

JEE Mains 2026 21 Jan Shift 1 Question Paper(Memory Based)

1. Two capacitors C and $2C$ charged to V and $2V$ respectively are connected in parallel with opposite polarity. The common potential is:

- (A) V
- (B) $\frac{V}{2}$
- (C) $\frac{V}{3}$
- (D) $3V$

2. Ratio of de-Broglie wavelengths of a proton and an alpha particle accelerated through the same potential is:

- (A) $1 : 2$
- (B) $2\sqrt{2} : 1$
- (C) $2 : 1$
- (D) $\sqrt{8} : 1$

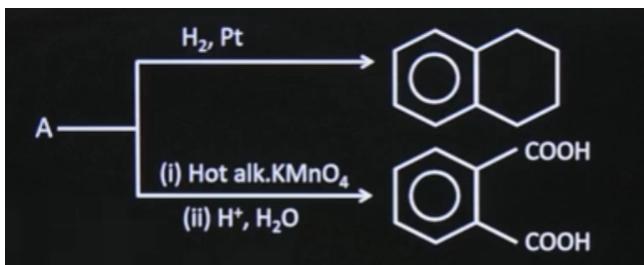
3. Correct order of acidic strength: (I) Phenol, (II) p-Cresol, (III) m-Nitrophenol, (IV) p-Nitrophenol

- (A) IV > III > I > II
- (B) III > IV > I > II
- (C) IV > I > III > II
- (D) III > I > IV > II

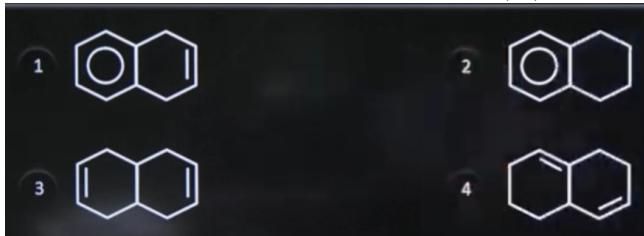
4. Evaluate the limit:

$$\lim_{x \rightarrow 0} \frac{\sin(2x) - 2 \sin x}{x^3}$$

- (A) 1
- (B) -1
- (C) 0
- (D) 2



5. The value of $\csc 10^\circ - \sqrt{3} \sec 10^\circ$ is:


- (A) 1
- (B) 2
- (C) 4
- (D) None of these

6. An organic compound (A) undergoes the following reactions:

Which of the following is compound (A)?

(A) Structure 1
 (B) Structure 2
 (C) Structure 3
 (D) Structure 4

7. If $y = y(x)$ and

$$(1 + x^2) dy + (1 - \tan^{-1} x) dx = 0$$

and $y(0) = 1$, then $y(1)$ is equal to:

(A) $\frac{\pi^2}{32} + \frac{\pi}{4} + 1$
 (B) $\frac{\pi^2}{32} - \frac{\pi}{4} + 1$
 (C) $\frac{\pi^2}{32} - \frac{\pi}{2} - 1$
 (D) $\frac{\pi^2}{32} - \frac{\pi}{2} + 1$

8. The sum of roots of the equation

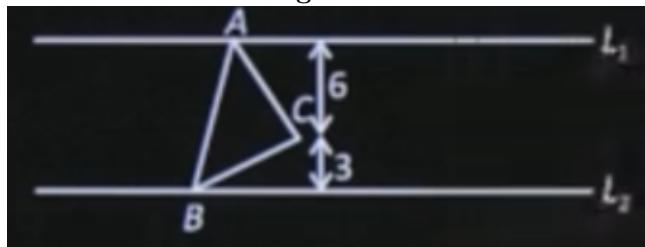
$$|x - 1|^2 - 5|x - 1| + 6 = 0$$

is:

9. Which of the following is the correct order with respect to the property indicated?

(A) Cl > F (Ionisation energy)
 (B) K₂O > Na₂O > Al₂O₃ (Basic nature)
 (C) K > Na > Al > Mg (Metallic character)
 (D) None of these

10. Find dimensions of $\frac{A}{B}$ if


$$\left(P + \frac{A^2}{B}\right) + \frac{1}{2}\rho V^2 = \text{constant},$$

where $P \rightarrow \text{pressure}$, $\rho \rightarrow \text{density}$, $V \rightarrow \text{speed}$.

- (A) ML^1T^{-4}
- (B) $ML^{-1}T^{-4}$
- (C) ML^2T^{-4}
- (D) $ML^{-1}T^{-2}$

11. If L_1 and L_2 are two parallel lines and $\triangle ABC$ is an equilateral triangle as shown in the figure, then the area of triangle ABC is:

- (A) $7\sqrt{3}$
- (B) $4\sqrt{3}$
- (C) $21\sqrt{3}$
- (D) 84

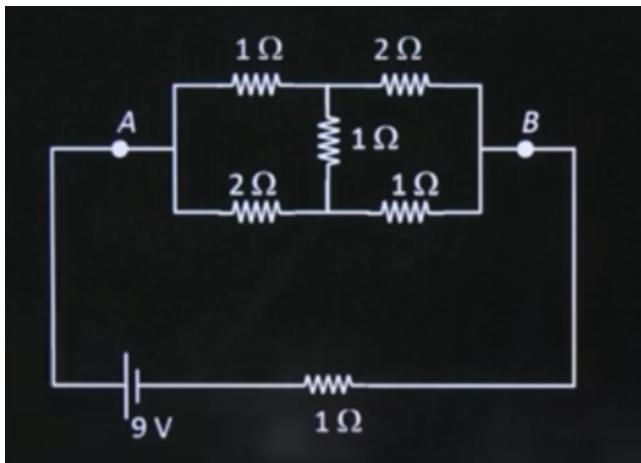
12. Given below are two statements:

Statement I: Arginine and Tryptophan are essential amino acids.

Statement II: Glycine does not have any chiral carbon.

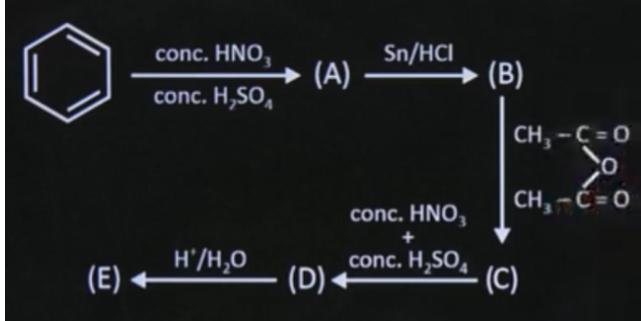
In the light of the above statements, which is the correct option?

- (A) Both statement-I and statement-II are correct
- (B) Both statement-I and statement-II are incorrect
- (C) Statement-I is correct and statement-II is incorrect
- (D) Statement-I is incorrect and statement-II is correct



13. Consider a set $S = \{a, b, c, d\}$. Then the number of reflexive as well as symmetric relations from $S \rightarrow S$ is:

- (A) 1024
- (B) 256
- (C) 16
- (D) 64



14. Find the heat produced in the external circuit (AB) in one second.

(A) 1181.25 J
 (B) 1311.25 J
 (C) 1207.50 J
 (D) 1410.50 J

15. Benzene undergoes the following sequence of reactions:

Find the percentage of nitrogen in compound (E).

16. The locus of the point of intersection of tangents drawn to the circle

$$(x - 2)^2 + (y - 3)^2 = 16,$$

which subtends an angle of 120° , is:

(A) $3x^2 + 3y^2 - 12x - 18y - 25 = 0$
 (B) $x^2 + y^2 - 12x - 18y - 25 = 0$
 (C) $3x^2 + 3y^2 + 12x + 18y - 25 = 0$
 (D) $x^2 + y^2 + 12x + 18y - 25 = 0$

17. If a_1, a_2, a_3, \dots are in increasing geometric progression such that

$$a_1 + a_3 + a_5 = 21, \quad a_1 a_3 a_5 = 64,$$

then $a_1 + a_2 + a_3$ is:

(A) 5
 (B) 7

(C) 10
(D) 15

18. An α -particle having kinetic energy 7.7 MeV is approaching a fixed gold nucleus (atomic number $Z = 79$). Find the distance of closest approach.

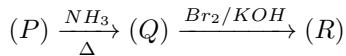
(A) 1.72 nm
(B) 6.2 nm
(C) 16.8 nm
(D) 0.2 nm

19. If O is the vertex of the parabola $x^2 = 4y$, Q is a point on the parabola. If C is the locus of a point which divides OQ in the ratio 2 : 3, then the equation of the chord of C which is bisected at the point (1, 2) is:

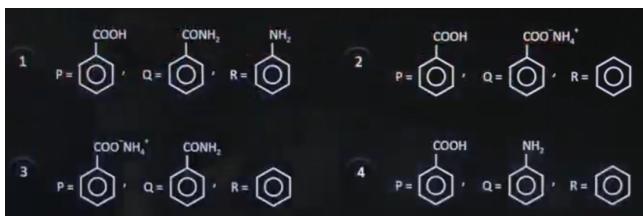
(A) $5x + 4y + 3 = 0$
(B) $5x - 4y - 3 = 0$
(C) $5x - 4y + 3 = 0$
(D) $5x + 4y - 3 = 0$

20. An α -particle having kinetic energy 7.7 MeV is approaching a fixed gold nucleus (atomic number $Z = 79$). Find the distance of closest approach.

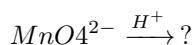
(A) 1.72 nm
(B) 6.2 nm
(C) 16.8 nm
(D) 0.2 nm



21. An air-filled capacitor of capacitance C is filled with a dielectric ($k = 3$) of width $\frac{d}{3}$, where d is the separation between the plates. The new capacitance is:


(A) $\frac{9}{5}C$
(B) $\frac{5}{4}C$
(C) $\frac{4}{3}C$
(D) $\frac{9}{7}C$

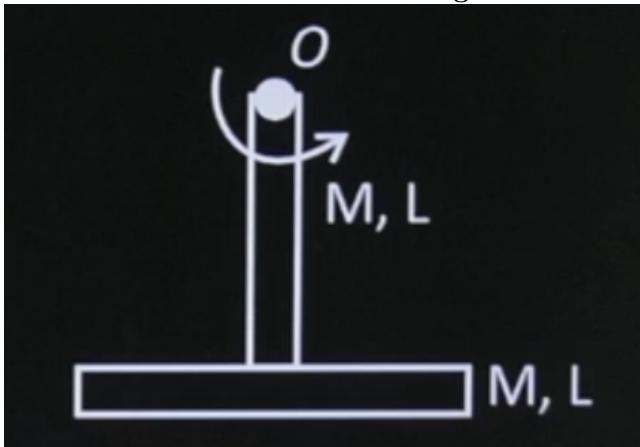
22. Observe the following reaction sequence:



Which of the following is the correct structure for P , Q and R ?

(A) P = Benzoic acid ($-COOH$), Q = Benzamide ($-CONH_2$), R = Aniline ($-NH_2$)
 (B) P = Benzoic acid, Q = Ammonium benzoate, R = Benzene
 (C) P = Ammonium benzoate, Q = Benzamide, R = Benzene
 (D) P = Benzoic acid, Q = Aniline, R = Benzene

23. In the following reaction,


Manganate ion undergoes disproportionation to form:

(A) MnO_2 , MnO_4^-
 (B) MnO , MnO_2
 (C) MnO_2 , MnO
 (D) MnO_4^- , MnO

24. If $x^2 + x + 1 = 0$, then evaluate

$$\left(x + \frac{1}{x}\right)^4 + \left(x^2 + \frac{1}{x^2}\right)^4 + \left(x^3 + \frac{1}{x^3}\right)^4 + \dots + \left(x^{25} + \frac{1}{x^{25}}\right)^4.$$

25. Find the moment of inertia of the system formed using two identical rods about the given axis of rotation as shown in the figure. Each rod has mass M and length L .

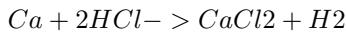
(A) $\frac{17}{12}ML^2$
 (B) $\frac{13}{12}ML^2$
 (C) $\frac{2}{3}ML^2$
 (D) $\frac{3}{4}ML^2$

26. If the electric field of an EM wave is given by

$$60 [\sin(3 \times 10^{14}t) + \sin(12 \times 10^{14}t)]$$

at $x = 0$ and it falls on a photosensitive material having work function 2.8 eV, find the maximum kinetic energy (in eV) of the ejected electrons.

- (A) 2.52 eV
- (B) 2.16 eV
- (C) 2.00 eV
- (D) 2.34 eV



27. 80 mL of an organic compound is mixed with 264 mL of O_2 and ignited. It gives 224 mL of gaseous mixture at NTP. After passing through KOH, 64 mL of gas remains. The organic compound is:

- (A) C_2H_4
- (B) C_2H_2
- (C) C_4H_{10}
- (D) C_3H_6

28. Consider the following reaction:

If 14 g of calcium reacts with excess HCl , choose the *incorrect* option.

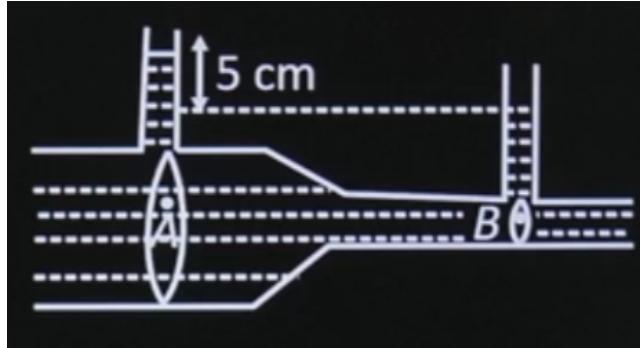
- (A) Mass of $CaCl_2$ produced is 38.85 g
- (B) Moles of H_2 produced is 0.35 mol
- (C) Volume of H_2 produced at STP is 7.84 L
- (D) Mass of $CaCl_2$ produced is 3.885 g

29. Ellipse E : $\frac{x^2}{36} + \frac{y^2}{16} = 1$. A hyperbola is confocal with the ellipse and the eccentricity of the hyperbola is equal to 5. If the principal axis of the hyperbola is the x -axis, then the length of the latus rectum of the hyperbola is:

- (A) $\frac{96}{\sqrt{5}}$
- (B) $24\sqrt{5}$
- (C) $18\sqrt{5}$
- (D) $12\sqrt{5}$

30. If the mean and variance of observations $x, y, 12, 14, 4, 10, 2$ is 8 and 16 respectively, where $x > y$, then the value of $3x - y$ is:

- (A) 18
- (B) 20
- (C) 22
- (D) 24


31. If $A = \{1, 2, 3, 4, 5, 6\}$ and $B = \{1, 2, 3, \dots, 9\}$, then the number of strictly increasing functions $f : A \rightarrow B$ such that $f(i) \neq i$ for all $i = 1, 2, 3, 4, 5, 6$ is:

32. Find the volume flow rate in the Venturi meter shown below in which water is flowing. Given that the cross-sectional areas at A and B are A and a respectively,

$$\frac{A}{a} = 2, \quad A = \sqrt{3} \text{ m}^2,$$

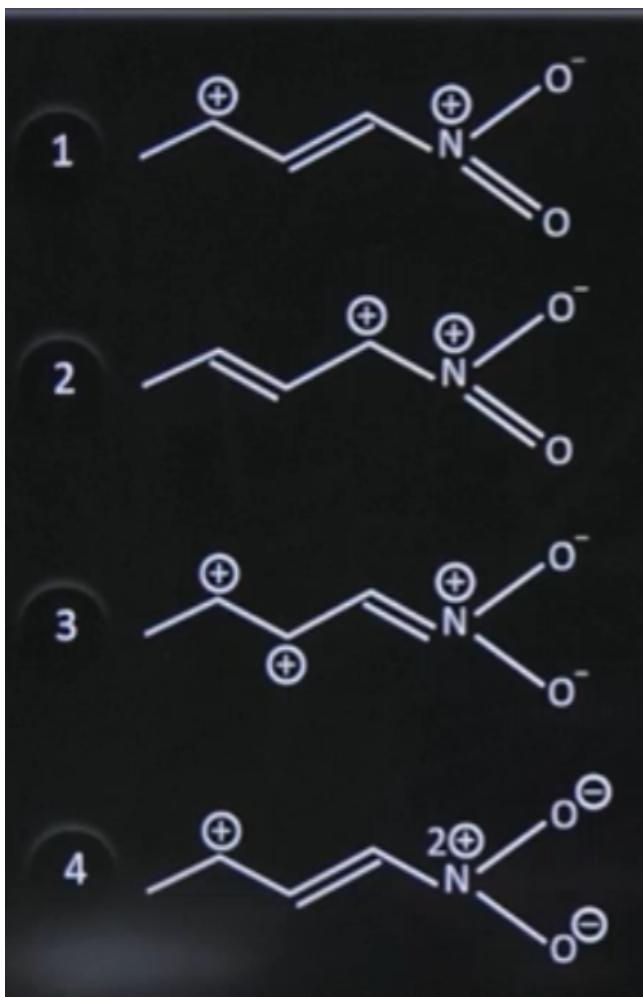
the difference in water levels is 5 cm and $\rho = 1000 \text{ kg m}^{-3}$.

- (A) 1
- (B) $\sqrt{3}$
- (C) $2\sqrt{3}$
- (D) $\sqrt{2}$

33. An ideal solenoid is kept with its axis vertical. A current I_0 is flowing in the solenoid. A charge q is thrown vertically downward inside the solenoid. The acceleration of the charged particle is:

- (A) g downward
- (B) g upward
- (C) Zero
- (D) Depends on the magnitude of current I_0

34. Given below are two statements:


Statement I: All the pairs of molecules $(\text{PbO}, \text{PbO}_2)$; $(\text{SnO}, \text{SnO}_2)$ and $(\text{GeO}, \text{GeO}_2)$ contain amphoteric oxides.
Statement II: AlCl_3 , BH_3 , BeH_2 and NO_2 all have incomplete octet.

In the light of the above statements, choose the correct option.

- (A) Both Statement I and Statement II are correct
- (B) Both Statement I and Statement II are incorrect
- (C) Statement I is correct but Statement II is incorrect
- (D) Statement I is incorrect but Statement II is correct

35. Which of the following resonating structures is the most stable?

(A) Structure 1
 (B) Structure 2
 (C) Structure 3
 (D) Structure 4

36. If O is the vertex of the parabola $x^2 = 4y$, Q is a point on the parabola. If C is the locus of the point which divides OQ in the ratio $2 : 3$, then the equation of the chord of C which is bisected at the point $(1, 2)$ is:

(A) $5x + 4y + 3 = 0$
 (B) $5x - 4y - 3 = 0$
 (C) $5x - 4y + 3 = 0$
 (D) $5x + 4y - 3 = 0$

37. The value of

$$\int_{\frac{\pi}{6}}^{\pi} \frac{\pi + 4x^{11}}{1 - \sin(|x| + \frac{\pi}{6})} dx \text{ is:}$$

(A) 3π
 (B) 4π
 (C) 6π
 (D) 12π

38. If $f(3) = 18$, $f'(3) = 0$ and $f''(3) = 4$, then the value of

$$\lim_{x \rightarrow 1} \ln \left(\frac{f(x+2)}{f(3)} \right)^{\frac{18}{(x-1)^2}} \text{ is:}$$

- (A) 2
- (B) 4
- (C) 6
- (D) 8

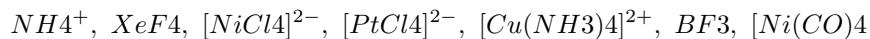
39. A wave propagates whose electric field is given by

$$\vec{E} = 69 \sin(\omega t - kx) \hat{j}.$$

Find the direction of the magnetic field.

- (A) \hat{k}
- (B) $-\hat{k}$
- (C) $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$
- (D) $\frac{\hat{i} - \hat{j}}{\sqrt{2}}$

40. Two rods of equal length 60 cm each are joined together end to end. The coefficients of linear expansion of the rods are $24 \times 10^{-6} \text{ }^{\circ}\text{C}^{-1}$ and $1.2 \times 10^{-5} \text{ }^{\circ}\text{C}^{-1}$. Their initial temperature is $30 \text{ }^{\circ}\text{C}$, which is increased to $100 \text{ }^{\circ}\text{C}$. Find the final length of the combination (in cm).


- (A) 120.1321
- (B) 120.1123
- (C) 120.1512
- (D) 120.1084

41. 1 g of AB_2 is dissolved in 50 g of a solvent such that $\Delta T_f = 0.689 \text{ K}$. When 1 g of AB is dissolved in 50 g of the same solvent, $\Delta T_f = 1.176 \text{ K}$. Find the molar mass of AB_2 . Given $K_f = 5 \text{ K kg mol}^{-1}$. (Report to nearest integer.) Both AB_2 and AB are non-electrolytes.

42. Out of the following, how many compounds have tetrahedral geometry?

43. If the domain of the function

$$\cos^{-1} \left(\frac{2x-5}{11x-7} \right) + \sin^{-1} (2x^2 - 3x + 1)$$

is

$$[0, a] \cup \left[\frac{12}{13}, b \right],$$

then the value of $\frac{1}{ab}$ is:

- (A) -3
- (B) 3
- (C) 2
- (D) 4

44. In the binomial expansion of

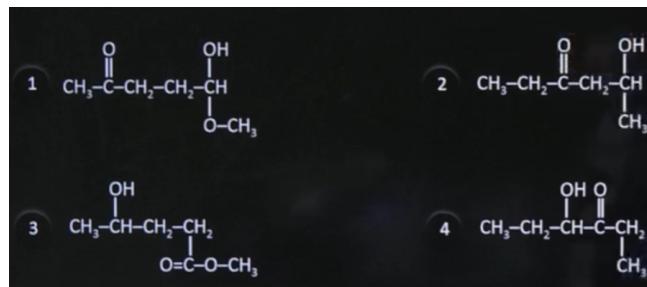
$$(ax^2 + bx + c)(1 - 2x)^{26},$$

the coefficients of x, x^2, x^3 are -56, 0 and 0 respectively. Then the value of $(a + b + c)$ is:

- (A) 1500
- (B) 1403
- (C) 1300
- (D) 1483

45. Find the change in internal energy of a gas if its temperature changes by 10 K. Number of moles of gas is 10, C_p (specific heat at constant pressure) is $7 \text{ cal K}^{-1} \text{ mol}^{-1}$ and R (gas constant) = $2 \text{ cal K}^{-1} \text{ mol}^{-1}$.

- (A) 500 cal
- (B) 1000 cal
- (C) 250 cal
- (D) 100 cal



46. Two mechanical waves travel on strings of equal length L and equal tension T . The linear mass densities of the strings are in the ratio $\frac{\mu_1}{\mu_2} = \frac{1}{2}$. Find the ratio of time taken for a wave pulse to travel from one end to the other in both strings. (Neglect gravity).

- (A) $\frac{1}{2}$
- (B) $\frac{1}{\sqrt{2}}$
- (C) $\sqrt{2}$
- (D) 2

47. $\text{C}_6\text{H}_{12}\text{O}_3$ gives positive iodoform test. On hydrolysis with dilute acid, the product formed gives both Tollens' test and iodoform test. Find the correct structure of $\text{C}_6\text{H}_{12}\text{O}_3$.

(A) $\text{CH}_3\text{COCH}_2\text{CH}_2\text{CH}(\text{OH})\text{OCH}_3$
(B) $\text{CH}_3\text{CH}_2\text{COCH}_2\text{CH}(\text{OH})\text{CH}_3$
(C) $\text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{CH}_2\text{COOCH}_3$
(D) $\text{CH}_3\text{CH}_2\text{CH}(\text{OH})\text{COCH}_2\text{CH}_3$

48. Consider the following statements:

(A) Propanal and propanone are functional isomers
(B) Ethoxyethane and methoxypropane are metamers
(C) But-2-ene shows optical isomerism
(D) But-1-ene and but-2-ene are functional isomers
(E) Pentane and 2,2-dimethylpropane are chain isomers

The correct statements are:

(A) A, B, D only
(B) B, C, D only
(C) A, B, E only
(D) A, B, D, E only

49. If $a_1 = 1$ and for all $n \geq 1$,

$$a_{n+1} = \frac{1}{2}a_n + \frac{n^2 - 2n - 1}{n^2(n+1)^2},$$

then the value of

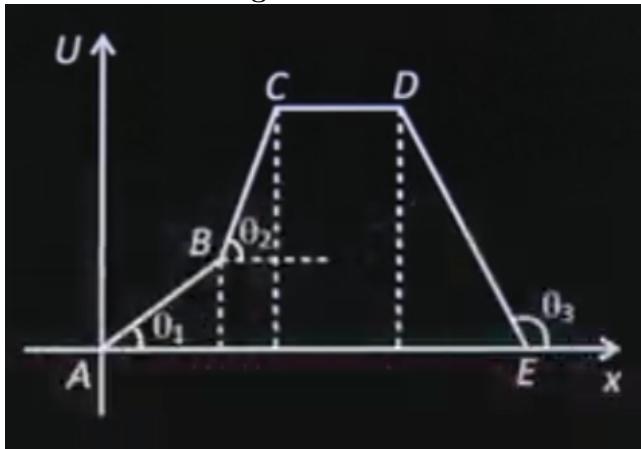
$$\sum_{n=1}^{\infty} \left(a_n - \frac{2}{n^2} \right)$$

is equal to:

50. The area enclosed by

$$x^2 + 4y^2 \leq 4, \quad y \leq |x| - 1, \quad y \geq 1 - |x|$$

is equal to:


(A) $4\sin^{-1}\left(\frac{3}{5}\right) + \frac{6}{5}$
(B) $\sin^{-1}\left(\frac{3}{5}\right) - \frac{6}{5}$
(C) $4\sin^{-1}\left(\frac{3}{5}\right) + \frac{12}{5}$
(D) $4\sin^{-1}\left(\frac{3}{5}\right) - \frac{6}{5}$

51. A curve is given between the potential energy U of a particle and its position on the x -axis as shown. Given:

$$\tan \theta_1 = 1, \quad \tan \theta_2 = 3, \quad \tan \theta_3 = -\frac{1}{2}$$

If F_{AB} is the force acting on the particle during motion from A to B , similarly F_{BC} , F_{CD} and F_{DE} are the forces during B to C , C to D and D to E respectively, arrange the magnitudes of these forces in decreasing order.

(A) $F_{BC} > F_{AB} > F_{CD} > F_{DE}$
 (B) $F_{BC} > F_{AB} > F_{DE} > F_{CD}$
 (C) $F_{AB} > F_{BC} > F_{DE} > F_{CD}$
 (D) $F_{BC} > F_{DE} > F_{AB} > F_{CD}$
