

NTA JEE Mains Jan 2026

Application No	
Candidate Name	
Roll No.	
Test Date	21/01/2026
Test Time	3:00 PM - 6:00 PM
Subject	B. Tech

Section : Mathematics Section A

Q.1 Let $A = \{2, 3, 5, 7, 9\}$. Let R be the relation on A defined by xRy if and only if $2x \leq 3y$. Let l be the number of elements in R , and m be the minimum number of elements required to be added in R to make it a symmetric relation. Then $l + m$ is equal to :

Options

1. 23
2. 21
3. 25
4. 27

Question Type : MCQ
 Question ID : 860654826
 Option 1 ID : 8606542807
 Option 2 ID : 8606542806
 Option 3 ID : 8606542808
 Option 4 ID : 8606542809
 Status : Not Answered
 Chosen Option : --

Q.2 Let z be the complex number satisfying $|z - 5| \leq 3$ and having maximum positive principal argument.

Then $34 \left| \frac{5z-12}{5iz+16} \right|^2$ is equal to :

Options

1. 12
2. 16
3. 26
4. 20

Question Type : MCQ
 Question ID : 860654827
 Option 1 ID : 8606542810
 Option 2 ID : 8606542811
 Option 3 ID : 8606542813
 Option 4 ID : 8606542812
 Status : Not Answered
 Chosen Option : --

Q.3 Let α and β be the roots of the equation $x^2 + 2ax + (3a + 10) = 0$ such that $\alpha < 1 < \beta$. Then the set of all possible values of a is :

Options

1. $(-\infty, \frac{-11}{5}) \cup (5, \infty)$
2. $(-\infty, -3)$
3. $(-\infty, -2) \cup (5, \infty)$
4. $(-\infty, \frac{-11}{5})$

Question Type : MCQ
Question ID : 860654829
Option 1 ID : 8606542821
Option 2 ID : 8606542819
Option 3 ID : 8606542818
Option 4 ID : 8606542820
Status : Not Answered
Chosen Option : --

Q.4 If the line $\alpha x + 4y = \sqrt{7}$, where $\alpha \in \mathbb{R}$, touches the ellipse $3x^2 + 4y^2 = 1$ at the point P in the first quadrant, then one of the focal distances of P is :

Options

1. $\frac{1}{\sqrt{3}} + \frac{1}{2\sqrt{5}}$
2. $\frac{1}{\sqrt{3}} + \frac{1}{2\sqrt{7}}$
3. $\frac{1}{\sqrt{3}} - \frac{1}{2\sqrt{5}}$
4. $\frac{1}{\sqrt{3}} - \frac{1}{2\sqrt{11}}$

Question Type : MCQ
Question ID : 860654838
Option 1 ID : 8606542854
Option 2 ID : 8606542856
Option 3 ID : 8606542855
Option 4 ID : 8606542857
Status : Marked For Review
Chosen Option : 3

Q.5

Let $A = \{x : |x^2 - 10| \leq 6\}$ and $B = \{x : |x - 2| > 1\}$. Then

Options

1. $A - B = [2, 3)$
2. $A \cap B = [-4, -2] \cup [3, 4]$
3. $B - A = (-\infty, -4) \cup (-2, 1) \cup (4, \infty)$
4. $A \cup B = (-\infty, 1] \cup (2, \infty)$

Question Type : MCQ
Question ID : 860654833
Option 1 ID : 8606542834
Option 2 ID : 8606542835
Option 3 ID : 8606542837
Option 4 ID : 8606542836
Status : Not Answered
Chosen Option : --

Q.6 Let $f(x) = x^3 + x^2 f'(1) + 2x f''(2) + f'''(3)$, $x \in \mathbf{R}$. Then the value of $f'(5)$ is :

Options

1. $\frac{62}{5}$
2. $\frac{657}{5}$
3. $\frac{2}{5}$
4. $\frac{117}{5}$

Question Type : MCQ
Question ID : 860654842
Option 1 ID : 8606542871
Option 2 ID : 8606542872
Option 3 ID : 8606542870
Option 4 ID : 8606542873
Status : Not Answered
Chosen Option : --

Q.7

Let the line L_1 be parallel to the vector $-3\hat{i} + 2\hat{j} + 4\hat{k}$ and pass through the point $(2, 6, 7)$, and the line L_2 be parallel to the vector $2\hat{i} + \hat{j} + 3\hat{k}$ and pass through the point $(4, 3, 5)$. If the line L_3 is parallel to the vector $-3\hat{i} + 5\hat{j} + 16\hat{k}$ and intersects the lines L_1 and L_2 at the points C and D, respectively, then $|\vec{CD}|^2$ is equal to :

Options

1. 290
2. 89
3. 312
4. 171

Question Type : MCQ
 Question ID : 860654844
 Option 1 ID : 8606542864
 Option 2 ID : 8606542862
 Option 3 ID : 8606542865
 Option 4 ID : 8606542863
 Status : Not Answered
 Chosen Option : --

Q.8

Let $y = y(x)$ be the solution of the differential equation $\sec x \frac{dy}{dx} - 2y = 2 + 3\sin x$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $y(0) = -\frac{7}{4}$. Then $y\left(\frac{\pi}{6}\right)$ is equal to :

Options

1. $-\frac{5}{2}$
2. $-\frac{5}{4}$
3. $-3\sqrt{2} - 7$
4. $-3\sqrt{3} - 7$

Question Type : MCQ
 Question ID : 860654844
 Option 1 ID : 8606542881
 Option 2 ID : 8606542880
 Option 3 ID : 8606542879
 Option 4 ID : 8606542878
 Status : Not Answered
 Chosen Option : --

Q.9 If the area of the region $\{(x, y) : 1 - 2x \leq y \leq 4 - x^2, x \geq 0, y \geq 0\}$ is $\frac{\alpha}{\beta}$, $\alpha, \beta \in \mathbb{N}$, $\gcd(\alpha, \beta) = 1$, then the value of $(\alpha + \beta)$ is :

Options

1. 67
2. 85
3. 91
4. 73

Question Type : **MCQ**

Question ID : **860654845**

Option 1 ID : **8606542882**

Option 2 ID : **8606542884**

Option 3 ID : **8606542885**

Option 4 ID : **8606542883**

Status : **Not Answered**

Chosen Option : --

Q.10 Let $a_1, \frac{a_2}{2}, \frac{a_3}{2^2}, \dots, \frac{a_{10}}{2^9}$ be a G.P. of common ratio $\frac{1}{\sqrt{2}}$. If $a_1 + a_2 + \dots + a_{10} = 62$, then a_1 is equal to :

Options

1. $2 - \sqrt{2}$
2. $2(2 - \sqrt{2})$
3. $\sqrt{2} - 1$
4. $2(\sqrt{2} - 1)$

Question Type : **MCQ**

Question ID : **860654832**

Option 1 ID : **8606542833**

Option 2 ID : **8606542832**

Option 3 ID : **8606542831**

Option 4 ID : **8606542830**

Status : **Not Answered**

Chosen Option : --

Q.11 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function such that $f''(x) > 0$ for all $x \in \mathbb{R}$ and $f'(a-1) = 0$, where a is a real number. Let $g(x) = f(\tan^2 x - 2\tan x + a)$, $0 < x < \frac{\pi}{2}$.

Consider the following two statements :

(I) g is increasing in $\left(0, \frac{\pi}{4}\right)$

(II) g is decreasing in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

Then,

Options

1. Only (II) is True
2. Only (I) is True
3. Both (I) and (II) are True
4. Neither (I) nor (II) is True

Question Type : MCQ

Question ID : 860654843

Option 1 ID : 8606542875

Option 2 ID : 8606542874

Option 3 ID : 8606542876

Option 4 ID : 8606542877

Status : Not Answered

Chosen Option : --

Q.12

For the matrices $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} -29 & 49 \\ -13 & 18 \end{bmatrix}$, if $(A^{15} + B) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, then among the following which one is true ?

Options

1. $x = 16, y = 3$
2. $x = 18, y = 11$
3. $x = 5, y = 7$
4. $x = 11, y = 2$

Question Type : MCQ

Question ID : 860654830

Option 1 ID : 8606542823

Option 2 ID : 8606542825

Option 3 ID : 8606542822

Option 4 ID : 8606542824

Status : Not Answered

Chosen Option : --

Q.13 Let one end of a focal chord of the parabola $y^2=16x$ be (16, 16). If P(α, β) divides this focal chord internally in the ratio 5 : 2, then the minimum value of $\alpha + \beta$ is equal to :

Options

1. 5
2. 7
3. 16
4. 22

Question Type : MCQ
Question ID : 860654836
Option 1 ID : 8606542846
Option 2 ID : 8606542847
Option 3 ID : 8606542848
Option 4 ID : 8606542849
Status : Not Answered
Chosen Option : --

Q.14 Let $y^2=12x$ be the parabola with its vertex at O. Let P be a point on the parabola and A be a point on the x -axis such that $\angle OPA = 90^\circ$. Then the locus of the centroid of such triangles OPA is :

Options

1. $y^2 - 4x + 8 = 0$
2. $y^2 - 6x + 4 = 0$
3. $y^2 - 9x + 6 = 0$
4. $y^2 - 2x + 8 = 0$

Question Type : MCQ
Question ID : 860654837
Option 1 ID : 8606542850
Option 2 ID : 8606542851
Option 3 ID : 8606542852
Option 4 ID : 8606542853
Status : Not Answered
Chosen Option : --

Q.15 The positive integer n , for which the solutions of the equation

$x(x+2) + (x+2)(x+4) + \dots + (x+2n-2)(x+2n) = \frac{8n}{3}$ are two consecutive even integers, is :

Options

1. 9
2. 3
3. 12
4. 6

Question Type : MCQ
Question ID : 860654828
Option 1 ID : 8606542816
Option 2 ID : 8606542814
Option 3 ID : 8606542817
Option 4 ID : 8606542815
Status : Not Answered
Chosen Option : --

Q.16 A random variable X takes values 0, 1, 2, 3 with probabilities $\frac{2a+1}{30}$, $\frac{8a-1}{30}$, $\frac{4a+1}{30}$, b respectively, where $a, b \in \mathbb{R}$. Let μ and σ respectively be the mean and standard deviation of X such that $\sigma^2 + \mu^2 = 2$.

Then $\frac{a}{b}$ is equal to :

Options

1. 12
2. 3
3. 60
4. 30

Question Type : MCQ
Question ID : 860654835
Option 1 ID : 8606542844
Option 2 ID : 8606542845
Option 3 ID : 8606542842
Option 4 ID : 8606542843
Status : Not Answered
Chosen Option : --

Q.17 Let the line L pass through the point $(-3, 5, 2)$ and make equal angles with the positive coordinate axes. If the distance of L from the point $(-2, r, 1)$ is $\sqrt{\frac{14}{3}}$, then the sum of all possible values of r is :

Options

1. 16
2. 12
3. 10
4. 6

Question Type : MCQ
Question ID : 860654839
Option 1 ID : 8606542861
Option 2 ID : 8606542860
Option 3 ID : 8606542859
Option 4 ID : 8606542858
Status : Not Answered
Chosen Option : --

Q.18 The largest $n \in \mathbb{N}$, for which 7^n divides $101!$, is :

Options

1. 15
2. 19
3. 16
4. 18

Question Type : MCQ
Question ID : 860654834
Option 1 ID : 8606542841
Option 2 ID : 8606542838
Option 3 ID : 8606542840
Option 4 ID : 8606542839
Status : Not Answered
Chosen Option : --

Q.19

For a triangle ABC, let $\vec{p} = \vec{BC}$, $\vec{q} = \vec{CA}$ and $\vec{r} = \vec{BA}$. If $|\vec{p}| = 2\sqrt{3}$, $|\vec{q}| = 2$ and $\cos\theta = \frac{1}{\sqrt{3}}$,

where θ is the angle between \vec{p} and \vec{q} , then $|\vec{p} \times (\vec{q} - 3\vec{r})|^2 + 3|\vec{r}|^2$ is equal to :

Options

1. 340
2. 220
3. 200
4. 410

Question Type : MCQ

Question ID : 860654841

Option 1 ID : 8606542868

Option 2 ID : 8606542867

Option 3 ID : 8606542866

Option 4 ID : 8606542869

Status : Not Answered

Chosen Option : --

Q.20

If the system of equations

$$3x + y + 4z = 3$$

$$2x + \alpha y - z = -3$$

$$x + 2y + z = 4$$

has no solution, then the value of α is equal to :

Options

1. 19
2. 13
3. 4
4. 23

Question Type : MCQ

Question ID : 860654831

Option 1 ID : 8606542828

Option 2 ID : 8606542827

Option 3 ID : 8606542826

Option 4 ID : 8606542829

Status : Not Answered

Chosen Option : --

Section : Mathematics Section B

Q.21

Let the maximum value of $(\sin^{-1}x)^2 + (\cos^{-1}x)^2$ for $x \in \left[-\frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}}\right]$ be $\frac{m}{n}\pi^2$, where $\gcd(m, n) = 1$.

Then $m+n$ is equal to _____.

Given --

Answer :

Question Type : **SA**
Question ID : **860654848**
Status : **Not Answered**

Q.22

If $\left(\frac{1}{15C_0} + \frac{1}{15C_1}\right)\left(\frac{1}{15C_1} + \frac{1}{15C_2}\right)\dots\left(\frac{1}{15C_{12}} + \frac{1}{15C_{13}}\right) = \frac{\alpha^{13}}{14C_0 14C_1 \dots 14C_{12}}$, then 30α is equal to _____.

Given --

Answer :

Question Type : **SA**
Question ID : **860654846**
Status : **Not Answered**

Q.23

Let $[\cdot]$ denote the greatest integer function and $f(x) = \lim_{n \rightarrow \infty} \frac{1}{n^3} \sum_{k=1}^n \left[\frac{k^2}{3^x} \right]$. Then $12 \sum_{j=1}^{\infty} f(j)$ is equal to _____.

Given --

Answer :

Question Type : **SA**
Question ID : **860654849**
Status : **Not Answered**

Q.24

If P is a point on the circle $x^2 + y^2 = 4$, Q is a point on the straight line $5x + y + 2 = 0$ and $x - y + 1 = 0$ is the perpendicular bisector of PQ, then 13 times the sum of abscissa of all such points P is _____.

Given --

Answer :

Question Type : **SA**
Question ID : **860654847**
Status : **Not Answered**

Q.25

If $\int_0^1 4 \cot^{-1}(1-2x+4x^2) dx = a \tan^{-1}(2) - b \log_e(5)$, where $a, b \in \mathbb{N}$, then $(2a+b)$ is equal to _____.

Given --

Answer :

Question Type : **SA**
Question ID : **860654850**
Status : **Not Answered**

Section : Physics Section A

Q.26 Consider two identical metallic spheres of radius R each having charge Q and mass m . Their centers have an initial separation of $4R$. Both the spheres are given an initial speed of u towards each other. The minimum value of u , so that they can just touch each other is :

(Take $k = \frac{1}{4 \pi \epsilon_0}$ and assume $kQ^2 > Gm^2$ where G is the Gravitational constant)

Options

1. $\sqrt{\frac{kQ^2}{4mR} \left(1 - \frac{Gm^2}{kQ^2}\right)}$

2. $\sqrt{\frac{kQ^2}{2mR} \left(1 - \frac{Gm^2}{kQ^2}\right)}$

3. $\sqrt{\frac{kQ^2}{2mR} \left(1 - \frac{Gm^2}{2kQ^2}\right)}$

4. $\sqrt{\frac{kQ^2}{4mR} \left(1 + \frac{Gm^2}{kQ^2}\right)}$

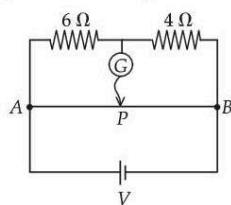
Question Type : MCQ
 Question ID : 860654865
 Option 1 ID : 8606542948
 Option 2 ID : 8606542949
 Option 3 ID : 8606542950
 Option 4 ID : 8606542947
 Status : Answered
 Chosen Option : 1

Q.27 Surface tension of two liquids (having same densities), T_1 and T_2 , are measured using capillary rise method utilizing two tubes with inner radii of r_1 and r_2 where $r_1 > r_2$. The measured liquid heights in these tubes are h_1 and h_2 respectively. [Ignore the weight of the liquid about the lowest point of miniscus]. The heights h_1 and h_2 and surfaces tensions T_1 and T_2 satisfy the relation :

Options

1. $h_1 > h_2$ and $T_1 < T_2$

2. $h_1 = h_2$ and $T_1 = T_2$


3. $h_1 < h_2$ and $T_1 = T_2$

4. $h_1 > h_2$ and $T_1 = T_2$

Question Type : MCQ
 Question ID : 860654858
 Option 1 ID : 8606542920
 Option 2 ID : 8606542919
 Option 3 ID : 8606542922
 Option 4 ID : 8606542921
 Status : Marked For Review
 Chosen Option : 3

Q.28

The total length of potentiometer wire AB is 50 cm in the arrangement as shown in figure. If P is the point where the galvanometer shows zero reading then the length AP is _____ cm.

Options

1. 30
2. 25
3. 15
4. 20

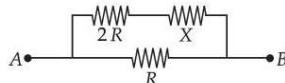
Question Type : MCQ
Question ID : 860654863
Option 1 ID : 8606542939
Option 2 ID : 8606542942
Option 3 ID : 8606542941
Option 4 ID : 8606542940
Status : Answered
Chosen Option : 1

Q.29 Keeping the significant figures in view, the sum of the physical quantities 52.01 m, 153.2 m and 0.123 m is :

Options

1. 205.33 m
2. 205.333 m
3. 205 m
4. 205.3 m

Question Type : MCQ
Question ID : 860654851
Option 1 ID : 8606542893
Option 2 ID : 8606542894
Option 3 ID : 8606542891
Option 4 ID : 8606542892
Status : Marked For Review
Chosen Option : 4

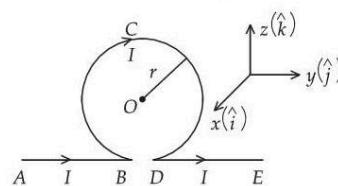

Q.30 Two cars *A* and *B* each of mass 10^3 kg are moving on parallel tracks separated by a distance of 10 m, in same direction with speeds 72 km/h and 36 km/h. The magnitude of angular momentum of car *A* with respect to car *B* is _____ J.s.

Options

1. 3×10^5
2. 10^5
3. 3.6×10^5
4. 2×10^5

Question Type : MCQ
Question ID : 860654855
Option 1 ID : 8606542908
Option 2 ID : 8606542907
Option 3 ID : 8606542909
Option 4 ID : 8606542910
Status : Marked For Review
Chosen Option : 2

Q.31 Two known resistances of $R \Omega$ and $2R \Omega$ and one unknown resistance $X \Omega$ are connected in a circuit as shown in the figure. If the equivalent resistance between points *A* and *B* in the circuit is $X \Omega$, then the value of X is _____ Ω .


Options

1. R
2. $(\sqrt{3} - 1)R$
3. $2(\sqrt{3} - 1)R$
4. $(\sqrt{3} + 1)R$

Question Type : MCQ
Question ID : 860654862
Option 1 ID : 8606542935
Option 2 ID : 8606542937
Option 3 ID : 8606542938
Option 4 ID : 8606542936
Status : Answered
Chosen Option : 2

Q.32

An infinitely long straight wire carrying current I is bent in a planer shape as shown in the diagram. The radius of the circular part is r . The magnetic field at the centre O of the circular loop is :

Options

1. $\frac{\mu_0}{2\pi} \frac{I}{r} (\pi - 1) \hat{i}$
2. $\frac{\mu_0}{2\pi} \frac{I}{r} (\pi + 1) \hat{i}$
3. $-\frac{\mu_0}{2\pi} \frac{I}{r} (\pi - 1) \hat{i}$
4. $-\frac{\mu_0}{2\pi} \frac{I}{r} (\pi + 1) \hat{i}$

Question Type : MCQ

Question ID : 860654864

Option 1 ID : 8606542945

Option 2 ID : 8606542946

Option 3 ID : 8606542944

Option 4 ID : 8606542943

Status : Marked For Review

Chosen Option : 3

Q.33 The energy of an electron in an orbit of the Bohr's atom is $-0.04E_0$ eV where E_0 is the ground state energy. If L is the angular momentum of the electron in this orbit and h is the Planck's constant, then

$$\frac{2\pi L}{h} \text{ is } \underline{\hspace{2cm}} :$$

Options

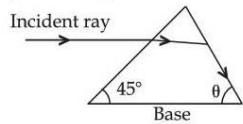
1. 4
2. 6
3. 5
4. 2

Question Type : MCQ

Question ID : 860654869

Option 1 ID : 8606542964

Option 2 ID : 8606542966


Option 3 ID : 8606542963

Option 4 ID : 8606542965

Status : Marked For Review

Chosen Option : 3

Q.34 As shown in the diagram, when the incident ray is parallel to base of the prism, the emergent ray grazes along the second surface.

If refractive index of the material of prism is $\sqrt{2}$, the angle θ of prism is.

Options

1. 90°
2. 45°
3. 75°
4. 60°

Question Type : MCQ

Question ID : 860654868

Option 1 ID : 8606542962

Option 2 ID : 8606542959

Option 3 ID : 8606542961

Option 4 ID : 8606542960

Status : Marked For Review

Chosen Option : 4

Q.35 Given below are two statements :

Statement I : In a Young's double slit experiment, the angular separation of fringes will increase as the screen is moved away from the plane of the slits

Statement II : In a Young's double slit experiment, the angular separation of fringes will increase when monochromatic source is replaced by another monochromatic source of higher wavelength

In the light of the above statements, choose the **correct answer** from the options given below :

Options

1. **Both Statement I and Statement II are true**
2. **Both Statement I and Statement II are false**
3. **Statement I is true but Statement II is false**
4. **Statement I is false but Statement II is true**

Question Type : MCQ

Question ID : 860654867

Option 1 ID : 8606542955

Option 2 ID : 8606542956

Option 3 ID : 8606542957

Option 4 ID : 8606542958

Status : Marked For Review

Chosen Option : 4

Q.36 The kinetic energy of a simple harmonic oscillator is oscillating with angular frequency of

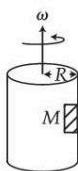
176 rad/s. The frequency of this simple harmonic oscillator is _____ Hz. $\left[\text{take } \pi = \frac{22}{7} \right]$

Options

1. 28
2. 176
3. 14
4. 88

Question Type : MCQ
Question ID : 860654860
Option 1 ID : 8606542928
Option 2 ID : 8606542927
Option 3 ID : 8606542929
Option 4 ID : 8606542930
Status : Answered
Chosen Option : 3

Q.37 A body of mass 2 kg is moving along x -direction such that its displacement as function of time is given by $x(t) = \alpha t^2 + \beta t + \gamma$ m, where $\alpha = 1 \text{ m/s}^2$, $\beta = 1 \text{ m/s}$ and $\gamma = 1 \text{ m}$. The work done on the body during the time interval $t = 2 \text{ s}$ to $t = 3 \text{ s}$, is _____ J.


Options

1. 42
2. 24
3. 12
4. 49

Question Type : MCQ
Question ID : 860654856
Option 1 ID : 8606542914
Option 2 ID : 8606542911
Option 3 ID : 8606542913
Option 4 ID : 8606542912
Status : Answered
Chosen Option : 2

Q.38

A large drum having radius R is spinning around its axis with angular velocity ω , as shown in figure. The minimum value of ω so that a body of mass M remains stuck to the inner wall of the drum, taking the coefficient of friction between the drum surface and mass M as μ , is :

Options

1. $\sqrt{\frac{\mu g}{R}}$
2. $\sqrt{\frac{g}{\mu R}}$
3. $\sqrt{\frac{2g}{\mu R}}$
4. $\sqrt{\frac{g}{2\mu R}}$

Question Type : **MCQ**

Question ID : **860654857**

Option 1 ID : **8606542918**

Option 2 ID : **8606542916**

Option 3 ID : **8606542917**

Option 4 ID : **8606542915**

Status : **Answered**

Chosen Option : **2**

Q.39 A capacitor C is first charged fully with potential difference of V_0 and disconnected from the battery. The charged capacitor is connected across an inductor having inductance L . In t s 25% of the initial energy in the capacitor is transferred to the inductor. The value of t is _____ s.

Options

1. $\pi\sqrt{\frac{LC}{2}}$
2. $\frac{\pi\sqrt{LC}}{6}$
3. $\frac{\pi\sqrt{LC}}{3}$
4. $\frac{\pi\sqrt{LC}}{2}$

Question Type : MCQ
 Question ID : 860654861
 Option 1 ID : 8606542931
 Option 2 ID : 8606542934
 Option 3 ID : 8606542933
 Option 4 ID : 8606542932
 Status : Not Answered
 Chosen Option : --

Q.40 A spherical body of radius r and density σ falls freely through a viscous liquid having density ρ and viscosity η and attains a terminal velocity v_0 . Estimated maximum error in the quantity η is : (Ignore errors associated with σ , ρ and g , gravitational acceleration)

Options

1. $2\left[\frac{\Delta r}{r} - \frac{\Delta v_0}{v_0}\right]$
2. $2\left[\frac{\Delta r}{r} + \frac{\Delta v_0}{v_0}\right]$
3. $\frac{2\Delta r}{r} + \frac{\Delta v_0}{v_0}$
4. $2\frac{\Delta r}{r} - \frac{\Delta v_0}{v_0}$

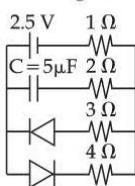
Question Type : MCQ
 Question ID : 860654852
 Option 1 ID : 8606542896
 Option 2 ID : 8606542895
 Option 3 ID : 8606542898
 Option 4 ID : 8606542897
 Status : Answered
 Chosen Option : 3

Q.41 A river of width 200 m is flowing from west to east with a speed of 18 km/h. A boat, moving with speed of 36 km/h in still water, is made to travel one-round trip (bank to bank of the river). Minimum time taken by the boat for this journey and also the displacement along the river bank are _____ and _____ respectively.

Options

1. 20 s and 100 m
2. 40 s and 100 m
3. 40 s and 0 m
4. 40 s and 200 m

Question Type : MCQ
Question ID : 860654853
Option 1 ID : 8606542899
Option 2 ID : 8606542902
Option 3 ID : 8606542901
Option 4 ID : 8606542900
Status : Answered
Chosen Option : 4


Q.42 The r.m.s. speed of oxygen molecules at 47 °C is equal to that of the hydrogen molecules kept at _____ °C. (Mass of oxygen molecule/mass of hydrogen molecule = 32/2)

Options

1. -20
2. -253
3. -235
4. -100

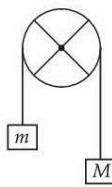
Question Type : MCQ
Question ID : 860654859
Option 1 ID : 8606542923
Option 2 ID : 8606542924
Option 3 ID : 8606542926
Option 4 ID : 8606542925
Status : Answered
Chosen Option : 2

Q.43 The charge stored by the capacitor C in the given circuit in the steady state is _____ μC .

Options

1. 10
2. 7.5
3. 5
4. 12.5

Question Type : MCQ
Question ID : 860654870
Option 1 ID : 8606542968
Option 2 ID : 8606542969
Option 3 ID : 8606542967
Option 4 ID : 8606542970
Status : Answered
Chosen Option : 1


Q.44 A battery with EMF E and internal resistance r is connected across a resistance R . The power consumption in R will be maximum when :

Options

1. $R = r$
2. $R = r/2$
3. $R = \sqrt{2} r$
4. $R = 2r$

Question Type : MCQ
Question ID : 860654866
Option 1 ID : 8606542952
Option 2 ID : 8606542951
Option 3 ID : 8606542954
Option 4 ID : 8606542953
Status : Answered
Chosen Option : 1

Q.45 The pulley shown in figure is made using a thin rim and two rods of length equal to diameter of the rim. The rim and each rod have a mass of M . Two blocks of mass of M and m are attached to two ends of a light string passing over the pulley, which is hinged to rotate freely in vertical plane about its center. The magnitudes of the acceleration experienced by the blocks is _____ (assume no slipping of string on pulley).

Options

$$1. \frac{(M-m)g}{\left[\left(\frac{13}{6}\right)M+m\right]}$$

$$2. \frac{(M-m)g}{\left[\left(\frac{8}{3}\right)M+m\right]}$$

$$3. \frac{(M-m)g}{2M+m}$$

$$4. \frac{(M-m)g}{M+m}$$

Question Type : MCQ
 Question ID : 860654854
 Option 1 ID : 8606542903
 Option 2 ID : 8606542904
 Option 3 ID : 8606542906
 Option 4 ID : 8606542905
 Status : Answered
 Chosen Option : 1

Section : Physics Section B

Q.46 An electromagnetic wave of frequency 100 MHz propagates through a medium of conductivity, $\sigma = 10 \text{ mho/m}$. The ratio of maximum conduction current density to maximum displacement current density is _____.

$$\left[\text{Take } \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2/\text{C}^2 \right]$$

Given--
 Answer :

Question Type : SA
 Question ID : 860654873
 Status : Not Answered

Q.47

A diatomic gas ($\gamma=1.4$) does 100 J of work when it is expanded isobarically. Then the heat given to the gas _____ J.

Given **350**

Answer :

Question Type : **SA**
Question ID : **860654872**
Status : **Answered**

Q.48

In a Young's double slit experiment set up, the two slits are kept 0.4. mm apart and screen is placed at 1 m from slits. If a thin transparent sheet of thickness $20 \mu\text{m}$ is introduced in front of one of the slits then center bright fringe shifts by 20 mm on the screen. The refractive index of transparent sheet is given by $\frac{\alpha}{10}$, where α is _____.

Given --

Answer :

Question Type : **SA**
Question ID : **860654874**
Status : **Not Answered**

Q.49

A particle having electric charge $3 \times 10^{-19} \text{ C}$ and mass $6 \times 10^{-27} \text{ kg}$ is accelerated by applying an electric potential of 1.21 V. Wavelength of the matter wave associated with the particle is $\alpha \times 10^{-12} \text{ m}$. The value of α is _____. (Take Planck's constant = $6.6 \times 10^{-34} \text{ J.s}$)

Given **10**

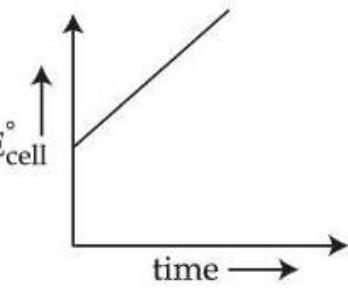
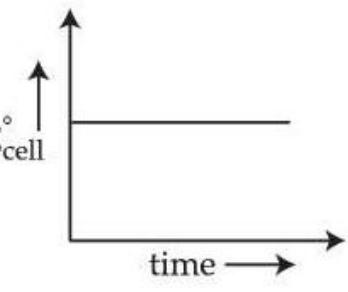
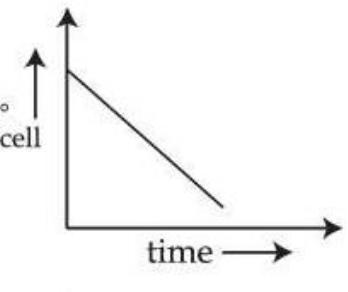
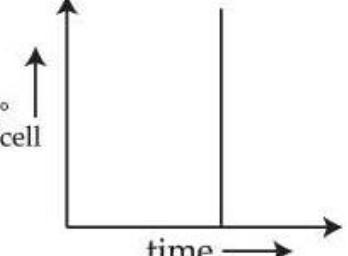
Answer :

Question Type : **SA**
Question ID : **860654875**
Status : **Answered**

Q.50

The terminal velocity of a metallic ball of radius 6 mm in a viscous fluid is 20 cm/s. The terminal velocity of another ball of same material and having radius 3 mm in the same fluid will be _____ cm/s.

Given **5**





Answer :

Question Type : **SA**
Question ID : **860654871**
Status : **Answered**

Section : Chemistry Section A

Q.51 For a closed circuit Daniell cell, which of the following plots is the accurate one at a given temperature?

Options

1.
2.
3.
4.

Question Type : MCQ
Question ID : 860654880
Option 1 ID : 8606542993
Option 2 ID : 8606542995
Option 3 ID : 8606542994
Option 4 ID : 8606542992
Status : Not Answered
Chosen Option : --

Q.52

Given below are four compounds :

(a) n-propyl chloride	(b) iso-propyl chloride
(c) sec-butyl chloride	(d) neo-pentyl chloride

Percentage of carbon in the one which exhibits optical isomerism is :

Options

1. 56
2. 40
3. 46
4. 52

Question Type : MCQ
 Question ID : 860654890
 Option 1 ID : 8606543033
 Option 2 ID : 8606543035
 Option 3 ID : 8606543034
 Option 4 ID : 8606543032
 Status : Answered
 Chosen Option : 4

Q.53

Given below are two statements :

Statement I : Crystal Field Stabilization Energy (CFSE) of $[\text{Cr}(\text{H}_2\text{O})_6]^{2+}$ is greater than that of $[\text{Mn}(\text{H}_2\text{O})_6]^{2+}$.

Statement II : Potassium ferricyanide has a greater spin-only magnetic moment than sodium ferrocyanide.

In the light of the above statements, choose the **correct** answer from the options given below :

Options

1. **Statement I is true but Statement II is false**
2. **Statement I is false but Statement II is true**
3. **Both Statement I and Statement II are true**
4. **Both Statement I and Statement II are false**

Question Type : MCQ
 Question ID : 860654885
 Option 1 ID : 8606543014
 Option 2 ID : 8606543015
 Option 3 ID : 8606543012
 Option 4 ID : 8606543013
 Status : Marked For Review
 Chosen Option : 1

Q.54 The correct statements are :

- A. Activation energy for enzyme catalysed hydrolysis of sucrose is lower than that of acid catalysed hydrolysis.
- B. During denaturation, secondary and tertiary structures of a protein are destroyed but primary structure remains intact.
- C. Nucleotides are joined together by glycosidic linkage between C₁ and C₄ carbons of the pentose sugar.
- D. Quaternary structure of proteins represents overall folding of the polypeptide chain.

Choose the correct answer from the options given below :

Options

1. A, B and D Only
2. A and B Only
3. B and C Only
4. A, C and D Only

Question Type : MCQ
Question ID : 860654894
Option 1 ID : 8606543049
Option 2 ID : 8606543048
Option 3 ID : 8606543050
Option 4 ID : 8606543051
Status : Not Answered
Chosen Option : --

Q.55 By usual analysis, 1.00 g of compound (X) gave 1.79 g of magnesium pyrophosphate. The percentage of phosphorus in compound (X) is : (nearest integer)
(Given, molar mass in g mol⁻¹ : O = 16, Mg = 24, P = 31)

Options

1. 20
2. 40
3. 30
4. 50

Question Type : MCQ
Question ID : 860654886
Option 1 ID : 8606543016
Option 2 ID : 8606543018
Option 3 ID : 8606543017
Option 4 ID : 8606543019
Status : Not Answered
Chosen Option : --

Q.56 Aqueous HCl reacts with $\text{MnO}_2(s)$ to form $\text{MnCl}_2(aq)$, $\text{Cl}_2(g)$ and $\text{H}_2\text{O}(l)$. What is the weight (in g) of Cl_2 liberated when 8.7 g of $\text{MnO}_2(s)$ is reacted with excess aqueous HCl solution ? (Given Molar mass in g mol⁻¹ Mn=55, Cl=35.5, O=16, H=1)

Options

1. 21.3
2. 71
3. 14.2
4. 7.1

Question Type : MCQ

Question ID : 860654876

Option 1 ID : 8606542977

Option 2 ID : 8606542979

Option 3 ID : 8606542976

Option 4 ID : 8606542978

Status : Marked For Review

Chosen Option : 3

Q.57 Match List - I with List - II.

List - I

Reagents

- A. H_2 , Pd-BaSO₄
- B. SnCl_2 , HCl
- C. CrO_2Cl_2 , CS₂
- D. CO, HCl, Anhyd. AlCl₃

List - II

Reaction Name (Involving aldehydes)

- I. Etard Reaction
- II. Rosenmund Reduction
- III. Gatterman - Koch Reaction
- IV. Stephen Reaction

Choose the correct answer from the options given below :

Options

1. A-II, B-III, C-IV, D-I
2. A-II, B-IV, C-I, D-III
3. A-IV, B-I, C-II, D-III
4. A-IV, B-III, C-I, D-II

Question Type : MCQ

Question ID : 860654892

Option 1 ID : 8606543043

Option 2 ID : 8606543042

Option 3 ID : 8606543040

Option 4 ID : 8606543041

Status : Answered

Chosen Option : 2

Q.58 Given below are two statements :

Statement I : The correct order in terms of bond dissociation enthalpy is $\text{Cl}_2 > \text{Br}_2 > \text{F}_2 > \text{I}_2$.

Statement II : The correct trend in the covalent character of the metal halides is $[\text{SnCl}_4 > \text{SnCl}_2]$, $[\text{PbCl}_4 > \text{PbCl}_2]$ and $[\text{UF}_4 > \text{UF}_6]$.

In the light of the above statements, choose the correct answer from the options given below :

Options

1. Both **Statement I** and **Statement II** are true
2. **Statement I** is false but **Statement II** is true
3. **Statement I** is true but **Statement II** is false
4. Both **Statement I** and **Statement II** are false

Question Type : MCQ

Question ID : 860654883

Option 1 ID : 8606543004

Option 2 ID : 8606543007

Option 3 ID : 8606543006

Option 4 ID : 8606543005

Status : Marked For Review

Chosen Option : 3

Q.59 Consider the following spectral lines for atomic hydrogen :

- A. First line of Paschen series
- B. Second line of Balmer series
- C. Third line of Paschen series
- D. Fourth line of Brackett series

The correct arrangement of the above lines in ascending order of energy is :

Options

1. $C < D < B < A$
2. $A < B < C < D$
3. $D < C < A < B$
4. $D < A < C < B$

Question Type : MCQ

Question ID : 860654877

Option 1 ID : 8606542983

Option 2 ID : 8606542980

Option 3 ID : 8606542982

Option 4 ID : 8606542981

Status : Answered

Chosen Option : 2

Q.60 Decomposition of A is a first order reaction at T(K) and is given by $A(g) \longrightarrow B(g) + C(g)$.

In a closed 1 L vessel, 1 bar A(g) is allowed to decompose at T(K). After 100 minutes, the total pressure was 1.5 bar. What is the rate constant (in min^{-1}) of the reaction? ($\log 2 = 0.3$)

Options

1. 6.9×10^{-4}
2. 6.9×10^{-1}
3. 6.9×10^{-2}
4. 6.9×10^{-3}

Question Type : MCQ

Question ID : 860654881

Option 1 ID : 8606542999

Option 2 ID : 8606542997

Option 3 ID : 8606542996

Option 4 ID : 8606542998

Status : Answered

Chosen Option : 4

Q.61 The correct order of the rate of the reaction for the following reaction with respect to nucleophiles is :

Options

1. $\text{CH}_3\text{COO}^- > \text{PhO}^- > \text{^-OH} > \text{ClO}_4^-$
2. $\text{ClO}_4^- > \text{CH}_3\text{COO}^- > \text{^-OH} > \text{PhO}^-$
3. $\text{^-OH} > \text{PhO}^- > \text{CH}_3\text{COO}^- > \text{ClO}_4^-$
4. $\text{PhO}^- > \text{^-OH} > \text{CH}_3\text{COO}^- > \text{ClO}_4^-$

Question Type : MCQ

Question ID : 860654887

Option 1 ID : 8606543021

Option 2 ID : 8606543023

Option 3 ID : 8606543020

Option 4 ID : 8606543022

Status : Not Answered

Chosen Option : --

Q.62

Consider the following data :

$$\Delta_f H^\ominus(\text{methane, g}) = -X \text{ kJ mol}^{-1}$$

$$\text{Enthalpy of sublimation of graphite} = Y \text{ kJ mol}^{-1}$$

$$\text{Dissociation enthalpy of H}_2 = Z \text{ kJ mol}^{-1}$$

The bond enthalpy of C–H bond is given by :

Options

1. $\frac{X + Y + 4Z}{2}$

2. $\frac{X + Y + 2Z}{4}$

3. $\frac{-X + Y + Z}{4}$

4. $X + Y + Z$

Question Type : MCQ

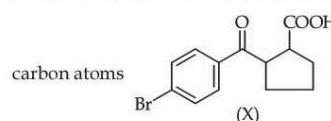
Question ID : 860654879

Option 1 ID : 8606542990

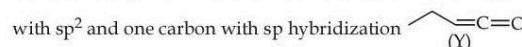
Option 2 ID : 8606542989

Option 3 ID : 8606542991

Option 4 ID : 8606542988


Status : Answered

Chosen Option : 2


Q.63

Given below are two statements :

Statement I : Compound (X), shown below, dissolves in NaHCO_3 solution and has two chiral

Statement II : Compound (Y), shown below, has two carbons with sp^3 hybridization, one carbon with sp^2 and one carbon with sp hybridization

In the light of the above statements, choose the **correct** answer from the options given below :

Options

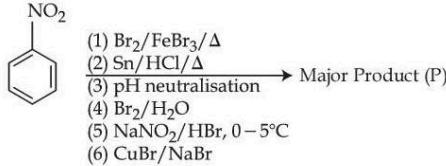
1. **Statement I is false but Statement II is true**
2. **Both Statement I and Statement II are false**
3. **Both Statement I and Statement II are true**
4. **Statement I is true but Statement II is false**

Question Type : MCQ

Question ID : 860654888

Option 1 ID : 8606543027

Option 2 ID : 8606543025

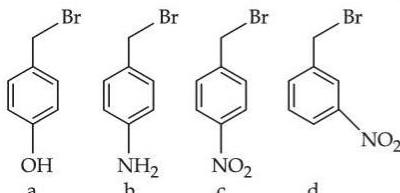

Option 3 ID : 8606543024

Option 4 ID : 8606543026

Status : Not Answered

Chosen Option : --

Q.64


Consider the above sequence of reactions. The number of bromine atom(s) in the final product (P) will be :

Options

1. 3
2. 5
3. 6
4. 1

Question Type : MCQ
Question ID : 860654893
Option 1 ID : 8606543046
Option 2 ID : 8606543045
Option 3 ID : 8606543047
Option 4 ID : 8606543044
Status : Not Answered
Chosen Option : --

Q.65 The correct order of reactivity of the following benzyl halides towards reaction with KCN is :

Options

1. $b > a > c > d$
2. $a > b > c > d$
3. $a > b > d > c$
4. $b > a > d > c$

Question Type : MCQ
Question ID : 860654891
Option 1 ID : 8606543038
Option 2 ID : 8606543039
Option 3 ID : 8606543037
Option 4 ID : 8606543036
Status : Answered
Chosen Option : 4

Q.66 Given below are some of the statements about Mn and Mn_2O_7 . Identify the correct statements.

- A. Mn forms the oxide Mn_2O_7 , in which Mn is in its highest oxidation state.
- B. Oxygen stabilizes the Mn in higher oxidation states by forming multiple bonds with Mn.
- C. Mn_2O_7 is an ionic oxide.
- D. The structure of Mn_2O_7 consists of one bridged oxygen.

Choose the **correct** answer from the options given below :

Options

1. A, B and D Only
2. A, C and D Only
3. A, B and C Only
4. A, B, C and D

Question Type : MCQ
Question ID : 860654884
Option 1 ID : 8606543009
Option 2 ID : 8606543010
Option 3 ID : 8606543011
Option 4 ID : 8606543008
Status : Answered
Chosen Option : 1

Q.67 On heating a mixture of common salt and $K_2Cr_2O_7$ in equal amount along with concentrated H_2SO_4 in a test tube, a gas is evolved. Formula of the gas evolved and oxidation state of the central metal atom in the gas respectively are :

Options

1. CrO_2Cl_2 and +6
2. CrO_2Cl_2 and +5
3. $Cr_2O_2Cl_2$ and +3
4. $Cr_2O_2Cl_2$ and +6

Question Type : MCQ
Question ID : 860654895
Option 1 ID : 8606543053
Option 2 ID : 8606543052
Option 3 ID : 8606543054
Option 4 ID : 8606543055
Status : Marked For Review
Chosen Option : 1

Q.68 Given below are two statements :

Statement I : The correct order in terms of atomic/ionic radii is Al>Mg>Mg²⁺>Al³⁺.

Statement II : The correct order in terms of the magnitude of electron gain enthalpy is Cl>Br>S>O.

In the light of the above statements, choose the **correct** answer from the options given below :

Options

1. Both **Statement I** and **Statement II** are false
2. Both **Statement I** and **Statement II** are true
3. **Statement I** is false but **Statement II** is true
4. **Statement I** is true but **Statement II** is false

Question Type : MCQ

Question ID : 860654882

Option 1 ID : 8606543001

Option 2 ID : 8606543000

Option 3 ID : 8606543003

Option 4 ID : 8606543002

Status : Marked For Review

Chosen Option : 3

Q.69 Match List - I with List - II.

List - I

Pair of Compounds

A. 2-Methylpropene and but-1-ene
B. Cis-but-2-ene and trans-but-2-ene
C. 2-Butanol and diethyl ether
D. But-1-ene and but-2-ene

List - II

Type of Isomers

I. Stereoisomers
II. Position isomers
III. Chain isomers
IV. Functional group isomers

Choose the **correct** answer from the options given below :

Options

1. A-II, B-I, C-IV, D-III
2. A-I, B-IV, C-III, D-II
3. A-III, B-I, C-II, D-IV
4. A-III, B-I, C-IV, D-II

Question Type : MCQ

Question ID : 860654889

Option 1 ID : 8606543030

Option 2 ID : 8606543029

Option 3 ID : 8606543028

Option 4 ID : 8606543031

Status : Answered

Chosen Option : 4

Q.70 The correct increasing order of C – H(A), C – O(B), C = O(C) and C ≡ N(D) bonds in terms of covalent bond length is :

Options

1. A < D < C < B
2. A < B < C < D
3. D < C < B < A
4. D < C < A < B

Question Type : MCQ
Question ID : 860654878
Option 1 ID : 8606542985
Option 2 ID : 8606542984
Option 3 ID : 8606542986
Option 4 ID : 8606542987
Status : Answered
Chosen Option : 3

Section : Chemistry Section B

Q.71 The first and second ionization constants of H_2X are 2.5×10^{-8} and 1.0×10^{-13} respectively. The concentration of X^{2-} in 0.1 M H_2X solution is _____ $\times 10^{-15}$ M. (Nearest Integer)

Given --

Answer :

Question Type : SA
Question ID : 860654898
Status : Not Answered

Q.72 The osmotic pressure of a living cell is 12 atm at 300 K. The strength of sodium chloride solution that is isotonic with the living cell at this temperature is _____ g L^{-1} . (Nearest integer)

Given : $R = 0.08 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Assume complete dissociation of NaCl

(Given : Molar mass of Na and Cl are 23 and 35.5 g mol^{-1} respectively.)

Given 15

Answer :

Question Type : SA
Question ID : 860654897
Status : Answered

Q.73 Identify the metal ions among Co^{2+} , Ni^{2+} , Fe^{2+} , V^{3+} and Ti^{2+} having a spin-only magnetic moment value more than 3.0 BM. The sum of unpaired electrons present in the high spin octahedral complexes formed by those metal ions is _____.

Given 7

Answer :

Question Type : SA
Question ID : 860654900
Status : Answered

Q.74

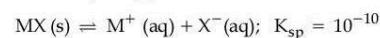
A substance 'X' (1.5 g) dissolved in 150 g of a solvent 'Y' (molar mass = 300 g mol⁻¹) led to an elevation of the boiling point by 0.5 K. The relative lowering in the vapour pressure of the solvent 'Y' is _____ $\times 10^{-2}$. (nearest integer)

[Given : K_b of the solvent = 5.0 K kg mol⁻¹]

Assume the solution to be dilute and no association or dissociation of X takes place in solution.

Given 3

Answer :


Question Type : **SA**

Question ID : **860654896**

Status : **Answered**

Q.75

MX is a sparingly soluble salt that follows the given solubility equilibrium at 298 K.

If the standard reduction potential for $M^+(aq) \xrightarrow{+e^-} M(s)$ is $(E_{M^+/M}^\ominus) = 0.79V$, then the value of

the standard reduction potential for the metal/metal insoluble salt electrode $E_{X^-/MX(s)/M}^\ominus$ is _____ mV. (nearest integer)

[Given : $\frac{2.303 RT}{F} = 0.059 V$]

Given 495

Answer :

Question Type : **SA**

Question ID : **860654899**

Status : **Answered**