

NTA JEE Mains Jan 2026

Application No	
Candidate Name	
Roll No.	
Test Date	28/01/2026
Test Time	3:00 PM - 6:00 PM
Subject	B. Tech

Section : Mathematics Section A

Q.1 Let $P_1 : y=4x^2$ and $P_2 : y=x^2+27$ be two parabolas. If the area of the bounded region enclosed between P_1 and P_2 is six times the area of the bounded region enclosed between the line $y=\alpha x$, $\alpha>0$ and P_1 , then α is equal to :

Options

1. 8
2. 15
3. 6
4. 12

Question Type : MCQ
 Question ID : 8606541670
 Option 1 ID : 8606545688
 Option 2 ID : 8606545690
 Option 3 ID : 8606545687
 Option 4 ID : 8606545689
 Status : Not Answered
 Chosen Option : --

Q.2 Let $f(x)=\int \frac{dx}{x^{\frac{2}{3}}+2x^{\frac{1}{2}}}$ be such that $f(0) = -26 + 24 \log_e(2)$. If $f(1) = a + b \log_e(3)$, where $a, b \in \mathbb{Z}$, then $a + b$ is equal to :

Options

1. -11
2. -5
3. -26
4. -18

Question Type : MCQ
 Question ID : 8606541668
 Option 1 ID : 8606545681
 Option 2 ID : 8606545682
 Option 3 ID : 8606545679
 Option 4 ID : 8606545680
 Status : Not Answered
 Chosen Option : --

Q.3

Given below are two statements :

Statement I : $25^{13} + 20^{13} + 8^{13} + 3^{13}$ is divisible by 7.

Statement II : The integral part of $(7 + 4\sqrt{3})^{25}$ is an odd number.

In the light of the above statements, choose the **correct answer** from the options given below :

Options

1. **Statement I is false but Statement II is true**
2. **Statement I is true but Statement II is false**
3. **Both Statement I and Statement II are false**
4. **Both Statement I and Statement II are true**

Question Type : MCQ

Question ID : 8606541657

Option 1 ID : 8606545638

Option 2 ID : 8606545637

Option 3 ID : 8606545636

Option 4 ID : 8606545635

Status : **Not Attempted and Marked For Review**

Chosen Option : --

Q.4

Let the ellipse $E: \frac{x^2}{144} + \frac{y^2}{169} = 1$ and the hyperbola $H: \frac{x^2}{16} - \frac{y^2}{\lambda^2} = -1$ have the same foci. If e and L

respectively denote the eccentricity and the length of the latus rectum of H , then the value of $24(e + L)$ is :

Options

1. 67
2. 296
3. 148
4. 126

Question Type : MCQ

Question ID : 8606541662

Option 1 ID : 8606545655

Option 2 ID : 8606545658

Option 3 ID : 8606545657

Option 4 ID : 8606545656

Status : **Answered**

Chosen Option : 2

Q.5

Let the arithmetic mean of $\frac{1}{a}$ and $\frac{1}{b}$ be $\frac{5}{16}$, $a > 2$. If α is such that $a, 4, \alpha, b$ are in A.P., then the equation $\alpha x^2 - ax + 2(\alpha - 2b) = 0$ has :

Options

1. one root in $(1, 4)$ and another in $(-2, 0)$
2. complex roots of magnitude less than 2
3. both roots in the interval $(-2, 0)$
4. one root in $(0, 2)$ and another in $(-4, -2)$

Question Type : MCQ

Question ID : 8606541654

Option 1 ID : 8606545625

Option 2 ID : 8606545623

Option 3 ID : 8606545624

Option 4 ID : 8606545626

Status : Not Attempted and
Marked For Review

Chosen Option : --

Q.6 The sum of the coefficients of x^{499} and x^{500} in $(1+x)^{1000} + x(1+x)^{999} + x^2(1+x)^{998} + \dots + x^{1000}$ is :

Options

1. $1000C_{501}$
2. $1002C_{500}$
3. $1001C_{501}$
4. $1002C_{501}$

Question Type : MCQ

Question ID : 8606541656

Option 1 ID : 8606545633

Option 2 ID : 8606545632

Option 3 ID : 8606545634

Option 4 ID : 8606545631

Status : Not Attempted and
Marked For Review

Chosen Option : --

Q.7

Let $y = y(x)$ be the solution of the differential equation $x \frac{dy}{dx} - y = x^2 \cot x$, $x \in (0, \pi)$. If $y\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$, then

$6y\left(\frac{\pi}{6}\right) - 8y\left(\frac{\pi}{4}\right)$ is equal to :

Options

1. 3π
2. -3π
3. π
4. $-\pi$

Question Type : MCQ
Question ID : 8606541669
Option 1 ID : 8606545686
Option 2 ID : 8606545685
Option 3 ID : 8606545684
Option 4 ID : 8606545683
Status : Answered
Chosen Option : 4

Q.8 An ellipse has its center at $(1, -2)$, one focus at $(3, -2)$ and one vertex at $(5, -2)$. Then the length of its latus rectum is :

Options

1. $\frac{16}{\sqrt{3}}$
2. 6
3. $4\sqrt{3}$
4. $6\sqrt{3}$

Question Type : MCQ
Question ID : 8606541659
Option 1 ID : 8606545644
Option 2 ID : 8606545646
Option 3 ID : 8606545645
Option 4 ID : 8606545643
Status : Not Attempted and
Marked For Review
Chosen Option : --

Q.9 Given below are two statements :

Statement I : The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x) = \frac{x}{1+|x|}$ is one-one.

Statement II : The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x) = \frac{x^2 + 4x - 30}{x^2 - 8x + 18}$ is many-one.

In the light of the above statements, choose the **correct answer** from the options given below :

Options

1. **Statement I is true but Statement II is false**
2. **Both Statement I and Statement II are true**
3. **Statement I is false but Statement II is true**
4. **Both Statement I and Statement II are false**

Question Type : MCQ
Question ID : 8606541652
Option 1 ID : 8606545617
Option 2 ID : 8606545615
Option 3 ID : 8606545618
Option 4 ID : 8606545616
Status : Not Answered
Chosen Option : --

Q.10

Let $f(x) = \lim_{\theta \rightarrow 0} \left(\frac{\cos \pi x - x^{\left(\frac{2}{\theta}\right)} \sin(x-1)}{1+x^{\left(\frac{2}{\theta}\right)}(x-1)} \right)$, $x \in \mathbf{R}$. Consider the following two statements :

- (I) $f(x)$ is discontinuous at $x = 1$.
(II) $f(x)$ is continuous at $x = -1$.

Then,

Options

1. Only (I) is True
2. Neither (I) nor (II) is True
3. Both (I) and (II) are True
4. Only (II) is True

Question Type : MCQ
Question ID : 8606541666
Option 1 ID : 8606545671
Option 2 ID : 8606545674
Option 3 ID : 8606545673
Option 4 ID : 8606545672
Status : Not Answered
Chosen Option : --

Q.11 Let A be the focus of the parabola $y^2 = 8x$. Let the line $y = mx + c$ intersect the parabola at two distinct points B and C. If the centroid of the triangle ABC is $\left(\frac{7}{3}, \frac{4}{3}\right)$, then $(BC)^2$ is equal to :

Options

1. 41
2. 89
3. 32
4. 80

Question Type : MCQ

Question ID : 8606541663

Option 1 ID : 8606545660

Option 2 ID : 8606545662

Option 3 ID : 8606545659

Option 4 ID : 8606545661

Status : Not Attempted and
Marked For Review

Chosen Option : --

Q.12

Let $[.]$ denote the greatest integer function. Then $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{12(3+[x])}{3+[\sin x]+[\cos x]} \right) dx$ is equal to :

Options

1. $13\pi + 1$
2. $12\pi + 5$
3. $11\pi + 2$
4. $15\pi + 4$

Question Type : MCQ

Question ID : 8606541667

Option 1 ID : 8606545676

Option 2 ID : 8606545678

Option 3 ID : 8606545677

Option 4 ID : 8606545675

Status : Not Answered

Chosen Option : --

Q.13 Let P be a point in the plane of the vectors $\vec{AB} = 3\hat{i} + \hat{j} - \hat{k}$ and $\vec{AC} = \hat{i} - \hat{j} + 3\hat{k}$ such that P is equidistant

from the lines AB and AC. If $|\vec{AP}| = \frac{\sqrt{5}}{2}$, then the area of the triangle ABP is :

Options

1. 2
2. $\frac{3}{2}$
3. $\frac{\sqrt{26}}{4}$
4. $\frac{\sqrt{30}}{4}$

Question Type : MCQ

Question ID : 8606541664

Option 1 ID : 8606545666

Option 2 ID : 8606545663

Option 3 ID : 8606545664

Option 4 ID : 8606545665

Status : Not Attempted and
Marked For Review

Chosen Option : --

Q.14

Let Q(a, b, c) be the image of the point P(3, 2, 1) in the line $\frac{x-1}{1} = \frac{y}{2} = \frac{z-1}{1}$. Then the distance of

Q from the line $\frac{x-9}{3} = \frac{y-9}{2} = \frac{z-5}{-2}$ is

Options

1. 8
2. 7
3. 6
4. 5

Question Type : MCQ

Question ID : 8606541665

Option 1 ID : 8606545667

Option 2 ID : 8606545670

Option 3 ID : 8606545669

Option 4 ID : 8606545668

Status : Answered

Chosen Option : 2

Q.15

The probability distribution of a random variable X is given below :

X	4k	$\frac{30}{7}k$	$\frac{32}{7}k$	$\frac{34}{7}k$	$\frac{36}{7}k$	$\frac{38}{7}k$	$\frac{40}{7}k$	6k
P(X)	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{1}{5}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{1}{5}$	$\frac{1}{15}$

If $E(X) = \frac{263}{15}$, then $P(X < 20)$ is equal to :

Options

1. $\frac{3}{5}$
2. $\frac{14}{15}$
3. $\frac{8}{15}$
4. $\frac{11}{15}$

Question Type : **MCQ**

Question ID : **8606541658**

Option 1 ID : **8606545640**

Option 2 ID : **8606545642**

Option 3 ID : **8606545639**

Option 4 ID : **8606545641**

Status : **Not Attempted and
Marked For Review**

Chosen Option : --

Q.16 Considering the principal values of inverse trigonometric functions, the value of the expression

$$\tan\left(2\sin^{-1}\left(\frac{2}{\sqrt{13}}\right) - 2\cos^{-1}\left(\frac{3}{\sqrt{10}}\right)\right)$$

is equal to :

1. $\frac{33}{56}$
2. $-\frac{33}{56}$
3. $\frac{16}{63}$
4. $-\frac{16}{63}$

Question Type : MCQ

Question ID : 8606541661

Option 1 ID : 8606545652

Option 2 ID : 8606545654

Option 3 ID : 8606545651

Option 4 ID : 8606545653

Status : Not Answered

Chosen Option : --

Q.17 Let the circle $x^2 + y^2 = 4$ intersect x -axis at the points $A(a, 0)$, $a > 0$ and $B(b, 0)$. Let $P(2 \cos\alpha, 2 \sin\alpha)$,

$0 < \alpha < \frac{\pi}{2}$ and $Q(2 \cos\beta, 2 \sin\beta)$ be two points such that $(\alpha - \beta) = \frac{\pi}{2}$. Then the point of intersection of AQ and BP lies on :

Options

1. $x^2 + y^2 - 4x - 4y - 4 = 0$
2. $x^2 + y^2 - 4x - 4 = 0$
3. $x^2 + y^2 - 4y - 4 = 0$
4. $x^2 + y^2 - 4x - 4y = 0$

Question Type : MCQ

Question ID : 8606541660

Option 1 ID : 8606545649

Option 2 ID : 8606545647

Option 3 ID : 8606545648

Option 4 ID : 8606545650

Status : Not Answered

Chosen Option : --

Q.18

Let

$$A = \{z \in \mathbb{C} : |z - 2| \leq 4\} \text{ and}$$

$$B = \{z \in \mathbb{C} : |z - 2| + |z + 2| = 5\}.$$

Then the $\max \{|z_1 - z_2| : z_1 \in A \text{ and } z_2 \in B\}$ is :

Options

1. 8
2. $\frac{15}{2}$
3. 9
4. $\frac{17}{2}$

Question Type : MCQ
Question ID : 8606541653
Option 1 ID : 8606545620
Option 2 ID : 8606545619
Option 3 ID : 8606545622
Option 4 ID : 8606545621
Status : Not Answered
Chosen Option : --

Q.19

$$\frac{6}{3^{26}} + \frac{10 \cdot 1}{3^{25}} + \frac{10 \cdot 2}{3^{24}} + \frac{10 \cdot 2^2}{3^{23}} + \dots + \frac{10 \cdot 2^{24}}{3} \text{ is equal to :}$$

Options

1. 3^{25}
2. 2^{25}
3. 3^{26}
4. 2^{26}

Question Type : MCQ
Question ID : 8606541655
Option 1 ID : 8606545627
Option 2 ID : 8606545629
Option 3 ID : 8606545628
Option 4 ID : 8606545630
Status : Not Answered
Chosen Option : --

Q.20 The sum of all the elements in the range of $f(x) = \text{Sgn}(\sin x) + \text{Sgn}(\cos x) + \text{Sgn}(\tan x) + \text{Sgn}(\cot x)$,

$x \neq \frac{n\pi}{2}$, $n \in \mathbb{Z}$, where $\text{Sgn}(t) = \begin{cases} 1, & \text{if } t > 0 \\ -1, & \text{if } t < 0 \end{cases}$, is:

Options

1. 0
2. 2
3. -2
4. 4

Question Type : **MCQ**

Question ID : **8606541651**

Option 1 ID : **8606545614**

Option 2 ID : **8606545611**

Option 3 ID : **8606545613**

Option 4 ID : **8606545612**

Status : **Not Answered**

Chosen Option : --

Section : Mathematics Section B

Q.21

If $\sum_{r=1}^{25} \left(\frac{r}{r^4 + r^2 + 1} \right) = \frac{p}{q}$, where p and q are positive integers such that $\text{gcd}(p, q) = 1$, then $p + q$ is equal to _____.

Given --

Answer :

Question Type : **SA**

Question ID : **8606541672**

Status : **Not Attempted and Marked For Review**

Q.22

Three persons enter in a lift at the ground floor. The lift will go upto 10th floor. The number of ways, in which the three persons can exit the lift at three different floors, if the lift does not stop at first, second and third floors, is equal to _____.

Given **210**

Answer :

Question Type : **SA**

Question ID : **8606541673**

Status : **Answered**

Q.23

If the distance of the point $P(43, \alpha, \beta)$, $\beta < 0$, from the line $\vec{r} = 4\hat{i} - \hat{k} + \mu(2\hat{i} + 3\hat{k})$, $\mu \in \mathbb{R}$ along a line with direction ratios $3, -1, 0$ is $13\sqrt{10}$, then $\alpha^2 + \beta^2$ is equal to _____.

Given --

Answer :

Question Type : **SA**

Question ID : **8606541674**

Status : **Not Attempted and Marked For Review**

Q.24

Let f be a differentiable function satisfying $f(x) = 1 - 2x + \int_0^x e^{(x-t)} f(t) dt, x \in \mathbf{R}$ and let

$g(x) = \int_0^x (f(t) + 2)^{15} (t-4)^6 (t+12)^{17} dt, x \in \mathbf{R}$. If p and q are respectively the points of local minima and local maxima of g , then the value of $|p+q|$ is equal to _____.

Given --

Answer :

Question Type : **SA**Question ID : **8606541675**Status : **Not Answered****Q.25**

Let $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ and B be two matrices such that $A^{100} = 100B + I$. Then the sum of all the elements of B^{100} is _____.

Given --

Answer :

Question Type : **SA**Question ID : **8606541671**Status : **Not Answered****Section : Physics Section A****Q.26**

For a transparent prism, if the angle of minimum deviation is equal to its refracting angle, the refractive index n of the prism satisfies.

Options

1. $\sqrt{2} < n < 2$
2. $\sqrt{2} < n < 2\sqrt{2}$
3. $n \geq 2$
4. $1 < n < 2$

Question Type : **MCQ**Question ID : **8606541691**Option 1 ID : **8606545759**Option 2 ID : **8606545758**Option 3 ID : **8606545757**Option 4 ID : **8606545756**Status : **Not Attempted and Marked For Review**

Chosen Option : --

Q.27

Which one of the following is **not** a measurable quantity ?

Options

1. Voltage difference
2. Voltage
3. Resistance
4. Displacement current

Question Type : MCQ
Question ID : 8606541689
Option 1 ID : 8606545750
Option 2 ID : 8606545749
Option 3 ID : 8606545751
Option 4 ID : 8606545748
Status : Answered
Chosen Option : 4

Q.28

Identify the correct statements :

- A. Electrostatic field lines form closed loops .
- B. The electric field lines point radially outward when charge is greater than zero.
- C. The Gauss - Law is valid only for inverse - square force.
- D. The workdone in moving a charged particle in a static electric field around a closed path is zero.
- E. The motion of a particle under Coulomb's force must take place in a plane.

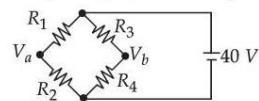
Choose the **correct** answer from the options given below :

Options

1. A, B, C, D Only
2. A, C, E Only
3. B, C, D, E Only
4. A, B, D, E Only

Question Type : MCQ
Question ID : 8606541685
Option 1 ID : 8606545732
Option 2 ID : 8606545734
Option 3 ID : 8606545733
Option 4 ID : 8606545735
Status : Answered
Chosen Option : 4

Q.29


The time period of a simple harmonic oscillator is $T = 2\pi\sqrt{\frac{k}{m}}$. Measured value of mass (m) of the object is 10 g with an accuracy of 10 mg and time for 50 oscillations of the spring is found to be 60 s using a watch of 2 s resolution. Percentage error in determination of spring constant (k) is _____ %.

Options

1. 7.60
2. 6.76
3. 3.43
4. 3.35

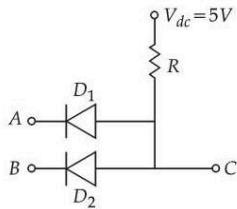
Question Type : MCQ
 Question ID : 8606541677
 Option 1 ID : 8606545702
 Option 2 ID : 8606545700
 Option 3 ID : 8606545703
 Option 4 ID : 8606545701
 Status : Answered
 Chosen Option : 2

Q.30 A Wheatstone bridge is initially at room temperature and all arms of the bridge have same value of resistances ($R_1 = R_2 = R_3 = R_4$). When R_3 resistance is heated to some temperature, its resistance value has gone up by 10%. The potential difference ($V_a - V_b$) (after R_3 is heated) is _____ V.

Options

1. 0
2. 0.95
3. 2
4. 1.05

Question Type : MCQ
 Question ID : 8606541687
 Option 1 ID : 8606545741
 Option 2 ID : 8606545743
 Option 3 ID : 8606545742
 Option 4 ID : 8606545740
 Status : Not Answered
 Chosen Option : --


Q.31 The speed of a longitudinal wave in a metallic bar is 400 m/s. If the density and Young's modulus of the bar material are increased by 0.5% and 1%, respectively then the speed of the wave is changed approximately to _____ m/s.

Options

1. 399
2. 398
3. 402
4. 401

Question Type : MCQ
Question ID : 8606541683
Option 1 ID : 8606545727
Option 2 ID : 8606545724
Option 3 ID : 8606545726
Option 4 ID : 8606545725
Status : Not Answered
Chosen Option : --

Q.32 Two p-n junction diodes D_1 and D_2 are connected as shown in figure. A and B are input signals and C is the output. The given circuit will function as a _____.

Options

1. NOR Gate
2. NAND Gate
3. AND Gate
4. OR Gate

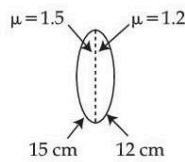
Question Type : MCQ
Question ID : 8606541695
Option 1 ID : 8606545775
Option 2 ID : 8606545773
Option 3 ID : 8606545774
Option 4 ID : 8606545772
Status : Answered
Chosen Option : 4

Q.33 The mean free path of a molecule of diameter 5×10^{-10} m at the temperature 41 °C and pressure 1.38×10^5 Pa, is given as _____ m. (Given $k_B = 1.38 \times 10^{-23}$ J/K).

Options

1. $2\sqrt{2} \times 10^{-8}$
2. $10\sqrt{2} \times 10^{-8}$
3. 2×10^{-8}
4. $2\sqrt{2} \times 10^{-10}$

Question Type : MCQ
Question ID : 8606541684
Option 1 ID : 8606545729
Option 2 ID : 8606545728
Option 3 ID : 8606545731
Option 4 ID : 8606545730
Status : Not Answered
Chosen Option : --

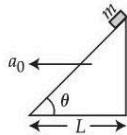

Q.34 A nucleus has mass number α and radius R_α . Another nucleus has mass number β and radius R_β . If $\beta = 8\alpha$ then R_α / R_β is :

Options

1. 1
2. 8
3. 0.5
4. 2

Question Type : MCQ
Question ID : 8606541694
Option 1 ID : 8606545769
Option 2 ID : 8606545770
Option 3 ID : 8606545768
Option 4 ID : 8606545771
Status : Answered
Chosen Option : 4

Q.35 A biconvex lens is formed by using two thin planoconvex lenses, as shown in the figure. The refractive index and radius of curved surfaces are also mentioned in figure. When an object is placed on the left side of lens at a distance of 30 cm from the biconvex lens, the magnification of the image will be :



Options

1. -2.5
2. $+2.5$
3. $+2$
4. -2

Question Type : MCQ
Question ID : 8606541692
Option 1 ID : 8606545762
Option 2 ID : 8606545763
Option 3 ID : 8606545760
Option 4 ID : 8606545761
Status : Not Answered
Chosen Option : --

- Q.36** A small block of mass m slides down from the top of a frictionless inclined surface, while the inclined plane is moving towards left with constant acceleration a_0 . The angle between the inclined plane and ground is θ and its base length is L . Assuming that initially the small block is at the top of the inclined plane, the time it takes to reach the lowest point of the inclined plane is _____.

Options

1. $\sqrt{\frac{4L}{g \sin 2\theta - a_0(1 + \cos 2\theta)}}$
2. $\sqrt{\frac{2L}{g \sin \theta - a_0 \cos \theta}}$
3. $\sqrt{\frac{4L}{g \cos^2 \theta - a_0 \sin \theta \cos \theta}}$
4. $\sqrt{\frac{2L}{g \sin 2\theta - a_0(1 + \cos 2\theta)}}$

Question Type : MCQ
Question ID : 8606541679
Option 1 ID : 8606545708
Option 2 ID : 8606545711
Option 3 ID : 8606545710
Option 4 ID : 8606545709
Status : Not Answered
Chosen Option : --

- Q.37** In an experiment, a set of reading are obtained as follows - 1.24 mm, 1.25 mm, 1.23 mm, 1.21 mm. The expected least count of the instrument used in recording these readings is _____ mm.

Options

1. 0.01
2. 0.1
3. 0.05
4. 0.001

Question Type : MCQ
Question ID : 8606541676
Option 1 ID : 8606545699
Option 2 ID : 8606545696
Option 3 ID : 8606545698
Option 4 ID : 8606545697
Status : Answered
Chosen Option : 1

Q.38 Number of photons of equal energy emitted per second by a 6 mW laser source operating at 663 nm is _____. (Given : $h=6.63\times10^{-34}$ J.s and $c=3\times10^8$ m/s)

Options

1. 10×10^{15}
2. 5×10^{16}
3. 5×10^{15}
4. 2×10^{16}

Question Type : **MCQ**
Question ID : **8606541693**
Option 1 ID : **8606545765**
Option 2 ID : **8606545767**
Option 3 ID : **8606545764**
Option 4 ID : **8606545766**
Status : **Answered**
Chosen Option : **4**

Q.39 A particle starts moving from time $t=0$ and its coordinate is given as $x(t)=4t^3-3t$

- A. The particle returns to its original position (origin) 0.866 units later
- B. The particle is 1 unit away from origin at its turning point
- C. Acceleration of the particle is non-negative
- D. The particle is 0.5 units away from origin at its turning point
- E. Particle never turns back as acceleration is non-negative

Choose the correct answer from the options given below :

Options

1. C, E Only
2. A, B, C Only
3. A, C, D Only
4. A, C Only

Question Type : **MCQ**
Question ID : **8606541680**
Option 1 ID : **8606545715**
Option 2 ID : **8606545714**
Option 3 ID : **8606545713**
Option 4 ID : **8606545712**
Status : **Answered**
Chosen Option : **2**

Q.40

Match List - I with List - II.

List - I

- A. Coefficient of viscosity
- B. Surface tension
- C. Pressure
- D. Surface energy

List - II

- I. $[ML^{-1}T^{-2}]$
- II. $[ML^2T^{-2}]$
- III. $[ML^0T^{-2}]$
- IV. $[ML^{-1}T^{-1}]$

Choose the **correct** answer from the options given below :

Options

1. A-I, B-III, C-II, D-IV
2. A-IV, B-I, C-II, D-III
3. A-IV, B-III, C-I, D-II
4. A-I, B-II, C-IV, D-III

Question Type : MCQ

Question ID : 8606541682

Option 1 ID : 8606545722

Option 2 ID : 8606545723

Option 3 ID : 8606545720

Option 4 ID : 8606545721

Status : Answered

Chosen Option : 3

Q.41 A plane electromagnetic wave is moving in free space with velocity $c=3\times10^8$ m/s and its electric field is given as $\vec{E}=54 \sin(kz - \omega t) \hat{j}$ V/m, where \hat{j} is the unit vector along y -axis. The magnetic field vector \vec{B} of the wave is :

Options

1. $-1.8\times10^{-7} \sin(kz - \omega t) \hat{i}$ T
2. $1.4\times10^{-7} \sin(kz - \omega t) \hat{k}$ T
3. $1.4\times10^{-7} \sin(kz - \omega t) \hat{i}$ T
4. $+1.8\times10^{-7} \sin(kz - \omega t) \hat{i}$ T

Question Type : MCQ

Question ID : 8606541690

Option 1 ID : 8606545752

Option 2 ID : 8606545753

Option 3 ID : 8606545755

Option 4 ID : 8606545754

Status : Answered

Chosen Option : 4

Q.42 A long cylindrical conductor with large cross section carries an electric current distributed uniformly over its cross-section. Magnetic field due to this current is :

- A. maximum at either ends of the conductor and minimum at the midpoint
- B. maximum at the axis of the conductor
- C. minimum at the surface of the conductor
- D. minimum at the axis of the conductor
- E. same at all points in the cross-section of the conductor

Choose the **correct** answer from the options given below :

Options

1. D Only
2. B, C Only
3. A, D Only
4. E Only

Question Type : MCQ
Question ID : 8606541688
Option 1 ID : 8606545745
Option 2 ID : 8606545746
Option 3 ID : 8606545744
Option 4 ID : 8606545747
Status : Not Answered
Chosen Option : --

Q.43 When the position vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ changes sign as $-\vec{r}$, which one of the following vector will not flip under sign change ?

Options

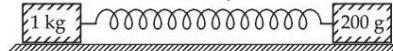
1. Linear momentum
2. Angular momentum
3. Velocity
4. Acceleration

Question Type : MCQ
Question ID : 8606541681
Option 1 ID : 8606545719
Option 2 ID : 8606545718
Option 3 ID : 8606545716
Option 4 ID : 8606545717
Status : Answered
Chosen Option : 2

Q.44 Identify the correct statements :

- A. Effective capacitance of a series combination of capacitors is always smaller than the smallest capacitance of the capacitor in the combination.
- B. When a dielectric medium is placed between the charged plates of a capacitor, displacement of charges cannot occur due to insulation property of dielectric.
- C. Increasing of area of capacitor plate or decreasing of thickness of dielectric is an alternate method to increase the capacitance.
- D. For a point charge, concentric spherical shells centered at the location of the charge are equipotential surfaces.

Choose the correct answer from the options given below :


Options

1. C and D Only
2. A, B and C Only
3. B and D Only
4. A, C and D Only

Question Type : MCQ
Question ID : 8606541686
Option 1 ID : 8606545738
Option 2 ID : 8606545736
Option 3 ID : 8606545737
Option 4 ID : 8606545739
Status : Answered
Chosen Option : 4

Q.45 As shown in the figure, a spring is kept in a stretched position with some extension by holding the masses 1 kg and 0.2 kg with a separation more than spring natural length and are released. Assuming the horizontal surface to be frictionless, the angular frequency (in SI unit) of the system is :

$$k = 150 \text{ N/m}$$

Options

1. 27
2. 20
3. 5
4. 30

Question Type : MCQ
Question ID : 8606541678
Option 1 ID : 8606545706
Option 2 ID : 8606545707
Option 3 ID : 8606545704
Option 4 ID : 8606545705
Status : Answered
Chosen Option : 1

Q.46

A fly wheel having mass 3 kg and radius 5 m is free to rotate about a horizontal axis. A string having negligible mass is wound around the wheel and the loose end of the string is connected to 3 kg mass. The mass is kept at rest initially and released. Kinetic energy of the wheel when the mass descends by 3 m is _____ J. ($g = 10 \text{ m/s}^2$)

Given --

Answer :

Question Type : SA

Question ID : 8606541696

Status : Not Answered

Q.47

Two tuning forks A and B are sounded together giving rise to 8 beats in 2 s. When fork A is loaded with wax, the beat frequency is reduced to 4 beats in 2 s. If the original frequency of tuning fork B is 380 Hz then original frequency of tuning fork A is _____ Hz.

Given --

Answer :

Question Type : SA

Question ID : 8606541697

Status : Not Answered

Q.48

A beam of light consisting of wavelengths 650 nm and 550 nm illuminates the Young's double slits with separation of 2 mm such that the interference fringes are formed on a screen, placed at a distance of 1.2 m from the slits. The least distance of a point from the central maximum, where the bright fringes due to both the wavelengths coincide, is _____ $\times 10^{-5}$ m.

Given 12

Answer :

Question Type : SA

Question ID : 8606541700

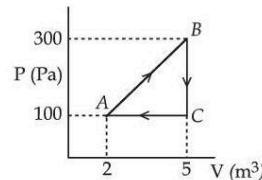
Status : Answered

Q.49

An inductor stores 16 J of magnetic field energy and dissipates 32 W of thermal energy due to its resistance when an a.c. current of 2 A (rms) and frequency 50 Hz flows through it. The ratio of inductive reactance to its resistance is _____. ($\pi = 3.14$)

Given 314

Answer :


Question Type : SA

Question ID : 8606541698

Status : Answered

Q.50

A thermodynamic system is taken through the cyclic process ABC as shown in the figure. The total work done by the system during the cycle ABC is _____ J.

Given 300

Answer :

Question Type : SA

Question ID : 8606541699

Status : Answered

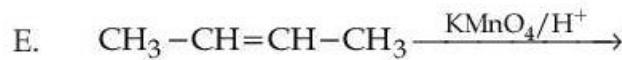
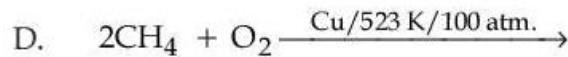
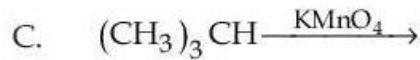
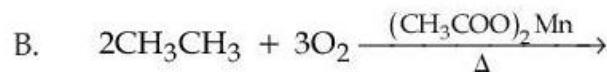
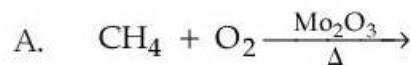
Q.51 Consider the elements N, P, O, S, Cl and F. The number of valence electrons present in the elements with most and least metallic character from the above list is respectively.

Options

1. 7 and 5
2. 6 and 7
3. 5 and 6
4. 5 and 7

Question Type : MCQ
Question ID : 8606541707
Option 1 ID : 8606545805
Option 2 ID : 8606545806
Option 3 ID : 8606545808
Option 4 ID : 8606545807
Status : Answered
Chosen Option : 4

Q.52 The plot of $\log_{10}K$ vs $\frac{1}{T}$ gives a straight line. The intercept and slope respectively are (where K is equilibrium constant).






Options

1. $\frac{2.303R}{\Delta H^\circ}, \frac{2.303R}{\Delta S^\circ}$
2. $-\frac{\Delta S^\circ R}{2.303}, \frac{\Delta H^\circ R}{2.303}$
3. $\frac{\Delta S^\circ}{2.303R}, -\frac{\Delta H^\circ}{2.303R}$
4. $-\frac{\Delta H^\circ}{2.303R}, \frac{\Delta S^\circ}{2.303R}$

Question Type : MCQ
Question ID : 8606541703
Option 1 ID : 8606545791
Option 2 ID : 8606545790
Option 3 ID : 8606545792
Option 4 ID : 8606545789
Status : Answered
Chosen Option : 2

Q.53

The reactions which produce alcohol as the product are :

Choose the **correct** answer from the options given below :

Options

1. A and D Only
2. C and D Only
3. A, C and E Only
4. B, D and E Only

Question Type : MCQ
Question ID : 8606541714
Option 1 ID : 8606545833
Option 2 ID : 8606545835
Option 3 ID : 8606545836
Option 4 ID : 8606545834
Status : Not Answered
Chosen Option : --

Q.54

A student has been given 0.314 g of an organic compound and asked to estimate Sulphur. During the experiment, the student has obtained 0.4813 g of barium sulphate. The percentage of sulphur present in the compound is _____. (Given Molar mass in g mol⁻¹ S : 32, BaSO₄ : 233)

Options

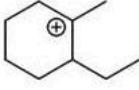
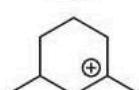
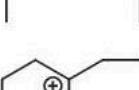
1. 21.05%
2. 48.24%
3. 42.10%
4. 63.15%

Question Type : **MCQ**

Question ID : **8606541720**

Option 1 ID : **8606545860**

Option 2 ID : **8606545859**




Option 3 ID : **8606545857**

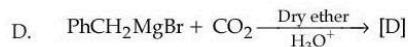
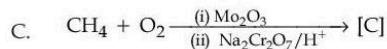
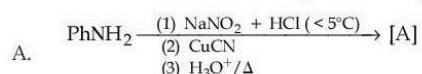
Option 4 ID : **8606545858**

Status : **Answered**

Chosen Option : **1**

Q.55 The cyclic cations having the same number of hyperconjugation are :

- A.
- B.
- C.
- D.




Choose the **correct** answer from the options given below :

Options

- 1. A, C and D only
- 2. A and B Only
- 3. A and C Only
- 4. B and C Only

Question Type : **MCQ**
Question ID : **8606541712**
Option 1 ID : **8606545826**
Option 2 ID : **8606545825**
Option 3 ID : **8606545828**
Option 4 ID : **8606545827**
Status : **Answered**
Chosen Option : **3**

Q.56 The correct order of acidic strength of the major products formed in the given reactions, is :

Choose the **correct** answer from the options given below :

Options

1. $\text{C} > \text{A} > \text{D} > \text{B}$
2. $\text{C} > \text{B} > \text{A} > \text{D}$
3. $\text{A} > \text{D} > \text{C} > \text{B}$
4. $\text{A} > \text{D} > \text{B} > \text{C}$

Question Type : MCQ

Question ID : 8606541716

Option 1 ID : 8606545843

Option 2 ID : 8606545844

Option 3 ID : 8606545842

Option 4 ID : 8606545841

Status : **Not Attempted and Marked For Review**

Chosen Option : --

Q.57 Total number of alkali insoluble solid sulphonamides obtained by reaction of given amines with Hinsberg's reagent is _____.

Aniline, N-Methylaniline, Methanamine, N, N-Dimethylmethanamine, N-Methyl methanamine, Phenylmethanamine, N-propylaniline, N-phenylaniline, N, N-Dimethylaniline, Allyl amine, Isopropyl amine

Options

1. 2
2. 4
3. 5
4. 8

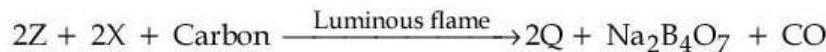
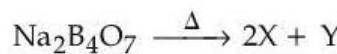
Question Type : MCQ

Question ID : 8606541718

Option 1 ID : 8606545852

Option 2 ID : 8606545850

Option 3 ID : 8606545849



Option 4 ID : 8606545851

Status : **Not Attempted and Marked For Review**

Chosen Option : --

Q.58

Consider the following reactions

The oxidation states of Cu in Z and Q, respectively are :

Options

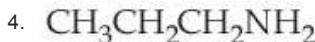
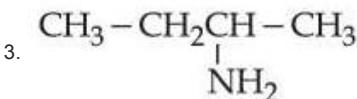
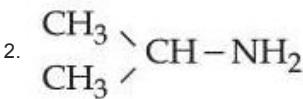
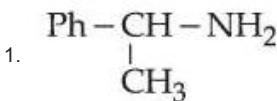
1. +2 and +1
2. +1 and +2
3. +2 and +2
4. +1 and +1

Question Type : MCQ
Question ID : 8606541711
Option 1 ID : 8606545822
Option 2 ID : 8606545824
Option 3 ID : 8606545821
Option 4 ID : 8606545823
Status : Not Answered
Chosen Option : --

Q.59 The wavelength of photon 'A' is 400 nm. The frequency of photon 'B' is 10^{16} s^{-1} . The wave number of photon 'C' is 10^4 cm^{-1} . The correct order of energy of these photons is :

Options

1. C > B > A
2. B > A > C
3. A > C > B
4. A > B > C





Question Type : MCQ
Question ID : 8606541702
Option 1 ID : 8606545786
Option 2 ID : 8606545787
Option 3 ID : 8606545788
Option 4 ID : 8606545785
Status : Answered
Chosen Option : 2

Q.60 A student performed analysis of aliphatic organic compound 'X' which on analysis gave C = 61.01%, H = 15.25%, N = 23.74%.

This compound, on treatment with $\text{HNO}_2/\text{H}_2\text{O}$ produced another compound 'Y' which did not contain any nitrogen atom. However, the compound 'Y' upon controlled oxidation produced another compound 'Z' that responded to iodoform test.

The structure of 'X' is :

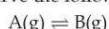
Options

Question Type : MCQ

Question ID : 8606541717

Option 1 ID : 8606545846

Option 2 ID : 8606545848


Option 3 ID : 8606545847

Option 4 ID : 8606545845

Status : Not Answered

Chosen Option : --

Q.61 Observe the following equilibrium in a 1 L flask.

At T(K), the equilibrium concentrations of A and B are 0.5 M and 0.375 M respectively. 0.1 moles of A is added into the flask and heated to T(K) to establish the equilibrium again. The new equilibrium concentrations (in M) of A and B are respectively

Options

1. 0.742, 0.557.

2. 0.367, 0.275.

3. 0.53, 0.4.

4. 0.557, 0.418.

Question Type : MCQ

Question ID : 8606541705

Option 1 ID : 8606545798

Option 2 ID : 8606545799

Option 3 ID : 8606545800

Option 4 ID : 8606545797

Status : Not Answered

Chosen Option : --

Q.62 Given below are two statements :

Statement I : The increasing order of boiling point of hydrogen halides is HCl < HBr < HI < HF.

Statement II : The increasing order of melting point of hydrogen halides is HCl < HBr < HF < HI.

In the light of the above statements, choose the **correct** answer from the options given below :

Options

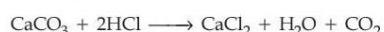
1. **Statement I** is true but **Statement II** is false
2. Both **Statement I** and **Statement II** are false
3. Both **Statement I** and **Statement II** are true
4. **Statement I** is false but **Statement II** is true

Question Type : MCQ
Question ID : 8606541708
Option 1 ID : 8606545811
Option 2 ID : 8606545810
Option 3 ID : 8606545809
Option 4 ID : 8606545812
Status : Answered
Chosen Option : 4

Q.63

Match List - I with List - II according to shape.

List - I	List - II
A. XeO_3	I. BrF_5
B. XeF_2	II. NH_3
C. XeO_2F_2	III. $[\text{I}_3]^-$
D. XeOF_4	IV. SF_4


Choose the **correct** answer from the options given below :

Options

1. A-II, B-III, C-I, D-IV
2. A-II, B-I, C-III, D-IV
3. A-II, B-III, C-IV, D-I
4. A-III, B-II, C-IV, D-I

Question Type : MCQ
Question ID : 8606541706
Option 1 ID : 8606545802
Option 2 ID : 8606545801
Option 3 ID : 8606545804
Option 4 ID : 8606545803
Status : Answered
Chosen Option : 3

Q.64 For the given reaction;

If 90 g CaCO_3 is added to 300 mL of HCl which contains 38.55% HCl by mass and has density 1.13 g mL^{-1} , then which of the following option is correct?

Given molar mass of H, Cl, Ca and O are 1, 35.5, 40 and 16 g mol^{-1} respectively.

Options

1. 60.32 g of HCl remains unreacted
2. 32.85 g of CaCO_3 remains unreacted
3. 97.30 g of HCl reacted
4. 64.97 g of HCl remains unreacted

Question Type : MCQ
Question ID : 8606541701
Option 1 ID : 8606545781
Option 2 ID : 8606545783
Option 3 ID : 8606545784
Option 4 ID : 8606545782
Status : Answered
Chosen Option : 1

Q.65 Consider the following statements about manganate and permanganate ions. Identify the correct statements.

- A. The geometry of both manganate and permanganate ions is tetrahedral.
- B. The oxidation states of Mn in manganate and permanganate are +7 and +6, respectively.
- C. Oxidation of Mn(II) salt by peroxodisulphate gives manganate ion as the final product.
- D. Manganate ion is paramagnetic and permanganate ions is diamagnetic.
- E. Acidified permanganate ion reduces oxalate, nitrite and iodide ions.

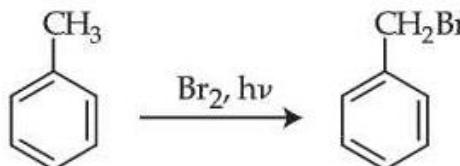
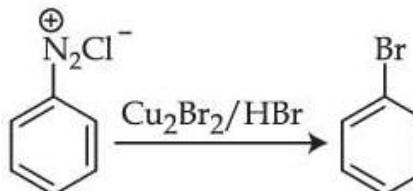
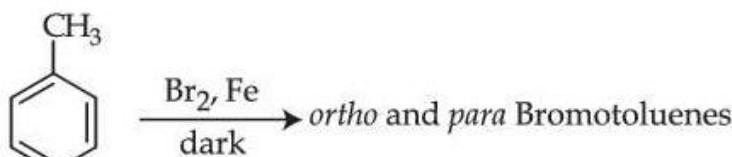
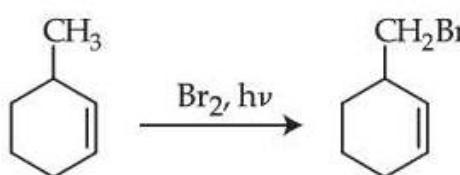
Choose the correct answer from the options given below :

Options

1. A, D and E Only
2. A and D Only
3. A, C and D Only
4. A, B and C Only

Question Type : MCQ
Question ID : 8606541709
Option 1 ID : 8606545814
Option 2 ID : 8606545816
Option 3 ID : 8606545815
Option 4 ID : 8606545813
Status : Answered
Chosen Option : 4

Q.66 The correct increasing order of spin-only magnetic moment values of the complex ions $[\text{MnBr}_4]^{2-}$ (A), $[\text{Cu}(\text{H}_2\text{O})_6]^{2+}$ (B), $[\text{Ni}(\text{CN})_4]^{2-}$ (C) and $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}$ (D) is :





Options

1. $\text{A} = \text{B} < \text{C} < \text{D}$
2. $\text{A} = \text{B} < \text{D} < \text{C}$
3. $\text{C} = \text{D} < \text{B} < \text{A}$
4. $\text{C} < \text{B} < \text{D} < \text{A}$

Question Type : MCQ
Question ID : 8606541710
Option 1 ID : 8606545817
Option 2 ID : 8606545818
Option 3 ID : 8606545819
Option 4 ID : 8606545820
Status : Answered
Chosen Option : 3

Q.67 Which of the following reaction is NOT correctly represented ?

Options

1.
2.
3.
4.

Question Type : MCQ
Question ID : 8606541715
Option 1 ID : 8606545838
Option 2 ID : 8606545840
Option 3 ID : 8606545839
Option 4 ID : 8606545837
Status : Answered
Chosen Option : 4

Q.68 Structures of four disaccharides are given below. Among the given disaccharides, the non-reducing sugar is :

Options

- 1.
- 2.
- 3.
- 4.

Question Type : MCQ

Question ID : 8606541719

Option 1 ID : 8606545854

Option 2 ID : 8606545856

Option 3 ID : 8606545855

Option 4 ID : 8606545853

Status : Not Answered

Chosen Option : --

Q.69

Identify the **correct** statements :

The presence of $-NO_2$ group in benzene ring

- A. activates the ring towards electrophilic substitutions.
- B. deactivates the ring towards electrophilic substitutions.
- C. activates the ring towards nucleophilic substitutions.
- D. deactivates the ring towards nucleophilic substitutions.

Choose the **correct** answer from the options given below :

Options

- 1. A and D Only
- 2. B and C Only
- 3. C and A Only
- 4. B and D Only

Question Type : MCQ
Question ID : 8606541713
Option 1 ID : 8606545829
Option 2 ID : 8606545831
Option 3 ID : 8606545830
Option 4 ID : 8606545832
Status : Answered
Chosen Option : 2

Q.70

Consider the following aqueous solutions.

- I. 2.2 g Glucose in 125 mL of solution.
- II. 1.9 g Calcium chloride in 250 mL of solution.
- III. 9.0 g Urea in 500 mL of solution.
- IV. 20.5 g Aluminium sulphate in 750 mL of solution.

The **correct** increasing order of boiling point of these solutions will be :

[Given : Molar mass in g mol⁻¹ : H = 1, C = 12, N = 14, O = 16, Cl = 35.5, Ca = 40, Al = 27 and S = 32]

Options

- 1. II < III < IV < I
- 2. III < I < II < IV
- 3. I < II < III < IV
- 4. II < III < I < IV

Question Type : MCQ
Question ID : 8606541704
Option 1 ID : 8606545796
Option 2 ID : 8606545794
Option 3 ID : 8606545793
Option 4 ID : 8606545795
Status : Answered
Chosen Option : 3

Section : Chemistry Section B

Q.71

For strong electrolyte Λ_m increases slowly with dilution and can be represented by the equation

$$\Lambda_m = \Lambda_m^\circ - A c^{1/2}$$

Molar conductivity values of the solutions of strong electrolyte AB at 18°C are given below :

c [mol L ⁻¹]	0.04	0.09	0.16	0.25
Λ_m [S cm ² mol ⁻¹]	96.1	95.7	95.3	94.9

The value of constant A based on the above data [in S cm² mol⁻¹/(mol/L)^{1/2}] unit is _____.

Given --

Answer :

Question Type : **SA**Question ID : **8606541722**Status : **Not Answered****Q.72**A \longrightarrow B (first reaction)C \longrightarrow D (second reaction)

Consider the above two first-order reactions. The rate constant for first reaction at 500 K is double of the same at 300 K. At 500 K, 50% of the reaction becomes complete in 2 hour. The activation energy of the second reaction is half of that of first reaction. If the rate constant at 500 K of the second reaction becomes double of the rate constant of first reaction at the same temperature; then rate constant for the second reaction at 300 K is _____ $\times 10^{-1}$ hour⁻¹ (nearest integer).

Given --

Answer :

Question Type : **SA**Question ID : **8606541724**Status : **Not Answered****Q.73**

The number of isoelectronic species among Sc³⁺, Cr²⁺, Mn³⁺, Co³⁺ and Fe³⁺ is 'n'. If 'n' moles of AgCl is formed during the reaction of complex with formula $\text{CoCl}_3(\text{en})_2\text{NH}_3$ with excess of AgNO_3 solution, then the number of electrons present in the t_{2g} orbital of the complex is _____.

Given --

Answer :

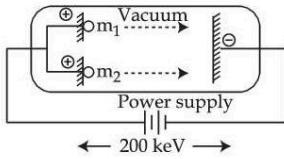
Question Type : **SA**Question ID : **8606541725**Status : **Not Answered****Q.74**

A volume of x mL of 5 M NaHCO_3 solution was mixed with 10 mL of 2 M H_2CO_3 solution to make an electrolytic buffer. If the same buffer was used in the following electrochemical cell to record a cell potential of 235.3 mV, then the value of $x =$ _____ mL (nearest integer).

$\text{Sn}(\text{s}) \mid \text{Sn}(\text{OH})_6^{2-} (0.5 \text{ M}) \mid \text{HSnO}_2^- (0.05 \text{ M}) \mid \text{OH}^- \mid \text{Bi}_2\text{O}_3(\text{s}) \mid \text{Bi}(\text{s})$

Consider upto one place of decimal for intermediate calculations

$$\left[\begin{array}{l} \text{Given : } E^\circ_{\text{HSnO}_2^- \mid \text{Sn}(\text{OH})_6^{2-}} = -0.9 \text{ V} \\ E^\circ_{\text{Bi}_2\text{O}_3 \mid \text{Bi}} = -0.44 \text{ V} \\ \text{p}K_a(\text{H}_2\text{CO}_3) = 6.11 \\ \frac{2.303 \text{ RT}}{F} = 0.059 \text{ V} \\ \text{Antilog (1.29)} = 19.5 \end{array} \right]$$


Given --

Answer :

Question Type : **SA**Question ID : **8606541723**Status : **Not Attempted and Marked For Review**

Q.75

Two positively charged particles m_1 and m_2 have been accelerated across the same potential difference of 200 keV as shown below.

[Given mass of $m_1 = 1$ amu and $m_2 = 4$ amu]

The deBroglie wavelength of m_1 will be x times of m_2 . The value of x is _____ (nearest integer)

Given 2

Answer :

Question Type : **SA**
Question ID : **8606541721**
Status : **Answered**