $f(\log_e x - x)$ is increasing, then $\alpha + \beta$ is equal to _____.

Given --

Answer :

Question Type : **SA**
Question ID : **8606541149**
Status : **Not Answered**

Q.22

Let $S = \{(m, n) : m, n \in \{1, 2, 3, \dots, 50\}\}$. If the number of elements (m, n) in S such that $6^m + 9^n$ is a multiple of 5 is p and the number of elements (m, n) in S such that $m + n$ is a square of a prime number is q , then $p + q$ is equal to _____.

Given --

Answer :

Question Type : **SA**
Question ID : **8606541148**
Status : **Not Answered**

Q.23

For some $\alpha, \beta \in \mathbf{R}$, let $A = \begin{bmatrix} \alpha & 2 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 1 & \beta \end{bmatrix}$ be such that $A^2 - 4A + 2I = B^2 - 3B + I = O$. Then $(\det(\text{adj}(A^3 - B^3)))^2$ is equal to _____.

Given **50625**

Answer :

Question Type : **SA**
Question ID : **8606541146**
Status : **Answered**

Q.24

Let $a_1 = 1$ and for $n \geq 1$, $a_{n+1} = \frac{1}{2}a_n + \frac{n^2 - 2n - 1}{n^2(n+1)^2}$. Then $\left| \sum_{n=1}^{\infty} \left(a_n - \frac{2}{n^2} \right) \right|$ is equal to _____.

Given --

Answer :

Question Type : **SA**
Question ID : **8606541147**
Status : **Not Answered**

Q.25

$6 \int_0^{\pi} |(\sin 3x + \sin 2x + \sin x)| dx$ is equal to _____.

Given --

Answer :

Question Type : **SA**
Question ID : **8606541150**
Status : **Not Answered**

Section : Physics Section A

Q.26 A point charge of 10^{-8} C is placed at origin. The work done in moving a point charge $2 \mu\text{C}$ from point A(4, 4, 2) m to B(2, 2, 1) m is _____ J. ($\frac{1}{4\pi\epsilon_0} = 9 \times 10^9$ in SI units)

Options

1. 45×10^{-6}
2. 0
3. 30×10^{-6}
4. 15×10^{-6}

Question Type : MCQ
Question ID : 8606541169
Option 1 ID : 8606543985
Option 2 ID : 8606543983
Option 3 ID : 8606543986
Option 4 ID : 8606543984
Status : Answered
Chosen Option : 3

Q.27 An aluminium and steel rods having same lengths and cross-sections are joined to make total length of 120 cm at 30°C . The coefficient of linear expansion of aluminium and steel are $24 \times 10^{-6}/^\circ\text{C}$ and $1.2 \times 10^{-5}/^\circ\text{C}$, respectively. The length of this composite rod when its temperature is raised to 100°C , is _____ cm.

Options

1. 120.20
2. 120.03
3. 120.15
4. 120.06

Question Type : MCQ
Question ID : 8606541154
Option 1 ID : 8606543926
Option 2 ID : 8606543925
Option 3 ID : 8606543923
Option 4 ID : 8606543924
Status : Answered
Chosen Option : 3

Q.28 A light wave described by $E = 60[\sin(3 \times 10^{15})t + \sin(12 \times 10^{15})t]$ (in SI units) falls on a metal surface of work function 2.8 eV. The maximum kinetic energy of ejected photoelectron is (approximately) _____ eV. ($h = 6.6 \times 10^{-34}$ J.s. and $e = 1.6 \times 10^{-19}$ C)

Options

1. 3.8
2. 5.1
3. 6.0
4. 7.8

Question Type : MCQ
Question ID : 8606541165
Option 1 ID : 8606543968
Option 2 ID : 8606543969
Option 3 ID : 8606543970
Option 4 ID : 8606543967
Status : Not Answered
Chosen Option : --

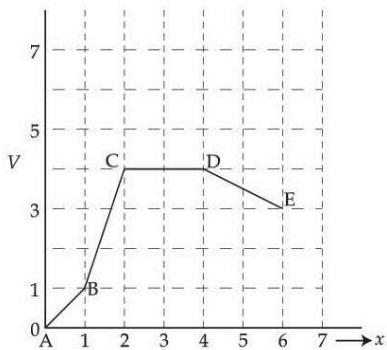
Q.29 A parallel plate capacitor has capacitance C , when there is vacuum within the parallel plates.

A sheet having thickness $\left(\frac{1}{3}\right)^{\text{rd}}$ of the separation between the plates and relative permittivity K is introduced between the plates. The new capacitance of the system is :

Options

1. $\frac{3KC}{2K + 1}$
2. $\frac{CK}{2 + K}$
3. $\frac{3CK^2}{(2K + 1)^2}$
4. $\frac{4KC}{3K - 1}$

Question Type : MCQ
Question ID : 8606541160
Option 1 ID : 8606543947
Option 2 ID : 8606543949
Option 3 ID : 8606543950
Option 4 ID : 8606543948
Status : Answered
Chosen Option : 1


Q.30 In an experiment the values of two spring constants were measured as $k_1 = (10 \pm 0.2)$ N/m and $k_2 = (20 \pm 0.3)$ N/m. If these springs are connected in parallel, then the percentage error in equivalent spring constant is :

Options

1. 1.33%
2. 1.67%
3. 2.33%
4. 2.67%

Question Type : MCQ
Question ID : 8606541170
Option 1 ID : 8606543989
Option 2 ID : 8606543988
Option 3 ID : 8606543987
Option 4 ID : 8606543990
Status : Answered
Chosen Option : 2

Q.31 Potential energy (V) versus distance (x) is given by the graph. Rank various regions as per the magnitudes of the force (F) acting on a particle from high to low.

Options

1. $F_{CD} > F_{AB} > F_{BC} > F_{DE}$
2. $F_{CD} > F_{DE} > F_{AB} > F_{BC}$
3. $F_{BC} > F_{AB} > F_{DE} > F_{CD}$
4. $F_{BC} > F_{CD} > F_{DE} > F_{AB}$

Question Type : MCQ
Question ID : 8606541152
Option 1 ID : 8606543915
Option 2 ID : 8606543917
Option 3 ID : 8606543916
Option 4 ID : 8606543918
Status : Answered
Chosen Option : 3

Q.32 Consider a modified Bernoulli equation.

$$\left(P + \frac{A}{Bt^2} \right) + \rho g(h + Bt) + \frac{1}{2} \rho V^2 = \text{constant}$$

If t has the dimension of time then the dimensions of A and B are _____, _____ respectively.

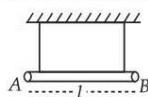
Options

1. $[\text{ML}^0\text{T}^{-1}]$ and $[\text{M}^0\text{LT}]$
2. $[\text{ML}^0\text{T}^{-2}]$ and $[\text{M}^0\text{LT}^{-1}]$
3. $[\text{ML}^0\text{T}^{-2}]$ and $[\text{M}^0\text{LT}^{-2}]$
4. $[\text{ML}^0\text{T}^{-1}]$ and $[\text{M}^0\text{LT}^{-1}]$

Question Type : MCQ
Question ID : 8606541151
Option 1 ID : 8606543911
Option 2 ID : 8606543913
Option 3 ID : 8606543914
Option 4 ID : 8606543912
Status : Answered
Chosen Option : 2

Q.33 The electric field in a plane electromagnetic wave is given by :

$$E_y = 69 \sin[0.6 \times 10^3 x - 1.8 \times 10^{11} t] \text{ V/m.}$$


The expression for magnetic field associated with this electromagnetic wave is _____ T.

Options

1. $B_z = 2.3 \times 10^{-7} \sin[0.6 \times 10^3 x - 1.8 \times 10^{11} t]$
2. $B_y = 69 \sin[0.6 \times 10^3 x + 1.8 \times 10^{11} t]$
3. $B_z = 2.3 \times 10^{-7} \sin[0.6 \times 10^3 x + 1.8 \times 10^{11} t]$
4. $B_y = 2.3 \times 10^{-7} \sin[0.6 \times 10^3 x - 1.8 \times 10^{11} t]$

Question Type : MCQ
Question ID : 8606541156
Option 1 ID : 8606543933
Option 2 ID : 8606543931
Option 3 ID : 8606543934
Option 4 ID : 8606543932
Status : Answered
Chosen Option : 1

Q.34 A uniform rod of mass m and length l suspended by means of two identical inextensible light strings as shown in figure. Tension in one string immediately after the other string is cut, is _____. (g acceleration due to gravity)

Options

1. $mg/3$
2. $mg/2$
3. $mg/4$
4. mg

Question Type : MCQ
Question ID : 8606541159
Option 1 ID : 8606543945
Option 2 ID : 8606543944
Option 3 ID : 8606543946
Option 4 ID : 8606543943
Status : Not Answered
Chosen Option : --

Q.35 A gas based geyser heats water flowing at the rate of 5.0 litres per minute from 27°C to 87°C . The rate of consumption of the gas is ____ g/s.
(Take heat of combustion of gas = $5.0 \times 10^4 \text{ J/g}$) specific heat capacity of water = $4200 \text{ J/kg}^{\circ}\text{C}$

Options

1. 0.21
2. 2.1
3. 0.42
4. 4.2

Question Type : MCQ
Question ID : 8606541167
Option 1 ID : 8606543977
Option 2 ID : 8606543975
Option 3 ID : 8606543978
Option 4 ID : 8606543976
Status : Answered
Chosen Option : 3

Q.36 A current carrying solenoid is placed vertically and a particle of mass m with charge Q is released from rest. The particle moves along the axis of solenoid. If g is acceleration due to gravity then the acceleration (a) of the charged particle will satisfy :

Options

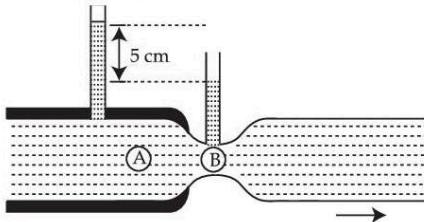
1. $0 < a < g$
2. $a > g$
3. $a = 0$
4. $a = g$

Question Type : MCQ

Question ID : 8606541161

Option 1 ID : 8606543954

Option 2 ID : 8606543951


Option 3 ID : 8606543952

Option 4 ID : 8606543953

Status : Answered

Chosen Option : 4

Q.37 Water flows through a horizontal tube as shown in the figure. The difference in height between the water columns in vertical tubes is 5 cm and the area of cross-sections at A and B are 6 cm^2 and 3 cm^2 respectively. The rate of flow will be _____ cm^3/s . (take $g = 10 \text{ m/s}^2$)

Options

1. $200\sqrt{6}$
2. $100\sqrt{3}$
3. $\frac{200}{\sqrt{3}}$
4. $200\sqrt{3}$

Question Type : MCQ

Question ID : 8606541155

Option 1 ID : 8606543929

Option 2 ID : 8606543927

Option 3 ID : 8606543928

Option 4 ID : 8606543930

Status : Answered

Chosen Option : 4

Q.38

A 4 kg mass moves under the influence of a force $\vec{F} = (4t^3 \hat{i} - 3t \hat{j})$ N where t is the time in second. If mass starts from origin at $t=0$, the velocity and position after $t=2$ s will be :

Options

1. $\vec{v} = 3\hat{i} + \frac{3}{2}\hat{j}$ $\vec{r} = \frac{6}{5}\hat{i} + \hat{j}$
2. $\vec{v} = 4\hat{i} - \frac{3}{2}\hat{j}$ $\vec{r} = \frac{6}{5}\hat{i} - \hat{j}$
3. $\vec{v} = 4\hat{i} + \frac{5}{2}\hat{j}$ $\vec{r} = \frac{8}{5}\hat{i} + 2\hat{j}$
4. $\vec{v} = 4\hat{i} - \frac{3}{2}\hat{j}$ $\vec{r} = \frac{8}{5}\hat{i} - \hat{j}$

Question Type : MCQ
 Question ID : 8606541153
 Option 1 ID : 8606543920
 Option 2 ID : 8606543919
 Option 3 ID : 8606543921
 Option 4 ID : 8606543922
 Status : Answered
 Chosen Option : 4

Q.39 A conducting circular loop of area 1.0 m^2 is placed perpendicular to a magnetic field which varies as $B = \sin(100t)$ Tesla. If the resistance of the loop is 100Ω , then the average thermal energy dissipated in the loop in one period is _____ J.

Options

1. 2π
2. π
3. π^2
4. $\frac{\pi}{2}$

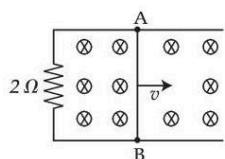
Question Type : MCQ
 Question ID : 8606541162
 Option 1 ID : 8606543956
 Option 2 ID : 8606543955
 Option 3 ID : 8606543958
 Option 4 ID : 8606543957
 Status : Marked For Review
 Chosen Option : 2

Q.40 Two strings (A, B) having linear densities $\mu_A = 2 \times 10^{-4}$ kg/m and, $\mu_B = 4 \times 10^{-4}$ kg/m and lengths $L_A = 2.5$ m and $L_B = 1.5$ m respectively are joined. Free ends of A and B are tied to two rigid supports C and D, respectively creating a tension of 500 N in the wire. Two identical pulses, sent from C and D ends, take time t_1 and t_2 , respectively, to reach the joint. The ratio t_1/t_2 is :

Options

1. 1.08
2. 1.90
3. 1.18
4. 1.67

Question Type : MCQ
Question ID : 8606541157
Option 1 ID : 8606543935
Option 2 ID : 8606543938
Option 3 ID : 8606543936
Option 4 ID : 8606543937
Status : Answered
Chosen Option : 3

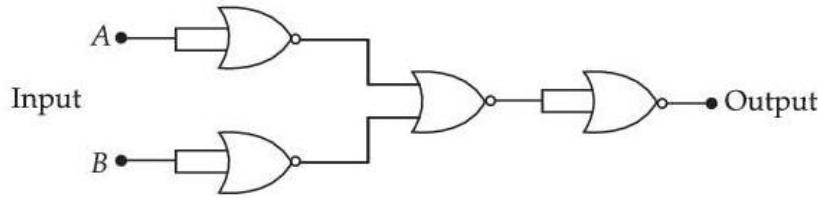

Q.41 Initially a satellite of 100 kg is in a circular orbit of radius $1.5R_E$. This satellite can be moved to a circular orbit of radius $3R_E$ by supplying $\alpha \times 10^6$ J of energy. The value of α is _____.
(Take Radius of Earth $R_E = 6 \times 10^6$ m and $g = 10$ m/s²)

Options

1. 1000
2. 150
3. 100
4. 500

Question Type : MCQ
Question ID : 8606541158
Option 1 ID : 8606543940
Option 2 ID : 8606543941
Option 3 ID : 8606543939
Option 4 ID : 8606543942
Status : Not Attempted and
Marked For Review
Chosen Option : --

Q.42 A 1 m long metal rod AB completes the circuit as shown in figure. The area of circuit is perpendicular to the magnetic field of 0.10 T. If the resistance of the total circuit is 2 Ω then the force needed to move the rod towards right with constant speed (v) of 1.5 m/s is _____ N.



Options

1. 5.7×10^{-2}
2. 7.5×10^{-3}
3. 7.5×10^{-2}
4. 5.7×10^{-3}

Question Type : MCQ
Question ID : 8606541163
Option 1 ID : 8606543962
Option 2 ID : 8606543959
Option 3 ID : 8606543960
Option 4 ID : 8606543961
Status : Answered
Chosen Option : 2

Q.43 The given circuit works as :

Options

1. NOR gate
2. OR gate
3. AND gate
4. NAND gate

Question Type : MCQ
Question ID : 8606541168
Option 1 ID : 8606543981
Option 2 ID : 8606543982
Option 3 ID : 8606543979
Option 4 ID : 8606543980
Status : Answered
Chosen Option : 4

Q.44 In a double slit experiment the distance between the slits is 0.1 cm and the screen is placed at 50 cm from the slits plane. When one slit is covered with a transparent sheet having thickness t and refractive index $n(=1.5)$, the central fringe shifts by 0.2 cm. The value of t is _____ cm.

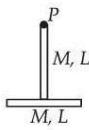
Options

1. 8×10^{-4}
2. 6.0×10^{-3}
3. 5.0×10^{-3}
4. 5.6×10^{-4}

Question Type : MCQ
Question ID : 8606541164
Option 1 ID : 8606543966
Option 2 ID : 8606543965
Option 3 ID : 8606543963
Option 4 ID : 8606543964
Status : Not Answered
Chosen Option : --

Q.45 If an alpha particle with energy 7.7 MeV is bombarded on a thin gold foil, the closest distance from nucleus it can reach is _____ m. (Atomic number of gold = 79 and $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9$ in SI units)

Options

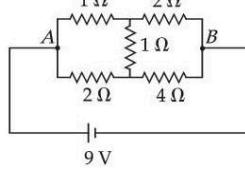

1. 2.95×10^{-16}
2. 3.85×10^{-14}
3. 2.95×10^{-14}
4. 3.85×10^{-16}

Question Type : MCQ
Question ID : 8606541166
Option 1 ID : 8606543972
Option 2 ID : 8606543973
Option 3 ID : 8606543974
Option 4 ID : 8606543971
Status : Answered
Chosen Option : 2

Section : Physics Section B

Q.46

Two identical thin rods of mass M kg and length L m are connected as shown in figure. Moment of inertia of the combined rod system about an axis passing through point P and perpendicular to the plane of the rods is $\frac{x}{12}ML^2$ kg m 2 . The value of x is _____.


Given 17

Answer :

Question Type : **SA**
 Question ID : **8606541171**
 Status : **Answered**

Q.47

The heat generated in 1 minute between points A and B in the given circuit, when a battery of 9 V with internal resistance of 1Ω is connected across these points is _____ J.

Given 1620

Answer :

Question Type : **SA**
 Question ID : **8606541174**
 Status : **Answered**

Q.48

In a microscope the objective is having focal length $f_o = 2$ cm and eye-piece is having focal length $f_e = 4$ cm. The tube length is 32 cm. The magnification produced by this microscope for normal adjustment is _____.

Given --

Answer :

Question Type : **SA**
 Question ID : **8606541173**
 Status : **Not Answered**

Q.49

A collimated beam of light of diameter 2 mm is propagating along x -axis. The beam is required to be expanded in a collimated beam of diameter 14 mm using a system of two convex lenses. If first lens has focal length 40 mm, then the focal length of second lens is _____ mm.

Given --

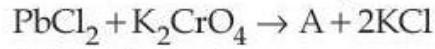
Answer :

Question Type : **SA**
 Question ID : **8606541172**
 Status : **Not Answered**

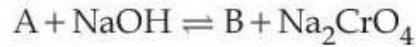
Q.50

10 mole of oxygen is heated at constant volume from 30 °C to 40 °C. The change in the internal energy of the gas is _____ cal. (The molecular specific heat of oxygen at constant pressure, $C_p = 7 \text{ cal/mol.}^{\circ}\text{C}$ and $R = 2 \text{ cal/mol.}^{\circ}\text{C}$.)

Given 500


Answer :

Question Type : **SA**
Question ID : **8606541175**
Status : **Answered**


Section : Chemistry Section A

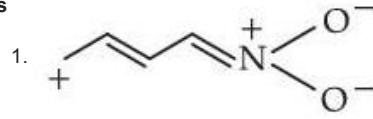
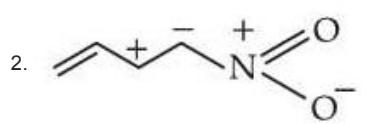
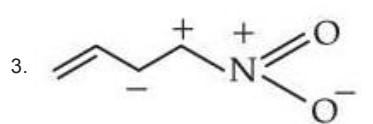
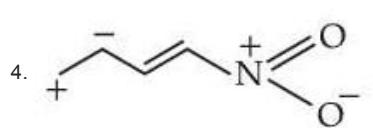
Q.51

Consider the following reactions.

(Hot solution)

In the above reactions, A, B and X are respectively.

Options





1. $\text{Na}_2[\text{Pb}(\text{OH})_2]$, PbCrO_4 and $(\text{NH}_4)_2[\text{Pb}(\text{CH}_3\text{COO})_4]$
2. $\text{Na}_2[\text{Pb}(\text{OH})_2]$, PbCrO_4 and $[\text{Pb}(\text{NH}_3)_4]\text{SO}_4$
3. PbCrO_4 , $\text{Na}_2[\text{Pb}(\text{OH})_4]$ and $[\text{Pb}(\text{NH}_3)_4]\text{SO}_4$
4. PbCrO_4 , $\text{Na}_2[\text{Pb}(\text{OH})_4]$ and $(\text{NH}_4)_2[\text{Pb}(\text{CH}_3\text{COO})_4]$

Question Type : **MCQ**
Question ID : **8606541195**
Option 1 ID : **8606544075**
Option 2 ID : **8606544074**
Option 3 ID : **8606544072**
Option 4 ID : **8606544073**
Status : **Not Answered**
Chosen Option : --

Q.52

From the following, the least stable structure is :

Options

1.
2.
3.
4.

Question Type : MCQ

Question ID : 8606541188

Option 1 ID : 8606544046

Option 2 ID : 8606544044

Option 3 ID : 8606544047

Option 4 ID : 8606544045

Status : Answered

Chosen Option : 2

Q.53 80 mL of a hydrocarbon on mixing with 264 mL of oxygen in a closed U-tube undergoes complete combustion. The residual gases after cooling to 273 K occupy 224 mL. When the system is treated with KOH solution, the volume decreases to 64 mL. The formula of the hydrocarbon is :

Options

1. C_2H_4
2. C_2H_6
3. C_2H_2
4. C_4H_{10}

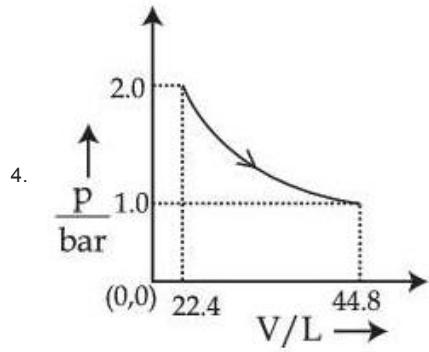
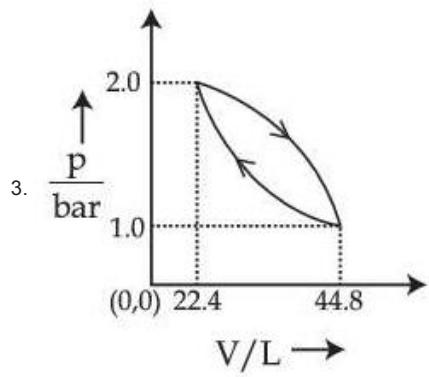
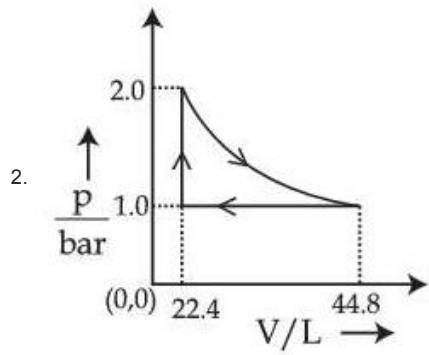
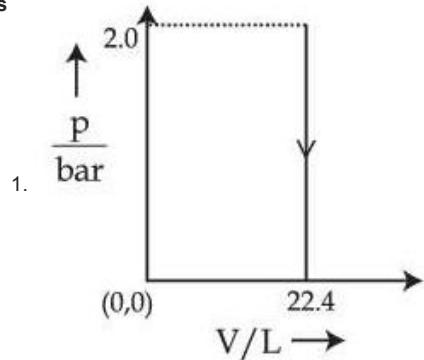
Question Type : MCQ

Question ID : 8606541176

Option 1 ID : 8606543996

Option 2 ID : 8606543999

Option 3 ID : 8606543997





Option 4 ID : 8606543998

Status : Answered

Chosen Option : 1

Q.54 Which of the following graphs between pressure 'p' versus volume 'V' represents the maximum work done?

Options

Question Type : MCQ

Question ID : 8606541181

Option 1 ID : 8606544019

Option 2 ID : 8606544017

Option 3 ID : 8606544016

Option 4 ID : 8606544018

Status : Answered

Q.55 Which of the following represents the correct trend for the mentioned property ?

A. F > P > S > B	- First Ionization Energy
B. Cl > F > S > P	- Electron Affinity
C. K > Al > Mg > B	- Metallic character
D. K ₂ O > Na ₂ O > MgO > Al ₂ O ₃	- Basic character

Choose the correct answer from the options given below :

Options

1. A, B and D only
2. A and B only
3. B and C only
4. A, B, C and D

Question Type : MCQ
 Question ID : 8606541183
 Option 1 ID : 8606544026
 Option 2 ID : 8606544027
 Option 3 ID : 8606544025
 Option 4 ID : 8606544024
 Status : Answered
 Chosen Option : 1

Q.56

MnO_4^{2-} , in acidic medium, disproportionates to :

Options

1. Mn_2O_7 and MnO
2. Mn_2O_7 and MnO_2
3. MnO_4^- and MnO
4. MnO_4^- and MnO_2

Question Type : MCQ
 Question ID : 8606541185
 Option 1 ID : 8606544035
 Option 2 ID : 8606544032
 Option 3 ID : 8606544033
 Option 4 ID : 8606544034
 Status : Answered
 Chosen Option : 4

Q.57 In Carius method, 0.75 g of an organic compound gave 1.2 g of barium sulphate, find percentage of sulphur (molar mass 32 g mol⁻¹). Molar mass of barium sulphate is 233 g mol⁻¹.

Options

1. 16.48%
2. 10.30%
3. 21.97%
4. 4.55%

Question Type : MCQ
Question ID : 8606541187
Option 1 ID : 8606544043
Option 2 ID : 8606544042
Option 3 ID : 8606544041
Option 4 ID : 8606544040
Status : Not Answered
Chosen Option : --

Q.58 Identify **correct** statements from the following :

- A. Propanal and propanone are functional isomers.
- B. Ethoxyethane and methoxypropane are metamers.
- C. But-2-ene shows optical isomerism.
- D. But-1-ene and but-2-ene are functional isomers.
- E. Pentane and 2, 2-dimethyl propane are chain isomers.

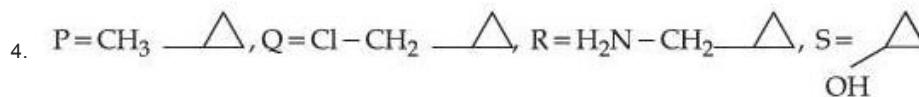
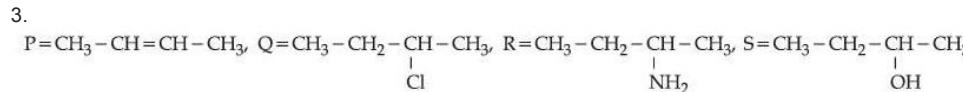
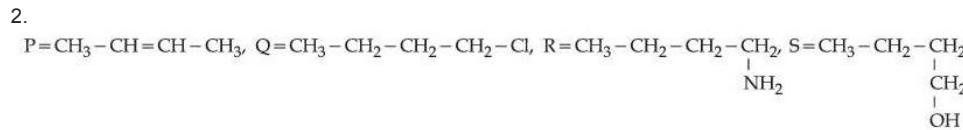
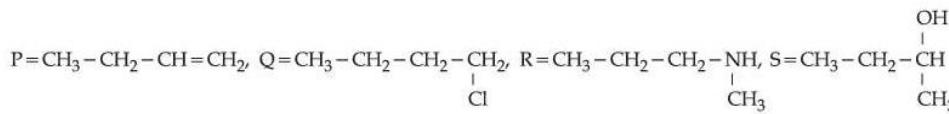
Choose the **correct** answer from the options given below :

Options

1. A, B and C only
2. B, C and D only
3. A, B and E only
4. C, D and E only

Question Type : MCQ
Question ID : 8606541189
Option 1 ID : 8606544048
Option 2 ID : 8606544049
Option 3 ID : 8606544051
Option 4 ID : 8606544050
Status : Answered
Chosen Option : 3

Q.59 Elements P and Q form two types of non-volatile, non-ionizable compounds PQ and PQ_2 . When 1 g of PQ is dissolved in 50 g of solvent 'A', ΔT_b was 1.176 K while when 1 g of PQ_2 is dissolved in 50 g of solvent 'A', ΔT_b was 0.689 K. (K_b of 'A' = 5 K kg mol $^{-1}$). The molar masses of elements P and Q (in g mol $^{-1}$) respectively, are :





Options

1. 70, 110
2. 60, 25
3. 25, 60
4. 65, 145

Question Type : MCQ
 Question ID : 8606541182
 Option 1 ID : 8606544023
 Option 2 ID : 8606544021
 Option 3 ID : 8606544022
 Option 4 ID : 8606544020
 Status : Not Answered
 Chosen Option : --

Q.60 A hydrocarbon 'P' (C_4H_8) on reaction with HCl gives an optically active compound 'Q' (C_4H_9Cl) which on reaction with one mole of ammonia gives compound 'R' ($C_4H_{11}N$). 'R' on diazotization followed by hydrolysis gives 'S'. Identify P, Q, R and S.

Options 1.

Question Type : MCQ
 Question ID : 8606541190
 Option 1 ID : 8606544054
 Option 2 ID : 8606544052
 Option 3 ID : 8606544053
 Option 4 ID : 8606544055
 Status : Answered
 Chosen Option : 3

Q.61 An organic compound (P) on treatment with aqueous ammonia under hot condition forms compound (Q) which on heating with Br_2 and KOH forms compound (R) having molecular formula $\text{C}_6\text{H}_7\text{N}$. Names of P, Q and R respectively are.

Options

1. Phenylethanoic acid, phenylethanamide, benzamine
2. Benzoic acid, 4-methylbenzamide, 4-methylaniline
3. Benzoic acid, benzamide, aniline
4. Toluic acid, methylbenzamide, 2-methylaniline

Question Type : MCQ
Question ID : 8606541193
Option 1 ID : 8606544065
Option 2 ID : 8606544064
Option 3 ID : 8606544067
Option 4 ID : 8606544066
Status : Answered
Chosen Option : 3

Q.62 Given below are two statements :

Statement I : When an electric discharge is passed through gaseous hydrogen, the hydrogen molecules dissociate and the energetically excited hydrogen atoms produce electromagnetic radiation of discrete frequencies.

Statement II : The frequency of second line of Balmer series obtained from He^+ is equal to that of first line of Lyman series obtained from hydrogen atom.

In the light of the above statements, choose the **correct** answer from the options given below :

Options

1. **Statement I is true but Statement II is false**
2. **Both Statement I and Statement II are true**
3. **Statement I is false but Statement II is true**
4. **Both Statement I and Statement II are false**

Question Type : MCQ
Question ID : 8606541179
Option 1 ID : 8606544010
Option 2 ID : 8606544008
Option 3 ID : 8606544011
Option 4 ID : 8606544009
Status : Answered
Chosen Option : 1

Q.63 Given below are two statements :

Statement I : Among $[\text{Cu}(\text{NH}_3)_4]^{2+}$, $[\text{Ni}(\text{en})_3]^{2+}$, $[\text{Ni}(\text{NH}_3)_6]^{2+}$ and $[\text{Mn}(\text{H}_2\text{O})_6]^{2+}$, $[\text{Mn}(\text{H}_2\text{O})_6]^{2+}$ has the maximum number of unpaired electrons.

Statement II : The number of pairs among $\{[\text{NiCl}_4]^{2-}$, $[\text{Ni}(\text{CO})_4]\}$, $\{[\text{NiCl}_4]^{2-}$, $[\text{Ni}(\text{CN})_4]^{2-}\}$ and $\{[\text{Ni}(\text{CO})_4]$, $[\text{Ni}(\text{CN})_4]^{2-}\}$ that contain only diamagnetic species is two.

In the light of the above statements, choose the **correct** answer from the options given below :

Options

1. **Statement I is false but Statement II is true**
2. **Statement I is true but Statement II is false**
3. **Both Statement I and Statement II are true**
4. **Both Statement I and Statement II are false**

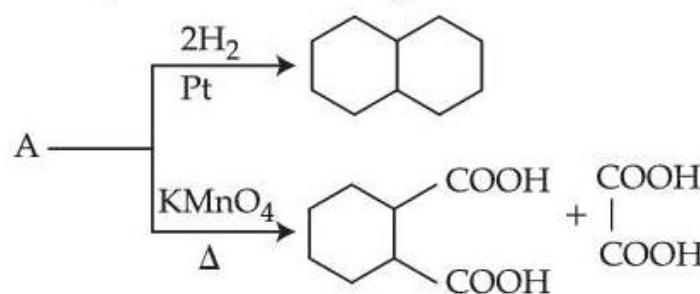
Question Type : MCQ
Question ID : 8606541186
Option 1 ID : 8606544039
Option 2 ID : 8606544038
Option 3 ID : 8606544036
Option 4 ID : 8606544037
Status : **Answered**
Chosen Option : 3

Q.64 Given below are two statements :

Statement I : The number of pairs among $[\text{SiO}_2]$, $[\text{CO}_2]$, $[\text{SnO}, \text{SnO}_2]$, $[\text{PbO}, \text{PbO}_2]$ and $[\text{GeO}, \text{GeO}_2]$, which contain oxides that are both amphoteric is 2.

Statement II : BF_3 is an electron deficient molecule, can act as a Lewis acid, forms adduct with NH_3 and has a trigonal planar geometry.

In the light of the above statements, choose the **correct** answer from the options given below :


Options

1. **Both Statement I and Statement II are false**
2. **Statement I is true but Statement II is false**
3. **Both Statement I and Statement II are true**
4. **Statement I is false but Statement II is true**

Question Type : MCQ
Question ID : 8606541184
Option 1 ID : 8606544029
Option 2 ID : 8606544030
Option 3 ID : 8606544028
Option 4 ID : 8606544031
Status : **Not Answered**
Chosen Option : --

Q.65

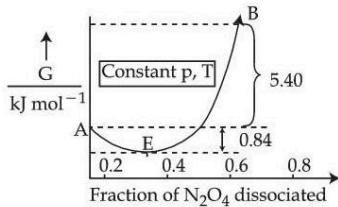
Identify A in the following reaction.

Options

- 1.
- 2.
- 3.
- 4.

Question Type : MCQ
Question ID : 8606541191
Option 1 ID : 8606544057
Option 2 ID : 8606544059
Option 3 ID : 8606544056
Option 4 ID : 8606544058
Status : Answered
Chosen Option : 2

Q.66 14.0 g of calcium metal is allowed to react with excess HCl at 1.0 atm pressure and 273 K. Which of the following statements is **incorrect**?
[Given : Molar mass in g mol⁻¹ of Ca – 40, Cl – 35.5, H – 1]


Options

- 0.35 mol of H₂ gas is evolved.
- 7.84 L of H₂ gas is evolved.
- The limiting reagent is calcium metal.
- 33.3 g of CaCl₂ is produced.

Question Type : MCQ
Question ID : 8606541177
Option 1 ID : 8606544000
Option 2 ID : 8606544001
Option 3 ID : 8606544003
Option 4 ID : 8606544002
Status : Answered
Chosen Option : 4

Q.67 For the reaction, N₂O₄ \rightleftharpoons 2NO₂, graph is plotted as shown below. Identify **correct** statements.

- Standard free energy change for the reaction is $-5.40 \text{ kJ mol}^{-1}$.
- As ΔG^\ominus in graph is positive, N₂O₄ will not dissociate into NO₂ at all.
- Reverse reaction will go to completion.
- When 1 mole of N₂O₄ changes into equilibrium mixture, value of $\Delta G^\ominus = -0.84 \text{ kJ mol}^{-1}$
- When 2 mole of NO₂ changes into equilibrium mixture, ΔG^\ominus for equilibrium mixture is $-6.24 \text{ kJ mol}^{-1}$.

Choose the **correct** answer from the options given below :

Options

- B and C only
- A and D only
- D and E only
- C and E only

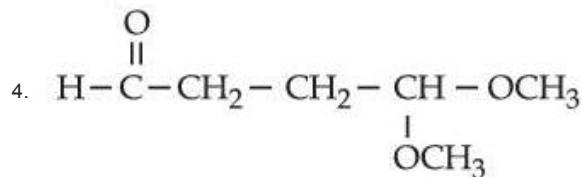
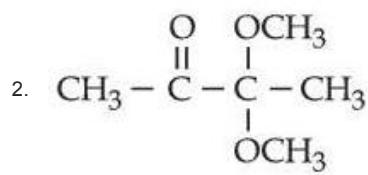
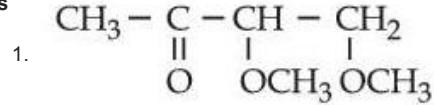
Question Type : MCQ
Question ID : 8606541180
Option 1 ID : 8606544015
Option 2 ID : 8606544012
Option 3 ID : 8606544014
Option 4 ID : 8606544013
Status : Marked For Review
Chosen Option : 1

Q.68

Identify the **correct** statements.

- A. Arginine and Tryptophan are essential amino acids.
- B. Histidine does not contain heterocyclic ring in its structure.
- C. Proline is a six membered cyclic ring amino acid.
- D. Glycine does not have chiral centre.
- E. Cysteine has characteristic feature of side chain as $\text{MeS}-\text{CH}_2-\text{CH}_2-$.

Choose the **correct** answer from the options given below :




Options

1. B and E Only
2. A and D Only
3. C and D Only
4. C and E Only

Question Type : **MCQ**
Question ID : **8606541194**
Option 1 ID : **8606544068**
Option 2 ID : **8606544069**
Option 3 ID : **8606544070**
Option 4 ID : **8606544071**
Status : **Answered**
Chosen Option : **4**

Q.69

An organic compound "P" of molecular formula $C_6H_{12}O_3$ gives positive Iodoform test but negative Tollen's test. When "P" is treated with dilute acid, it produces "Q". "Q" gives positive Tollen's test and also iodoform test. The structure of "P" is :

Options

Question Type : MCQ

Question ID : 8606541192

Option 1 ID : 8606544060

Option 2 ID : 8606544061

Option 3 ID : 8606544062

Option 4 ID : 8606544063

Status : Answered

Chosen Option : 2

Q.70 Given below are two statements :

Statement I :

The number of species among SF_4 , NH_4^+ , $[\text{NiCl}_4]^{2-}$, XeF_4 , $[\text{PtCl}_4]^{2-}$, SeF_4 and $[\text{Ni}(\text{CN})_4]^{2-}$, that have tetrahedral geometry is 3.

Statement II :

In the set $[\text{NO}_2]$, BeH_2 , BF_3 , AlCl_3 , all the molecules have incomplete octet around central atom.

In the light of the above statements, choose the **correct** answer from the options given below :

Options

1. **Both Statement I and Statement II are true**
2. **Both Statement I and Statement II are false**
3. **Statement I is false but Statement II is true**
4. **Statement I is true but Statement II is false**

Question Type : MCQ
Question ID : 8606541178
Option 1 ID : 8606544004
Option 2 ID : 8606544005
Option 3 ID : 8606544007
Option 4 ID : 8606544006
Status : Answered
Chosen Option : 3

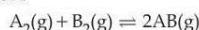
Section : Chemistry Section B

Q.71

Pre-exponential factors of two different reactions of same order are identical. Let activation energy of first reaction exceeds the activation energy of second reaction by 20 kJ mol^{-1} . If k_1 and k_2 are the rate constants of first and second reaction respectively at 300 K, then $\ln \frac{k_2}{k_1}$ will be _____.
(nearest integer) $[R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}]$

Given 8

Answer :


Question Type : SA
Question ID : 8606541200
Status : Answered

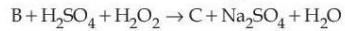
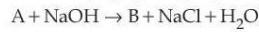
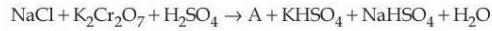
Q.72

Use the following data :

Substance	$\frac{\Delta_f H^\ominus(500\text{K})}{\text{kJ mol}^{-1}}$	$\frac{S^\ominus(500\text{K})}{\text{J K}^{-1} \text{ mol}^{-1}}$
AB(g)	32	222
A_2g	6	146
B_2g	x	280

One mole each of A_2g and B_2g are taken in a 1 L closed flask and allowed to establish the equilibrium at 500K.

The value of x (in kJ mol^{-1}) is _____. (Nearest integer)
(Given : $\log K = 2.2$ $R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$)




Given --

Answer :

Question Type : SA
Question ID : 8606541198
Status : Not Answered

Q.73

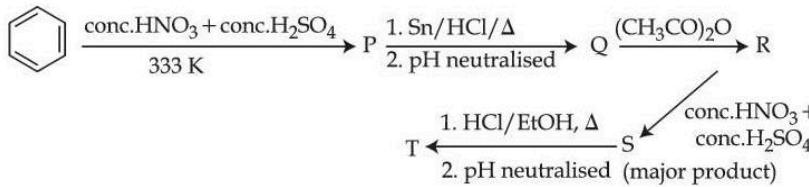
Consider the following reactions :

In the product 'C', 'X' is the number of O_2^{2-} units, 'Y' is the total number oxygen atoms present and

'Z' is the oxidation state of Cr. The value of X + Y + Z is _____.

Given --

Answer :


Question Type : **SA**

Question ID : **8606541197**

Status : **Not Answered**

Q.74

Consider the following reaction sequence

The percentage of nitrogen in product 'T' formed is ____ %. (Nearest integer)

(Given molar mass in g mol⁻¹ H : 1, C : 12, N : 14, O : 16)

Given --

Answer :

Question Type : **SA**

Question ID : **8606541196**

Status : **Not Answered**

Q.75

The pH and conductance of a weak acid (HX) was found to be 5 and 4×10^{-5} S, respectively. The conductance was measured under standard condition using a cell where the electrode plates having a surface area of 1 cm² were at a distance of 15 cm apart. The value of the limiting molar conductivity is _____ S m² mol⁻¹. (nearest integer)

(Given : degree of dissociation of the weak acid (α) $\ll 1$)

Given --

Answer :

Question Type : **SA**

Question ID : **8606541199**

Status : **Not Answered**